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Abstract: The impact of climatic change on viticulture is significant: main phenological stages appear earlier, wine
characteristics are changing,... This clearly illustrates the point that the adaptation of viticulture to climate change is crucial and
should be based on simulations of future climate. Several types of models exist and are used to represent viticultural climates at
various scales. In this paper, we propose a review of different types of climate models (methodology and uncertainties) and
then few examples of its application at the scale of wine growing regions worldwide. 
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Introduction

The vine, like other perennial crops (fruit trees,
forests), is particularly sensitive to climate change
because its management and adaptation must be
anticipated well in advance (van Leeuwen et al.,
2004, Carey et al., 2008). The characteristics of
vineyards and of the wines are the result of a
combination of several factors (grape, soil, climate,
agricultural practices) that produce wines with a
typical style and quality that are distributed on
specific territories (Webb et al., 2007; Hall and Jones,
2010; Quénol et al., 2014). The temperature increase
over the last 50 years has led to the advance of the
main phenological stages and a change of wine
characteristics (sugar content and acidity) (Jones et
al., 2005; Webb et al., 2008; van Leeuwen et al.,
2009). These main findings show that the adaptation
of vineyards to climate change is crucial and should
be based on simulations of future climate (Quénol et
al, 2014; Moriondo et al, 2013, Hannah et al, 2013,
Santos et al., 2013). 

Different types of model exist to represent climate on
Earth at various scales. At the global scale, General
Circulation Models (GCMs) are mainly used as the
basis to build climate change scenarii that estimate
trends in climate variables like temperature, rainfall
and wind globally, at low spatial resolution (~300
km). Obviously, these kinds of models are not
suitable for considering temperature variability at
vineyard scale. Several studies have tried to improve
the resolution of GCMs, leading to a range of
different regional climate models, such as WRF
(Weather Research and Forecasting, http://www.wrf-
model.org/index.php). In the context of climate in
vineyards, regional climate models have been used in
the South African district of Stellenbosch to study
effects of the local circulation (Bonnardot et al.,
2005; Bonnardot et al., 2012; Soltanzadeh et al.,
2016), and are currently being used to characterize

climate and model vine phenology in the
Marlborough region, New Zealand (Sturman et al.,
2014) and in Burgundy (Xu et al., 2012). In addition
to regional models based on physics, downscaling
techniques enable representation of climate at local
scales on the basis of statistical relationships between
global and local variables. However, the spatial
resolution of these models is generally still not
accurate enough to be used by winegrowers (Dunn et
al., 2015). To compensate for the difficulty that
dynamic models have in accurately representing local
temperature variability, some fine scale observation
networks have been established to monitor
temperatures. Their spatial distribution is designed on
the basis of topographic features derived from Digital
Elevation Models (DEMs). This relationship can be
used to estimate temperatures at a very fine scale and
then to provide a better analysis of plant response. In
the context of vineyards, frost damage on grapevines
can be very localized and is generally strongly
connected to local topography (Quénol and
Bonnardot, 2014; Irimia et al., 2014; Madelin and
Beltrando, 2005). Therefore, integration of high
resolution monitoring networks and atmospheric
models appears to be a promising approach.

As stated in Cautenet and Bonnardot (2014), climate
models are complex computer programs that are able
to simulate the climate of both the past and the future.
Climate models and weather models use the same
equations, which are the fundamental equations of
atmospheric physics. Climate models include
relatively simplified representations of the surface of
the Earth and its atmosphere that take into account all
the mechanisms that govern atmospheric circulation.
They are able to predict the weather and to represent
the climate, that is to say, the average state of the
atmosphere over long periods. Depending on their
applications, climate models have different spatial

Table 1. The spatial and time scales and areas of application of climate models 
(Cautenet and Bonnardot, 2014).

 

        
          

         
        

        
       

        
      

        
  

        
        

           

        
       

     
       

          
      

          
           

       
       

       
      

 
   The spatial and time scales and areas of application of climate models (Cautenet and Bonnardot, 2014). 
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and temporal resolutions. Table 1 describes the key
attributes of global and regional climate models.

Regional climate modeling

As mentioned above, the global climate models do
not have a fine enough resolution for local scale
impact studies. This is why many studies are
attempting to create models able to disaggregate the
overall climate signal at regional scales. Regional
circulation models of the atmosphere, or mesoscale
models, can represent finer resolutions than global
models, of the order of a kilometer or even a few
hundred meters. The meshes used in these models are
fine enough to allow consideration of the
consequences of changing human activities.

1. Regional atmospheric models

Regional atmospheric models aim to regionalize the
outputs of global models by using nesting of model
grids of increasing levels of resolution. The first grid
is thus forced at its boundaries by atmospheric fields
at low resolution, often from the global climate
models, while the last grid contains the data with the
finest resolution. These fine grids represent the
regional circulation of the atmosphere models. With
the improvement of the resolution of model outputs,
topography, vegetation, hydrography and soil
characteristics are better taken into account. Meteo-
France uses the ARPEGE-Climate model as a global
model, which has a variable resolution of 50 km over
the Mediterranean and 450 km over the Pacific
(Déqué et al., 2007). To disaggregate the ARPEGE
signal to finer scales, they use the regional ALADIN
model down to a resolution of 10 km, which is also
called a «limited-area model.» On the scale of
Europe, the EuroCordex model output enables a
resolution of a few kilometers (Vautard et al., 2013)
In terms of regional climate modeling, many studies
have demonstrated the value of using different
regional atmospheric models with increased
resolution for characterizing climate variability and
the potential climate risks in a wine-producing
environment. The so-called physical atmospheric
models is used to grasp the complexity of the
environment (e.g. Earth-atmosphere models). The
development of these models has grown strongly in
recent years thanks to the increased computing
capacity that allows improvements in both their
resolution and complexity. The RAMS model
(Regional Atmospheric Modeling System) (Pielke et
al., 1992)) was used to study the local circulations in
the wine district of Stellenbosch in South Africa
(Bonnardot et al., 2005; Bonnardot and Cautenet,
2009; Soltanzadeh and al., 2016), Champagne and

the Loire Valley (Briche et al., 2014; Bonnefoy,
2012). Similar modeling studies have been conducted
in Australia (Lyons and Considine, 2007). The WRF
model (Advanced Research Weather Research and
Forecasting) has been used to investigate the spatial
variability of climate in Burgundy (Bonnefoy et al.,
2010. Cuccia, 2013; Xu et al., 2012), as well as New
Zealand (Sturman et al., 2014). But, these models at
very fine scales require a strong computing capacity. 

2. Statistical modeling by data interpolation 

The use of mesoscale atmospheric modeling allows a
scalar disaggregation of spatial patterns obtained
from global models, but the need for significant
computing capacity makes it difficult to achieve
satisfactory results at a very fine scale. The
interweaving of various atmospheric phenomena in
terms of the overlapping of scales (from local to
synoptic) makes this type of modeling impracticable
at a very detailed level. To overcome these
limitations, advanced statistical methods are used to
perform spatial interpolation of climate data obtained
at fine scales. These methods are based on
establishing the relationship between surface
characteristics (e.g. landscape morphology and land
use) and weather variables. In this type of study, the
existence of a link between climate elements and
topographic characteristics is then evaluated spatially
across a study site using a Geographic Information
System (GIS). Mesoscale numerical modeling and
spatial interpolation of climate data have specific
advantages and disadvantages. Numerical modeling
at the mesoscale can take into account the synoptic
scale weather as well as the overlapping scales, but it
is difficult to use at fine scales particularly because of
computing time and parameterization problems.
Spatial interpolation using multiple regression has
the advantage of being adapted to local scales, but
the results are only a partial explanation because the
model is static (with reference to a fixed time frame).

3. Uncertainties using climate data

In order to consider the uncertainties related to
climate data several methods have been developed in
the literature during last years: 

- Anomalies method which calculates the difference
between two periods (current and future conditions)
for different climatic variables (ie. temperature,
rainfall, wind) and apply it to the current conditions.
This method is easy to be used but does not allow to
introduce a change in variability 

- Weather types method is a statistical method which
classifies each day into a category of weather type
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(with its own structure). The main concern is then to
be sure that the method generates correctly the future
distribution of weather types. This method is very
time consuming and needs very long observed past
datasets;

- Quantile-quantile method is a statistical method. «It
consists in correcting the values of the model’s
quantiles by those computed from observations...
This method has in particular the advantage of
correcting the model bias.» (DRIAS, www.drias-
climat.fr ; Déqué, 2007).

The uncertainty in regional climate modeling in
climate change context is complex because
downscaling methods are all based on simulations of
global climate model («cascade of uncertainties»
from Boe, 2007). In order to illustrate this
uncertainty, a multi-models approach for each RCP
scenario was used about a regional climate study in
France (Ouzeau et al., 2014). 

Climate modeling at the scale of wine regions

First studies of the impact of climate change on the
grapevine have been conducted at multi-local scale.
This approach has been used initially because of the
past limitations on computing resources. Several
studies in recent years have used this method to
characterize the changing climatic conditions and
production of European vineyards (Garcia de
Cortazar Atauri-2006; Levrault and Brisson, 2010,
Cuccia et al., 2014). These studies describe changes
in only some grid points across France (i.e. 8-20
points). Even if the methodology does not allow to
represent spatial distribution of changes, it allows to
multiply the number of hypotheses (different soil
types, varieties and cropping systems) to achieve a
more detailed analysis of the future impacts and to
define adaptation strategies.

The provision of regionalized climate data from
climate models of the latest IPCC reports (2014)
(Coupled Model Intercomparison Project, CMIP 4
and 5), has allowed to map climate variability in
connection with the evolution of the potential
viticulture areas (past, present and future). 

Most recent work has been based on calculations of
bioclimatic indexes based on different climatic
models and scenarios of climate change (Moriondo et
al., 2013; Santos et al., 2013, Hannah et al., 2013).
These studies showed significant potential changes
on the distribution of vineyards. 

The warming trend is often reflected by increased
bioclimatic indices, which may involve a change in

the classification of wine climate types from one
category to the next. For example, Santos et al.
(2013) analyzed past climatic conditions mapping
several bioclimatic index (Huglin, Winkler, Dryness
indices) between the 1980-2009 and 1950-1979
periods across all of Europe and North Africa. In
some regions, particularly the north and east of
Europe, an increase in the values of these indices is
favorable and allows these regions to benefit from
improved conditions for growing vines, while in
other regions (mainly southern Europe) the increase
in index values is more detrimental.

Recent studies also evaluate these trends under future
climatic conditions (Moriondo et al., 2013; Hannah
et al., 2013). These studies suggest three quite
different trends in Europe until 2050. First, wine
production in the southernmost Mediterranean
regions could be adversely affected by 2020. Second,
there is an intermediate zone for which the different
studies show fairly divergent and sometimes
contradictory results. This area is from the vineyards
of northern Spain, Italy and Greece to the vineyards
of the Loire Valley, Alsace and Germany. Third, to
the north of these vineyards a general improvement
of climatic conditions for the cultivation of vines is
predicted. This could allow an expansion of the
current production area if it is worthwhile from an
economic point of view. By 2050, the various
scenarios studied do not show strong differences, and
the three trends described above are partly
independent of the socio-economic model chosen by
the industry. In contrast, over the period 2070-2100
wine producers can expect a significant change,
resulting in a major transformation of European
vineyards, and a sharp reduction in production areas
in Mediterranean wine producing area. 

All these results are confirmed by a recent study
realized in France by the LACCAVE project. In this
study, the Huglin index1 (Figure 1) was mapped
using data from the Aladin regional model (spatial
resolution of 8 km). The maps were produced for the
periods 1986-2005, 2031-2050 and 2081-2100 based
on three Representative Concentration Pathways
(RCPs) for four greenhouse gas concentrations (2.6,
4.5 and 8.5). Over the period 1986-2005, the
northernmost wine regions (Loire Valley,
Champagne, Alsace, Burgundy) correspond to the
«cold» class. Bordeaux vineyards are in the
«temperate» class and southern vineyards are mainly
in the «warm temperate» class. For the 2031-2050
period, according to the RCP2.6, 4.5 and 8.5
scenarios, we can see a northward shift of the classes
over France with the transition to the next class in
southern wine regions. This is the case for the
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1 Huglin index is related to the thermal requirements of grape
varieties, and to potential sugar content of grapes 

(Huglin and Schneider, 1998).



Bordeaux region that will theoretically increase from
the «temperate» class to «warm temperate»;
Burgundy, the Loire Valley and Alsace from the
«cold» class to the «temperate» class and Languedoc
from «temperate/temperate warm» to «temperate
warm/warm». For the 2081-2100 periods, this
potential migration (of zones of specific wine style)
will become more important through the transition to
the «warm» class for most wine regions, according to
the RCP6.5 and 8.5 scenarios. Although these maps
were made from modeled data, the results illustrate

the range of possible trends (depending on the
scenario) in the evolution of French viticulture and
can help stakeholders to make decisions about future
strategies. 

Finally, Santos et al. (2016) have used recent data
from Euro-cordex project to simulate the future
phenology, production and water and nitrogen stress
of grapevine systems in Europe using the STICS
crop model (Brisson et al., 2009). Authors only used
a mean year (average year of 30 years of data) of
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Figure 1. Mean Huglin Index classes through RCP scenarios. (sources: DRIAS)
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Very 
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IH > 3 000 
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(Brazil) 

warm 2 400  IH  3 000 
Malaga (Spain)  

Marsala (Italy)  

Warm 
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2 100  IH  2 400 
Napa (USA) 

Montpellier (France) 

temperate 1 800  IH  2 100 Pau, Bordeaux (France) 

cold 1 500  IH  1 800 Colmar, Angers (France) 

Very cold IH  1 500 
Québec (Canada) 

London (England)  

 

RCP 2.6

RCP 4.5

RCP 8.5

RCP 2.6

RCP 4.5

RCP 8.5

<1500
1500-1800
1800-2100
2100-2400
2400-3000

Huglin Class
(degree-Days °C)
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each variable to simulate future conditions and they
highlighted the importance to use several scenarios
and methods to characterize these impacts. Several
crop models simulating grapevine systems have been
developed during the last years (Moriondo et al.,
2015) and will be useful in the future to describe and
test adaptation strategies. In this context, the quality
and the availability of climatic variables required
(radiation, wind, humidity, water potential) to
simulated plant processes will be very important.

Discussion and conclusion

The various studies describing the calculation of
bioclimatic indices based on different models and
scenarios of climate change should allow estimation
of the future state of viticulture in different parts of
the world, although not without some uncertainties.
First, the model predictions themselves have a
significant amount of uncertainty in that it is not
possible to validate future results (only validation on
past data). Second, the indices are merely bioclimatic
indicators but not the only factors affecting the
development of the vine. In response to the article by
Hannah et al. (2013) showing a large decrease in the
ability to continue viticulture in the well-established
wine-producing regions of the world over the next
forty years, van Leeuwen et al. (2013) argued that it
was necessary to be very careful when drawing
definitive conclusions from this type of analysis.
These studies on the impact of climate change
address potential changes in the major global wine
regions, but few have attempted to observe and
simulate the climate at the scale of a terroir (at the
local scale). Little research has addressed the future
impacts of climate change on agro-climatic potential
at fine scales. Yet in some soils (especially in
complex terrain), changes in atmospheric parameters
are very important over relatively small areas (of the
order of a few kilometers to a few meters) and the
quality of grapes and wine is often related to these
local characteristics (slope, soil, etc.). Observation
and modeling at the fine scale must therefore be
considered in the development of strategies for
adapting to climate change impacts on vineyard and
interactions with terroir (Quénol et al., 2014).  
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