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Abstract

Two numerical methods are proposed to numerically evaluate the survival func-
tion of a compound distribution and the stop-loss premiums associated with a non-
proportional global reinsurance treaty. The first method relies on a representation of
the probability density function in terms of Laguerre polynomials and the gamma
density, the second is a numerical inversion of the Laplace transform. Numerical
comparisons are conducted at the end of the paper.
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1 Introduction

Consider the random variable (rv)

SN =
N∑
k=1

Uk,

where N is a counting rv and {Uk}k∈N+ is a sequence of rv’s which are independent
and identically distributed (iid), non-negative, and independent of N . We denote the
probability density function (pdf) of SN as fSN

, and its survival function (sf) as

F SN
(x) = P(SN > x), for x ≥ 0.
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This paper concerns approximations of fSN
and F SN

, though we begin with a discussion
of how SN is used in actuarial science.

Frequently SN models the aggregated losses of a non-life insurance portfolio over a
given period of time—here N represents the number of claims and Uk the claim sizes—
yet other applications also exist. Actuaries and risk managers typically want to quantify
the risk of large losses by a single comprehensible number, a risk measure.

One popular risk measure is the Value-at-Risk (VaR). In actuarial contexts, the VaR
at level α ∈ (0, 1) is defined such that the probability of (aggregated) losses exceeding the
level VaR is at most 1− α. We denote this α-quantile as

VaRSN
(α) = inf{x ≥ 0, FSN

(x) ≥ α}.

Following the European recommendation of the Solvency II directive, the standard value
for α is 0.995, see [9]. It is used by risk managers in banks, insurance companies, and other
financial institutions to allocate risk reserves and to determine solvency margins. Also,
we have stop-loss premiums (slp’s) which are risk measures that are commonly used in
reinsurance agreements.

A reinsurance agreement is a common risk management contract between insurance
companies, one called the “cedant” and the other the “reinsurer”. Its aim is to keep the
cedant’s long-term earnings stable by protecting the cedant against large losses. The
reinsurer absorbs part of the cedant’s loss, say f(SN) where 0 ≤ f(SN) ≤ SN , leaving the
cedant with If (SN) = SN − f(SN). In return, the cedant pays a premium linked to

Π = E[f(SN)],

under the expected value premium principle.
In practice, there are a variety of reinsurance designs from which an insurer can choose.

We focus in this work on the stop-loss reinsurance treaty associated with the following
ceded loss function

f(SN) = (SN − a)+, a ≥ 0,
where a is referred to as the retention level or priority. The ratemaking of the stop-loss
reinsurance policy requires the evaluation of

Πa(SN) = E [(SN − a)+] , (1)

also known as the usual stop loss premium (slp).
One variation is the limited stop-loss function,

f(SN) = min[(SN − a)+, b], b ≥ 0, (2)

where b is called the limit. The limited stop-loss function (2) is very appealing in prac-
tice because it prevents the cedant from over-estimating their losses and therefore over-
charging the reinsurer. We also have the change-loss function defined as

f(SN) = c(SN − a)+, 0 ≤ c ≤ 1,

which is in between stop-loss and quota-share reinsurance. Note that the ratemaking in
each case requires the expectation in (1).
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From a practical point of view, a reinsurance treaty over the whole portfolio is less
expensive to handle than one which involves claim-by-claim management. It also grants
protection in the event of an unusual number of claims, triggered for instance by a natural
disaster. From a theoretical point of view, it is well known that the stop-loss ceded function
allows one to minimize the variance of the retained loss for a given premium level, see for
instance the monograph of Denuit et al. [7]. Recently, it has been shown that stop-loss
reinsurance is also optimal when trying to minimize the VaR and the expected shortfall
of the retained loss, see the works of Cai et al. [4], Cheung [5], and Chi and Tan [6]. Note
that some other ceded loss functions appear in their work, there are however very close
to the stop-loss one.

Unfortunately, one is seriously constrained when calculating these quantities analyti-
cally, as there are only a few cases where either the pdf or the sf is available in a simple
tractable form. To estimate theVaR or slp we must find fast and accurate approximations
for these functions.

We discuss the use of an approximation of the pdf in terms of the gamma density
and its orthonormal polynomials. This method has been studied in the recent works of
Goffard et al. [13] and Jin et al. [17]. We emphasize here the computational aspect of
this numerical method and detail some practical improvements. An exponential change
of measure can be used to recover the pdf of SN when the claim sizes are governed by
a heavy-tailed distribution. This refinement has been successfully applied in the work of
Asmussen et al. [3] to recover the density of the sum of lognormally distributed random
variables.

This method is compared to a numerical inversion of the Laplace transform which is
known to be efficient to recover the survival function of a compound distribution. The
critical step in Laplace inversion is to select which numerical integration technique to
apply. We implement a method inspired by the work of Abate and Whitt [1] which is
very similar to the method of Rolski et al. [30, Chapter 5, Section 5]. An approximation
of the slp is then proposed relying on the connection with the survival function of the
equilibrium distribution of SN . Note that Dufresne et al. [8] successfully applied a Laplace
inversion based technique to the evaluation of slp.

To close, we want to emphasize the fact that the numerical methods also apply in a risk
theory framework. The infinite-time ruin probability in the compound Poisson ruin model
is equal to the survival function of a compound geometric distribution. The polynomial
approximation and the Laplace inversion methods have been employed, and compared to
solve this particular problem in the work of Goffard et al. [12]. We add a more original
application by noting that the finite-time non-ruin probability with no initial reserves,
again under the classical risk model assumptions, may be rewritten as the slp associated
with a compound Poisson distribution where the priority is expressed in terms of the
premium rate and the time horizon.

The rest of the paper is organized as follows. Section 2 introduces compound distribu-
tions, and details their role in risk theory. Section 3 presents the approximation method
based on orthogonal polynomials. Section 4 presents the approximation through the nu-
merical inversion of the Laplace transform. Section 5 is devoted to numerical illustrations
where the performances of the two methods are compared; the Mathematica code used
in this section is available online [11].
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2 Compound distributions and risk theory

After setting up some notational conventions for Laplace transforms, compound distribu-
tions are introduced along with a brief account of their importance in risk modeling.

2.1 Laplace transforms

Definition 1. For a function f : R+ → R+, we define

L{f}(t) ≡
∫ ∞

0
e−txf(x) dx , for t ∈ C with <(t) ≥ 0 ,

to be the corresponding Laplace transform. For a positive random variable X with pdf
fX , we write LX(t) ≡ L{fX}(t) = E e−tX . �

We have the result that for t > 0

L{FX}(t) = L{fX}(t)
t

= LX(t)
t

, and

L{FX}(t) = 1
t
− L{FX(x)}(t) = 1− LX(t)

t
.

2.2 Compound distribution

Let SN = ∑N
k=1 Uk be the aggregated claim amounts associated with a non-life insurance

portfolio over a fixed time period. The number of claims, also called the claim frequency,
is modeled by a counting random variable N having a probability mass function fN . The
claim sizes form a sequence {Uk}k∈N+ of iid non-negative random variables with common
pdf fU . We further assume that the claim sizes are independent from the claim frequency,
so the random variable SN follows the compound distribution (fN , fU).

As SN = 0 whenever N = 0 (assuming this occurs with positive probability), the
distribution of SN is the sum of a singular part (the probability mass P(SN = 0) =
fN(0) > 0) and a continuous part (describing SN where N > 0) with a defective pdf f+

SN

and cdf F+
SN

. From the law of total probability, we have

f+
SN

(x) =
∞∑
n=1

fN(n)f ∗nU (x), x ≥ 0. (3)

This density is intractable because of the infinite series. Furthermore, the summands
are defined by repeated convolution of fU with itself which are rarely straightforward
to evaluate. The methods presented in this work rely on the knowledge of the Laplace
transform of SN , given by

LSN
(t) = GN [LU(t)] ,

where GN(t) ≡ E(tN) is the probability generating function of N . The simple expression
of the Laplace transform has made possible the use of numerical methods involving the
moments or transform inversion to recover the distribution of SN . The distribution is
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2.3 Risk theory

typically recovered using Panjer’s algorithm or a Fast Fourier Transform algorithm based
on the inversion of the discrete Fourier transform; these two methods are compared in
the work of Embrechts and Frei [10]. Our orthogonal polynomial method involves the
standard integer moment sequence for SN , in contrast to more exotic types of moments
used by some recent methods. Gzyl and Tagliani [15] uses the fractional moments within a
max-entropic based method, while Mnatsakanov and Sarkisian [21] performs an inversion
of the scaled Laplace transform via the exponential moments. In addition to proposing
an approximation for the survival function of SN , we provide an efficient way to compute
the usual slp (1) for reinsurance applications.

2.3 Risk theory

In the classical risk model, the financial reserves of a non-life insurance company are
modeled by the risk reserve process {R(t), t ≥ 0}, defined as

R(t) = u+ ct−
N(t)∑
k=1

Uk.

The insurance company holds an initial capital of amount R(0) = u ≥ 0, and collects
premiums at a constant rate of c > 0 per unit of time. The number of claims up to time
t ≥ 0 is governed by a homogeneous Poisson process {N(t), t ≥ 0} with intensity λ. The
claim sizes are iid non-negative random variables independent from N(t).

One of the goals of risk theory to evaluate an insurer’s ruin probability, that is, the
probability that the financial reserves eventually fall below zero. Of interest are both the
finite-time ruin probability ψ(u, T ) and the infinite-time ruin probability, also called the
probability of ultimate ruin, ψ(u), which are defined as

ψ(u, T ) = P
(

inf
0≤t≤T

R(t) ≤ 0
)
,

and
ψ(u) = P

(
inf
t≥0

R(t) ≤ 0
)
.

These probabilities are often reformulated (for mathematical convenience) in terms of the
associated claims surplus process {S(t), t ≥ 0},

S(t) =
N(t)∑
k=1

Uk − ct, t ≥ 0,

specifically,

ψ(u, T ) = P
(

sup
0≤t≤T

S(t) ≥ u
)

and ψ(u) = P
(

sup
t≥0

S(t) ≥ u
)
.

For a general background on risk theory and the evaluation of ruin probabilities, we
refer the reader to the monograph of Asmussen and Albrecher [2].

The first connection between compound distributions and ruin probabilities is the
following. If the net benefit condition is satisfied, i.e. if the premium rate exceeds the
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average cost of aggregated claims per unit of time, then the infinite-time ruin probability
is given by the survival function of a geometric compound distribution. More precisely,

ψ(u) = P
(
SN ≡

N∑
k=1

U∗k > u

)
= (1− ρ)

∞∑
n=1

ρnF
∗n
U∗(u),

with N ∼ Geom0(ρ), ρ = λE(U)/c < 1, and with iid U∗k with pdf fU∗(x) = FU(x)/E(U).
This result is known as the Pollaczeck–Khinchine formula, see for instance Asmussen and
Albrecher [2, Chapter IV, (2.2)]. Thus it is possible to evaluate the infinite-time ruin
probability via Panjer’s algorithm. If we are able to determine the Laplace transform of
V then we can also apply the polynomial method of Goffard et al. [13], the fractional
moment based method of Gzyl et al. [14], and the exponential moments based method
of Mnatsakanov et al. [22].

The second connection links the finite-time ruin probability with no initial reserves to
the slp associated with a compound distribution. If N(t) ∼ Poisson(λt) (i.e. claims arrive
as a homogeneous Poisson process) then the finite-time ruin probability is given by

ψ(0, T ) = 1− 1
cT

∫ cT

0
P
(N(T )∑

i=1
Ui ≤ x

)
dx . (4)

Writing SN(T ) = ∑N(T )
i=1 Ui we can see that (4) says that ψ(0, T ) = E[min{SN(T ), cT}]/cT

and hence

ψ(0, T ) = (cT )−1
[
E[N(T )]E[U1]− ΠcT (SN(T ))

]
. (5)

Lefèvre and Picard [19, Corollary 4.3] show that equations (4) and (5) hold in the more
general case where the claim arrival process forms a mixed Poisson process. This connec-
tion has been exploited recently in Lefèvre et al. [20] where the influence of the claim size
distribution on the ruin probabilities is studied via stochastic ordering considerations.

3 Orthogonal polynomial approximations

3.1 Approximating general density functions

Let X be an arbitrary random variable with pdf 1 fX with respect to some measure λ
(typically Lebesgue measure on an interval or counting measure on a subset of Z). We
assume that the density is unknown and we propose an approximation of the form

f̂X(x) =
K∑
k=0

qkQk(x)fν(x). (6)

where fν is the reference or basis density, associated to a probability measure ν absolutely
continuous with respect λ. The sequence {Qk, k ≥ 0} is made of polynomials, orthonormal
with respect to ν in the sense that

〈Qk, Ql〉ν =
∫
Qk(x)Ql(x) dν(x) = δk,l, k, l ∈ N0.

1This section is written from the perspective of approximating a pdf , however the main results also
hold if applied to a defective density.
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3.2 Approximating densities of positive random variables

This sequence is generated by the Gram–Schmidt orthogonalization procedure which is
only possible if ν admits moments of all orders. If additionally there exists s > 0 such
that ∫

esx dν(x) <∞

then the sequence of polynomials {Qk, k ≥ 0} forms an orthonormal basis of L2(ν) which
is the space of all square integrable functions with respect to ν, see the monograph by
Nagy [25, Chapter 7]. Therefore, if fX/fν ∈ L2(ν) then the polynomial representation of
the density of X with respect to ν follows from orthogonal projection, namely we have

fX(x)/fν(x) =
∞∑
k=0
〈fX/fν , Qk〉ν Qk(x). (7)

We label the coefficients of the expansion as {qk, k ≥ 0}, noting that

qk ≡ 〈fX/fν , Qk〉ν =
∫
Qk(x)fX(x) dν(x)

fν(x) = E [Qk(X)] , k ∈ N0,

and thus we can rearrange (7) to be

fX(x) =
∞∑
k=0

qkQk(x)fν(x). (8)

The approximation (6) follows by simply truncating the series to K + 1 terms.
The Parseval relationship, ∑∞k=1 q

2
k = ||fX/fν ||2ν , ensures that the sequence {qk, k ≥

0} tends toward 0 as k tends to infinity. The accuracy of the approximation (6), for a
given order of truncation K, depends on how swiftly these coefficients decay. The L2 loss
associated with the approximation of fX/fν is ∑∞k=K+1 q

2
k.

Typical choices of reference distributions are ones that belong to a Natural Exponential
Family with Quadratic Variance Function (NEF-QVF) which includes the normal, gamma,
hyperbolic, Poisson, binomial, and Pascal distributions. This family of distributions is
convenient as the associated orthogonal polynomials are classical, see the characterization
by Morris [23]. The polynomials are known explicitly, thus we avoid the time-consuming
Gram–Schmidt orthogonalization procedure. Furthermore, it has been shown in a paper
by Provost [29] that the recovery of unknown densities from the knowledge of the moments
of the distribution naturally leads to approximation in terms of the gamma density and
Laguerre polynomials when X admits R+ as support, and in terms of the normal density
and Hermite polynomials when X has R as support.

3.2 Approximating densities of positive random variables

To approximate the pdf for positive X, a natural candidate for the reference density is the
gamma density. It has been proven to be efficient in practice, see the work of Goffard et al.
[13, 12], and Jin et al. [17]. The work of Papush et al. [28] showed that among the gamma,
normal and lognormal distribution, the gamma distribution seems to be better suited to
model certain aggregate losses. The lognormal distribution is a problematic choice. Even
though the orthogonal polynomials are available in a closed form see Asmussen et al.
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3.2 Approximating densities of positive random variables

[3], they do not provide a complete orthogonal system of the L2 space. The case of the
inverse Gaussian as basis received a treatment in the work of Nishii [26], where it is shown
that the only way to get a complete system of polynomials is by using the Gram–Schmidt
orthogonalization procedure. Differentiating the density (as it is done in the case of NEF-
QVF) does not lead to an orthogonal polynomial system, and starting from the Laguerre
polynomials leads to a system of orthogonal functions which is not complete. A solution
might be to exploit the bi-orthogonality property pointed out in the work of Hassairi and
Zarai [16]. To close this review of reference densities, we mention the work of Nadarajah
et al. [24] where Weibull and exponentiated exponential distributions are considered as
reference density.

The Gamma(r,m) distribution, where r is the shape parameter and m is the scale
parameter, has a pdf

fν(x) ≡ γ(r,m, x) = xr−1e− x
m

Γ(r)mr
, x ∈ R+,

where Γ(·) denotes the gamma function2. The associated orthonormal polynomials are
given by

Qn(x) = (−1)n
(
n+ r − 1

n

)− 1
2

Lr−1
n

( x
m

)
= (−1)n

(
Γ(n+ r)

Γ(n+ 1)Γ(r)

)− 1
2

Lr−1
n

( x
m

)
,

where {Lr−1
n , n ≥ 0} are the generalized Laguerre polynomials,

Lr−1
n (x) =

n∑
i=0

(
n+ r − 1
n− i

)
(−x)i
i! =

n∑
i=0

Γ(n+ r)
Γ(n− i+ 1)Γ(r + i)

(−x)i
i! , n ≥ 0,

cf. the classical book by Szegö [31].

Lemma 1. If ν is Gamma(r,m), the polynomial expansion (8) may be rewritten as

fX(x) =
∞∑
i=0

piγ(r + i,m, x), (9)

where

pi =
∞∑
k=i

qk
(−1)i+k
i! (k − i)!

√√√√k!Γ(k + r)
Γ(r) , (10)

and the function γ(r,m, x) is the pdf of the Gamma(r,m) distribution.

Proof. If we change the sum in (8) from iterating over Laguerre polynomials to iterating
over monomials we get

fX(x) =
∞∑
k=0

qkQk(x)γ(r,m, x) =
∞∑
i=0

cix
iγ(r,m, x) ,

2For the distributions in this paper, we use Mathematica’s parametrization, e.g. the exponential
and Erlang distributions are Exp(λ) = Gamma(1, 1/λ) and Erlang(n,m) = Gamma(n, 1/m).
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3.2 Approximating densities of positive random variables

where

ci =
∞∑
k=0

Coefficient(xi, qkQk(x)) = (−1)i
mii!

∞∑
k=i

qk(−1)k
(
k + r − 1

k

)− 1
2
(
k + r − 1
k − i

)
.

We also note that
xiγ(r,m, x) = miΓ(r + i)

Γ(r) γ(r + i,m, x),

so
fX(x) =

∞∑
i=0

cim
iΓ(r + i)

Γ(r) γ(r + i,m, x) =
∞∑
i=0

piγ(r + i,m, x),

where we have set pi = cim
iΓ(r + i)/Γ(r).

Remark 3.1. For r = 1, the formula for pi, (10), simplifies to

pi =
∞∑
k=i

qk(−1)i+k
(
k

i

)
.

The expression of the pdf in (9) resembles the one of an Erlang mixture, which are
extensively used for risk modeling purposes, cf. Willmot and Woo [33], Lee and Lin
[18], and Willmot and Lin [32]. However, the pi’s defined in (10) do not form a proper
probability mass function as they are not always positive. Hence our approximation cannot
be considered as an approximation through an Erlang mixture although it enjoys the same
features when it comes to approximating the survival function and the slp as shown in
the following result.

Proposition 1. Letting Γu(r,m, x) be the sf of the Gamma(r,m) distribution, we have:

(i) the sf of X is given by

FX(x) =
∞∑
i=0

piΓu(r + i,m, x) for x ≥ 0 , (11)

(ii) the usual slp of X with priority a ≥ 0 is given by

E
[
(X − a)+

]
=
∞∑
i=0

pi [m(r + i)Γu(r + i+ 1,m, a)− aΓu(r + i,m, a)] . (12)

Proof. If fX/fν ∈ L2(ν) then Lemma 1 allows us to write fX as in (9), and integrating
this over [x,∞) yields the formula (11). Now consider the usual slp of X, and note that

E [(X − a)+] =
∫ ∞
a

(x− a)fX(x) dx

=
∫ ∞
a

xfX(x) dx− aFX(a). (13)

Then notice that for every i ∈ N0, we have that∫ ∞
a

x γ(r + i,m, x) dx =
∫ ∞
a

x
xr+i−1e−x/m
Γ(r + i)mr+i dx
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3.2 Approximating densities of positive random variables

= m
Γ(r + i+ 1)

Γ(r + i)

∫ ∞
a

xr+ie−x/m
Γ(r + i+ 1)mr+i+1 dx

= m(r + i)Γu(r + i+ 1,m, a). (14)

Therefore substituting (9) and (11) into (13) and simplifying with (14) yields (12).

Let us make the connection between our approach and Erlang mixture more precise.
Assuming that fX/fν ∈ L2(ν) then taking the Laplace transform on both side of (9)
yields

LX(s) =
∞∑
i=0

pi

( 1
1 + sm

)r+i
=
( 1

1 + sm

)r
P
( 1

1 + sm

)
,

where P(z) = ∑∞
i=1 piz

i denotes the generating function of the sequence of coefficient
{pi , i ≥ 1}. Now setting z = 1

1+sm allows to express the generating function P(z) in
terms of the Laplace transform of X as

P(z) = z−rLX
(1− z
zm

)
.

Remark 3.2. The approximation through an Erlang mixture consists in approximating
the pdf of a nonnegative random variable X as

fX(x) =
∞∑
i=1

piγ(i,m, x), for x ≥ 0.

The function P(z) becomes then the probability generating function (pgf) of a counting
random variable M , where pi = P(M = i), for i ≥ 1.

The next example is designed to shed light on the link between our polynomial ex-
pansion and an Erlang mixture.

Example 1. Suppose that we are interested in approximating the pdf of an exponential
random variable Gamma(1, β). The generating function of the coefficients is then

P(z) = z1−r m

β + z(m− β) .

If one takes r = 1 and m = β then P(z) = 1 and the polynomial representation reduces
to the exponential pdf. Choosing 0 < m < β leads to P(z) = m/β

1−z(1−m/β) , which is the
pgf of a geometric random variable; this recovers the fact that an exponential rv can
be represented by a zero-truncated geometric sum of exponential rv’s. For m > β, we
have P(z) = m/β

1+z(1−β/m) which is an alternating sequence that decreases geometrically fast.
Recall that our polynomial expansion is valid only if m > β/2, which means that when
β/2 < m ≤ β our approach coincides with the Erlang mixture technique. It does not
when m > β. When m ≤ β/2, the Erlang mixture representation holds even though the
integrability condition, which is a sufficient one, does not hold.
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3.2 Approximating densities of positive random variables

The coefficients of the polynomials could be derived by differentiating the generating
function P(z) as

pi = 1
k!

dk
dzkP(z)

∣∣∣∣
z=0

= Coefficient(k,MaclaurinSeries(P(z))),

for i ≥ 0. In practice, the singularities of the function P(z) at zero mean this procedure
is not viable. Instead, the pi’s are approximated by computing the qk’s and truncating
their expression (10) up to a given order. The practical evaluation of the qk’s is discussed
in Section 3.3.2.

A sufficient condition for fX/fν ∈ L2(ν) is

fX(x) =

O(e−x/δ) as x→∞ with m > δ/2,
O(xβ) as x→ 0 with r < 2(β + 1).

When X has a well-defined moment generating function one can typically choose r and m
so this integrability condition is satisfied. Define the radius of convergence of the random
variable X as

ρX = sup{s > 0 , L{fX}(−s) < +∞},
and consider the following result.

Proposition 2. Let X be a non-negative random variable having a pdf fX , having a well
defined moment generating function, then

fX(x) = O(e−xρX ) as x→∞.

Proof. The result follows from applying Chernoff bound on the survival function, then De
L’Hôpital’s rule enables us to conclude.

The integrability condition is satisfied if m > ρ−1
X /2. When we consider heavy-tailed

distributions, which is a desirable model characteristic in the applications, the integrability
condition cannot be satisfied. The work-around is to use the expansion

e−θxfX(x) =
∞∑
k=0

qkQk(x)fν(x),

for some θ > 0. Thus, we can use

fX(x) = eθx
∞∑
k=0

qkQk(x)fν(x) = eθx
∞∑
i=0

piγ(r + i,m, x)

and since, when 1−mθ > 0,

eθxγ(r + i,m, x) = (1−mθ)−(r+i)γ
(
r + i,

m

1−mθ, x
)

we have

fX(x) =
∞∑
i=0

pi(1−mθ)−(r+i)γ
(
r + i,

m

1−mθ, x
)

=
∞∑
i=0

p̃iγ
(
r + i, m̃, x

)
,
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3.3 Approximating densities of positive compound distributions

where
p̃i = pi

(1−mθ)r+i and m̃ = m

1−mθ .

Calculating the qi’s and pi’s, topic covered in Section 3.3.2, requires a Laplace transform
of e−θxfX(x) which is given by

L{e−θxfX(x)}(t) = L{fX(x)}(t+ θ).

The method described above is the same (up to some constants) as approximating the
exponentially tilted distribution. This idea has been used in Asmussen et al. [3]. It is
easily seen that taking m > θ−1/2 implies that (e−θxfX(x))/fν(x) ∈ L2(ν).

3.3 Approximating densities of positive compound distributions

We now focus on variables SN which admit a compound distribution. Since these distri-
butions have an atom at 0, we put aside this singularity and focus on the defective pdf
f+
SN

. The discussion in Sections 3.1 and 3.2 also apply to defective densities. Namely, if
f+
SN
/fν ∈ L2(ν) then the expansion in Lemma 1 is valid, we have

f+
SN

(x) =
∞∑
k=0

qkQk(x) γ(r,m, x) =
∞∑
i=0

piγ(r + i,m, x), for x > 0,

where qk =
∫∞

0 Qk(x)f+
SN

(x) dx and pi is given by (10). Truncating the first summation
yields

f+
SN

(x) ≈
K∑
k=0

qkQk(x) γ(r,m, x) =
K∑
i=0

p̂iγ(r + i,m, x),

where p̂i = ∑K
k=i qk(−1)i+k/[i! (k − i)!]

√
k!Γ(k + r)/Γ(r) for i ≤ K. The survival function

F SN
and the slp E

[
(SN − a)+

]
follows from Proposition 1. If the integrability condition

is not satisfied then the exponentially tilted version of the defective pdf is expanded.

3.3.1 Choice of r and m

The parameters for the polynomial approximations are set differently for the light-tailed
and heavy-tailed cases. In the light-tailed cases moment matching of order 2 is the natural
procedure to set the values of r and m. We need to take into account the result in
Proposition 2 and make sure thatm > ρ−1

X /2, where ρX = sup{s > 0 ; L{f+
SN
}(−s) <∞}.

Hence, the value of ρX depends on the distributions of N and U . The two distributions
we use for modeling the claim frequency N are the Poisson and the Pascal distributions.
The Poisson distribution is denoted by Poisson(λ) with pmf

fN(k) = e−λλk

k! , for k = 0, 1 . . . ,

where λ > 0. We define the Pascal rv to be the number of failures counted before observing
α ∈ N+ successes, denoted Pascal(α, p) with pmf

fN(k) =
(
α + k − 1

k

)
pαqk , for k = 0, 1, . . . .
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3.3 Approximating densities of positive compound distributions

Example 2. Let N be Poisson distributed, the moment generating function of SN is then
given by

LSN
(−s) = exp [λ(LU(−s)− 1)] .

The radius of convergence of SN coincides with the one of U , ρSN
= ρU . In that case, we

can set r = 1 and m=λE(U) which corresponds to a moment matching procedure of order
1 or set r = λE(U)2/E (U2) and m = E (U2) /E(U) which, in turns, matches the two first
moments.

Example 3. Let N be Pascal distributed, the moment generating function of SN is then
given by

LSN
(−s) =

[
p

1− qLU(−s)

]α
.

The radius of convergence ρSN
is the positive solution of the equation LU(−s) = q−1. We

set r = 1 and m = ρ−1
SN

.

The parametrization proposed in Example 3 is linked to the fact that it leads to the
exact defective pdf in the case of a compound Pascal model with exponentially distributed
claim sizes. First, we need to introduce the binomial distribution denoted by Binomial(n, p)
with pmf

fN(k) =
(
n

k

)
pkqn−k , for k = 0, 1, . . . , n ,

where p ∈ (0, 1), n ∈ N+, and p + q = 1. The following lemma, adapted from [27],
shows a useful correspondence between the Pascal and binomial distributions when used
in compound sums with the exponential distribution.

Lemma 2. Consider the random sums X = ∑N1
i=1 Ui and Y = ∑N2

i=1 Vi, where

N1 ∼ Pascal(α, p) , Ui
i.i.d.∼ Gamma(1, β) , N2 ∼ Binomial(α, q) , Vi

i.i.d.∼ Gamma(1, p−1β) ,

where p ∈ (0, 1), α ∈ N+, p+ q = 1, and where β > 0. Then we have X D= Y .

Proof. Both X and Y have the same Laplace transform, so X D= Y .

Corollary 1. Consider the compound sum SN = ∑N
i=1 Ui where N ∼ Pascal(α, p) and the

Ui
i.i.d.∼ Gamma(1, β). Then the sf of SN is given by

F SN
(x) =

α∑
i=1

(
α

i

)
qipα−i Γu

(
i, p−1β, x

)
,

and its slp is given by

E
[
(SN − a)+

]
=

α∑
i=1

(
α

i

)
qipα−i

[
iβ

p
Γu
(
i+ 1, p−1β, a

)
− aΓu

(
i, p−1β, a

)]
.

Proof. By Lemma 2 we treat SN as if defined for N ∼ Binomial(α, q) and with Ui
i.i.d.∼

Gamma(1, p−1β). The result follows by noting Sn = U1 + · · ·+Un ∼ Gamma(n, p−1β).

October 30, 2017 at 14:09 13 Two numerical methods



3.3 Approximating densities of positive compound distributions

One conclusion of Corollary 1 is that the exact solution coincides with our approxi-
mation when r = 1 and m = p−1β (and with K ≥ α− 1). Note that pβ−1 is the solution
of the equation LU(−s) = q−1 which is consistent with the parametrization proposed in
Example 3.

In the heavy-tailed cases (i.e. when exponential tilting is required) we set θ = 1,
m = θ/2 = 1/2 (at the lower limit for m; this gives m̃ = 1), and choose r = E[U ].

3.3.2 Computation of the qk’s

The inherent challenge of the implementation of the polynomial method remains the
evaluation of the coefficients {qk, k ≥ 0}. Recall that

qk =
∫ ∞

0
Qk(x)f+

SN
(x) dx, k ≥ 0.

We propose an evaluation based on the Laplace transform L{f+
SN
}. Define the generating

function of the sequence {qkck, k ≥ 0} as Q(z) = ∑∞
k=0 qkckz

k, where

ck =
(

Γ(k + r)
Γ(k + 1)Γ(r)

)1/2

, for k ≥ 0 .

The following result establishes a link between the Laplace transform of f+
SN

and the
generating function Q(z).

Proposition 3. Assume that f+
SN
/fν ∈ L2(ν), then we have

Q(z) = (1 + z)−rL{f+
SN
}
[ −z
m(1 + z)

]
. (15)

Proof. As f+
SN
/fν ∈ L2(ν), the polynomial representation of f+

SN
follows from the appli-

cation of Lemma 1 with

f+
SN

(x) =
∞∑
k=0

k∑
i=0

qk
(−1)i+k
i! (k − i)!

√√√√k!Γ(k + r)
Γ(r) γ(r + i,m, x). (16)

Taking the Laplace transform in (16) yields

L{f+
SN
}(s) =

( 1
1 + sm

)r ∞∑
k=0

qk
k∑
i=0

(−1)k+i
(

Γ(k + r)
Γ(k + 1)Γ(r)

)1/2 (
k

i

)( 1
1 + sm

)i

=
( 1

1 + sm

)r ∞∑
k=0

qkck(−1)k
k∑
i=0

(
k

i

)( −1
1 + sm

)i

=
( 1

1 + sm

)r ∞∑
k=0

qkck(−1)k
(

sm

1 + sm

)k
=
(

1− sm

1 + sm

)r
Q
(
− sm

1 + sm

)
.

Thus (15) follows from letting z = −sm/(1 + sm).
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The Laplace transform of the defective pdf f+
SN

is given by

L{f+
SN
}(s) = LSN

(s)− P(N = 0).

The coefficients of the polynomials can be derived after differentiation of the generating
function Q(z) as

qk = 1
ck

1
k!

dk
dzkQ(z)

∣∣∣∣
z=0

= 1
ck
Coefficient(k,MaclaurinSeries(Q(z))).

4 Laplace transform inversion approximations

We present in this section a method inspired from the work of Abate and Whitt [1]
to recover the survival function of a compound distribution from the knowledge of its
Laplace transform. The methodology is further applied to the computation of slp’s by
taking advantage of the connection between the slp of SN and the survival function of
the equilibrium distribution of SN . We begin by stating some useful transform relations,
then discuss the general Laplace inversion framework that we will use, and will apply the
method to the compound distribution problem.

4.1 Numerical Laplace inversion

A function f can be recovered from its Laplace transform by a standard Bromwich integral.
We assume f : R+ → R+, is a measurable function with locally bounded variation. To
define the Bromwich integral, first select a γ > 0 (we discuss this choice later), then

f(x) = 2eγx
π

∫ ∞
0

cos(xs)< [L{f}(γ + is)] ds.

We apply a basic numerical integration system to this integral by first discretizing the
integral and then truncating the resulting infinite sum. In both steps, we follow the steps
of Abate and Whitt [1].

4.1.1 Discretization

We will use a semi-infinite trapezoidal rule, despite the apparent simplicity of the method.
With a grid size h > 0, this discretization yields

f(x) ≈ fdisc(x) ≡ 2eγx
π
· h
{1

2L{f}(γ) +
∞∑
j=1

cos(x · hj)< [L{f}(γ + i · hj)]
}
,

since < [L{f}(γ)] = L{f}(γ). We simplify this by choosing h = π/(2x) and γ = a/(2x)
for an a > 0, achieving

fdisc(x) = ea/2

2x L{f}
(
a

2x

)
+ ea/2

x

∞∑
k=1

(−1)k<
[
L{f}

(
a+ i · 2πk

2x

)]
. (17)
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4.2 Estimators of survival function and stop-loss premium for compound distributions

From Theorem 5.5.1 of [30] we have that the discretization error (also called sampling
error) is simply

fdisc(x)− f(x) =
∞∑
k=1

e−akf
(
(2k + 1)x

)
. (18)

In particular, if 0 ≤ f(x) ≤ 1, then

fdisc(x)− f(x) ≤ e−a
1− e−a . (19)

There are no absolute value signs here — the discretization introduces a systematic
overestimate of the true function value. Also, (18) implies a should be as large as possible
(limited eventually by finite-precision computation). The benefit of knowing this result
is slightly offset by the requirement that h and γ now be functions of x rather than
constants.

4.1.2 Truncation

Due to the infinite series, the expression in (17) cannot be directly computed, thus it has
to be truncated. The arbitrary-seeming choice of h and γ in Section 4.1.1 not only allows
for calculation of the discretization error, but also benefits the truncation step. This is
because the sum in (17) is (nearly) of alternating sign, and thus Euler series acceleration
can be applied to decrease the truncation error. Define for ` = 1, 2, . . .

s`(x) ≡ ea/2

2x L{f}
(
a

2x

)
+ ea/2

x

∑̀
k=1

(−1)k<
[
L{f}

(
a+ i · 2πk

2x

)]
.

Then, for some positive integers M1 and M2,

f(x) ≈ fdisc(x) ≈ fapprox(x) ≡
M1∑
k=0

(
M1

k

)
2−M1sM2+k(x) . (20)

4.2 Estimators of survival function and stop-loss premium for
compound distributions

For a random sum SN , we consider using the technique above to evaluate the sf F SN

and the slp’s from their Laplace transform. We invert L{F SN
}, but note that inverting

L{FSN
} produces almost identical results.

This inversion easily gives estimates of F SN
, though evaluating the slp’s requires extra

thought. As noted in Dufresne et al. [8], we have that

E [(SN − d)+] = E(SN)FS∗
N

(d), (21)

where S∗N is a random variable under the equilibrium distribution with density

fS∗
N

(x) =

F SN
(x)/E(SN), for x > 0,

0, otherwise,
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and Laplace transform
LS∗

N
(s) = 1− LSN

(s)
sE(SN) .

The slp is then obtained, replacing in (21) the sf of S∗N by its approximation through
(20).

5 Numerical illustrations

In this section, we illustrate the performance of the two proposed numerical procedures.
Section 5.1 focuses on approximating the sf and the slp associated to aggregated claim
sizes, while Section 5.2 considers the approximation of the finite-time ruin probability
with no initial reserves using formula (5).

For each test case we compare the orthogonal polynomial approximation, the Laplace
inversion approximation, and for the crude Monte Carlo approximation. For the cases
when U is gamma distributed, we use the fact that Sn is Erlang distributed to produce
an approximate distribution for SN by truncating N to be less than some large level.

The parameters for the polynomial approximations has been discussed in Section 3.3.1,
the calibration is depending on the assumptions over the claim frequency and claim sizes
distribution. The parameters for the Laplace inversion technique are set to M1 = 11,
M2 = 15 and a = 18.5 following the example of Rolski et al. [30, Chapter 5, Section 5];
note, this choice of a implies that the discretization error is less than 10−8, as derived
from (19).

In each plot, the first subplot shows the estimates each estimator produces, and the
second shows the approximate absolute error. We define this, for estimator i ∈ {1, . . . , I},
as

ApproximateAbsoluteError(f̂i, x) := f̂i(x)−Median
{
f̂1(x), . . . , f̂I(x)

}
≈ f̂i(x)− f(x) =: AbsoluteError(f̂i, x) .

When the different estimators cross each other, the median obtains an unrealistically
jagged character. We therefore use as reference a slightly smoothed version of the median,
achieved in Mathematica using GaussianFilter[Medians, 2]. As noted earlier, all of
the code used is available online [11].

5.1 Survival function and stop-loss premium computations

To ensure both estimators were implemented correctly, we applied the estimators to the
case where N ∼ Pascal(α = 10, p = 3/4) and U ∼ Gamma(r = 1,m = 1/6). Corollary 1
tells us the orthogonal approximation (with r = 1, m = λ/p = 2/9 and K = α − 1 = 9)
is equivalent to the true function, which we verified, and the Laplace inversion errors in
Tables 1 and 2 are acceptably small.
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5.1 Survival function and stop-loss premium computations

Table 1: Relative errors for the Laplace inversion sf estimator

x 0.5 1 1.5 2 2.5
Error 7.27e-7 1.92e-6 5.86e-6 1.78e-5 4.01e-5

Table 2: Relative errors for the Laplace inversion slp estimator

a 0.5 1 1.5 2 2.5
Error 8.68e-7 2.27e-6 5.92e-6 1.12e-5 -2.12e-5

Test 1. N ∼ Poisson(λ = 2), and U ∼ Gamma(r = 3/2,m = 1/3)
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Crude MC (R = 1e6)

Orthogonal (K = 16)

Laplace Inversion

Truncated (Order = 250)

Smooth Median

Figure 1: Survival function estimates and approximate absolute error.

0.5 1.0 1.5 2.0 2.5

0.2

0.4

0.6

0.8

1.0

0.5 1.0 1.5 2.0 2.5

-0.0005

0.0005

0.0010

Crude MC (R = 1e6)

Orthogonal (K = 16)

Laplace Inversion

Truncated (Order = 250)

Smooth Median

Figure 2: Stop-loss premium estimates and approximate absolute error.

Test 2. N ∼ Pascal(α = 10, p = 1/6), and U ∼ Gamma(r = 3/2,m = 1/75)

This test case (up to the scaling constant) has been considered by Jin et al. [17,
Example 3]. In the plots for this test case, the orthogonal estimator, the Laplace inversion
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5.1 Survival function and stop-loss premium computations

estimator, and the truncated estimator all give the same values and hence are hidden
underneath the red line for the truncated estimator.

0.5 1.0 1.5 2.0 2.5

0.2

0.4

0.6

0.8

1.0

0.5 1.0 1.5 2.0 2.5

-0.0010

-0.0005

0.0005

0.0010

Crude MC (R = 1e6)

Orthogonal (K = 16)

Laplace Inversion

Truncated (Order = 250)

Smooth Median

Figure 3: Survival function estimates and approximate absolute error.
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Figure 4: Stop-loss premium estimates and approximate absolute error.

Test 3. N ∼ Poisson(λ = 4), and U ∼ Pareto(a = 5, b = 11, θ = 0)

The survival function for U , given x ≥ θ = 0, is

FU(x) =
(

1 + x− θ
a

)−b
=
(

1 + x

5

)−11
.

We note that the Laplace inversion estimator breaks down for small values of x or a in this
test case. The specific error given is an “out of memory” exception when Mathematica
is attempting to do some algebra with extremely large numbers. It is unclear whether a
different implementation or selection of parameters would fix this behaviour.
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5.1 Survival function and stop-loss premium computations
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Figure 5: Test 3: Survival function estimates and approximate absolute error.
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Figure 6: Test 3: Stop-loss premium estimates and approximate absolute error.

Test 4. N ∼ Pascal(α = 2, p = 1/4), and U ∼ Weibull(β = 1/2, λ = 1/2)

The survival function for U , given x ≥ 0, is

FU(x) = exp
{
−
(
x

λ

)β}
= exp

{
−
√

2x
}
.
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5.2 Finite-time ruin probability with no initial reserve
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Figure 7: Test 4: Survival function estimates and approximate absolute error.
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Figure 8: Test 4: Stop-loss premium estimates and approximate absolute error.

5.2 Finite-time ruin probability with no initial reserve

In this paper we have used common random numbers for all crude Monte Carlo estimators
to smooth their estimates. However in the case of ruin probabilities, the distribution from
which we are simulating Poisson(λt) is changing for each point, so the technique cannot
be applied in the traditional way. Thus the crude Monte Carlo estimates in following plots
are not as smooth as above.

Test 5. λ = 4 and U ∼ Gamma(r = 2,m = 2) and c = 1
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5.3 Concluding remarks
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Figure 9: Test 5: Ruin probability ψ(0, t) estimates and approximate absolute error.

Test 6. λ = 2 and U ∼ Pareto(a = 5, b = 11, θ = 0) and c = 1

See the discussion of Test 3 for a description of the Laplace inversion estimator’s poor
behaviour when Pareto variables are involved.

1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5

-0.010

-0.005

0.005

0.010

0.015

Crude MC (R = 1e5)

Orthogonal (K = 16)

Laplace Inversion

Smooth Median

Figure 10: Test 6: Ruin probability ψ(0, t) estimates and approximate absolute error.

5.3 Concluding remarks

The orthogonal polynomial method has performed well across all the test cases stud-
ied. The accuracy is acceptable even with a rather small order of truncation K = 16. It
produces an approximation having an analytical expression, which is desirable, and in a
timely manner. The precision may be improved by adding more terms in the expansions.
The main drawback is probably the need for a parametrization tailored to the case studied.
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The Laplace transform inversion method yields outstanding result in terms of accu-
racy. It failed to provide a stable approximation for Pareto distributed claim sizes. The
parametrization is automatic and seems to fit the different case studied (except the Pareto
one).

Both of the methods are easy to implement and beat a simple truncation or a crude
Monte-Carlo approach, which is the main conclusion of our work.
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