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A MATHEMATICAL BRIDGE BETWEEN DISCRETIZED

GAUGE THEORIES IN QUANTUM PHYSICS AND

APPROXIMATE REASONNING IN PAIRWISE COMPARISONS
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Abstract. We describe a mathematical link between aspects of information

theory, called pairwise comparisons, and discretized gauge theories. The link
is made by the notion of holonomy along the edges of a simplex. This corre-

spondance leads to open questions in both field.
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Introduction

We present here an overview, addressed to physicists, of a possible bridge be-
tween gauge theories (and also some aspects of quantum gravity) with pairwise
comparisons matrices and their applications in information theory and approxi-
mate reasonning. This is the reason why we fastly summarize features in physics
(assuming that they are known by the reader), and give more details for selected
features on Pairwise Comparisons (PC) matrices (assuming that this field is less
known). This paper is a companion work to [13, 14, 15] where, after a tentative
in [11], the extension of the notion of classical PC matrices to matrices with coef-
ficients in a group is considered, partially motivated (in my case) by the striking
similarities with mathematical constructions in discretized gauge theories. A not
complete list of reference about PC matrices is [5, 8, 10], oriented in our perspec-
tive, and a very partial list of references about gauge theories and their discretized
forms is [1, 2, 3, 4, 6, 7, 12, 16, 17, 18, 19, 20].

We begin with an oriented survey of selected problems in discretization ofG−gauge
theories, where G is a Lie group, and a selection of features in evaluation of inconsis-
tency in pairwise comparisons with coefficients in R∗+. Then we describe, following
[13, 14], a straightforward extension of PC matrices with coefficients in R∗+ to a
general Lie group G. The link with gauge theories is performed via holonomy, which
appears in discretizations described in [15, 17]. We finish with the possible interpre-
tations in both sides of this correspondence, first from quantities on PC matrices to
gauge theories, and secondly from second quantization to approximate reasonning.

1. A short and not complete survey of each field of knowledge

We present here the two fields under consideration, discretized gauge theories
and pairwise comparisons in aproximate reasonning, in a way to highlight the cor-
respondances.

1.1. Gauge theories discretized. The phase space of a (continuum) gauge theory
is a space of connections on a (finite dimensional) principal bundle P with structure
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group G and with base M . We note by C(P ) the space of connections considered. If
M is not compact and Riemannian, one often use the space of connections which are
smooth and square-integrable. A gauge theory is defined by an action functionnal
S : C(P )→ R which has to be minimized.

A discretized gauge theory is defined on a triangulation, a cubification or any
other way to discretize the manifold M, and the principal bundle P can be often
trivial. Let us highlight two kind of discretizations:

• Whitney’s discretization [21], where a connection θ ∈ C(P ) is (Riemann-
)integrated on the 1-vertices of the chosen triangulation. This mimiks
a finite element method of approximation for scalar functions, and the
discretized connection θW generates a H1−approximation θ̃ of θ, which
H1−converges to θ when refining the triangulation. The action functionnal
S is then evaluated on the finite dimensional space of cnnnections θ̃ instead
of the infinite dmensional space C(P ). This is, to our knowledge the most
widely developped approach, but this approach seems to fail partially for
non-abelian theories, partly because the triviaisation is not gauge-covariant.
Ths leads to gauge-fixing strategies.
• Holonomy discretization, mostly inspired by the ideas of quantum grav-

ity [17], where connections along the edges are discretized through their
holonomy. This approach requires mathematical precisions by fixing a pre-
liminary gauge on the 1-vertices of the discretized manifold, but in a final
analysis, only theories depending of secondary characteristic classes (e.g.
Chern-Simons theory) can give rise to pathologies in gauge covariance,
where as gauge theories arising from primary characteristic classes (e.g.
Yang-Mills theories) are fully gauge covariant when discretized [15].

1.2. Pairwise comparisons, consistency and inconsistency. It is easy to ex-
plain the inconsistency in PC matrices when we consider cycles of three compar-
isons, called triads and represented here as (x, y, z), which do not have the “mor-
phism of groupoid” property such as

x.z 6= y

The use of “inconsistency” has a meaning of a measure of inconsistency in this
study; not the concept itself. One approach to inconsistency (originated in [8] and
generalized in [5]) can be reduced to a simple observation:

• search all triads (which generate all 3 by 3 PC submatrices) and locate the
worst triad with an inconsistency indicator (ii),
• ii of the worst triad becomes ii of the entire PC matrix.

Expressing it a bit more formally in terms of triads (the upper triangle of a PC
submatrix 3× 3), we have:

ii3(x, y, z) = 1−min

{
y

xz
,
xz

y

}
= 1− e−|ln( y

xz )|

The expression | ln( yxz )| stands for the distance of the triad T to the ”nearest”
consistent PC matrix. When this distance increases, the ii(x, y, z) also increases. It
is important to notice here that this definition allows us to localize the inconsistency
in the PC matrix, which is of a considerable importance for most applications. For
highr rank matrices, ii3 is evaluated on each 3× 3 matrices, taking the supremum
of the obtained values.
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Another possible definition of the inconsistency indicator can also be defined
(following [10]) as:

iin(A) = 1− min
1≤i<j≤n

min

(
aij

ai,i+1ai+1,i+2 . . . aj−1,j
,
ai,i+1ai+1,i+2 . . . aj−1,j

aij

)
since the matrix A is consistent if and only if for any 1 ≤ i < j ≤ n the following
equation holds:

aij = ai,i+1ai+1,i+2 . . . aj−1,j .

This is equivalent to:

iin(A) = 1− max
1≤i<j≤n

(
1− e−

∣∣∣ln( aij
ai,i+1ai+1,i+2...aj−1,j

)∣∣∣)
One of the main features in applications is to minimize the inconsistency indica-

tor ii. This is the reason why, instead of using the inconsistency indicator ii defined
before, there is plethore of inconsistency indicators. Each inconsistency indicator
intends to measure how far a PC matrix is from the set of consistent PC matrices,
which, for 3× 3 PC matrices, is a 2-dimensional manifold of matrices of the form 1 x xy

x−1 1 y
x−1y−1 y−1 1

 , with (x, y) ∈ (R∗+)2.

Unfortunately, the notion and the theory of inconsistency indicators is not actually
fixed and acheived, and many competing, uncompatible approaches are actually
developped.

2. The matrix of holonomies and pairwise comparisons

We follow first [14]. Let I be a set of indexes among Z, N or {0, ..., n} for some
n ∈ N∗.

Definition 2.1. Let (G, .) be a group. A PC matrix is a matrix

A = (ai,j)(i,j)∈I2

such that:

(1) ∀(i, j) ∈ I2, ai,j ∈ G.
(2) ∀(i, j) ∈ I2, aj,i = a−1i,j .

(3) ai,i = 1G.

The matrix A is covariantly consistent if

(2.1) ∀(i, j, k) ∈ I3, ai,j .aj,k = ai,k.

Due to the contravariant composition thereafter, we will use the following notion:
the PC matrix is contravariantly consistent if

(2.2) ∀(i, j, k) ∈ I3, aj,k.ai,j = ai,k.

These two notions are dual, and depend on which order we require for the group
multiplication. Similarly, a contravariant consistent PC matrix A = (ai,j)(i,j)∈I2
generates a covariant consistent PC matrix B = (bi,j)(i,j)∈I2 setting

bi,j = a−1i,j = aj,i.
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For convenience, we use the terms covariant PC matrix (resp. contravariant
PC matrix ) when covariant consistency (resp. contravariant consistency) is nat-
urally required.

Theorem 2.2.

∃(λi)i∈I , ai,j = λ−1i .λj ⇔ A is consistent.

Let n ∈ N∗ and

∆n =

{
(x0, . . . , xn) ∈ Rn+1|

(
n∑
i=0

xi = 1

)
∧ (∀i ∈ {0, . . . .n}, xi ≥ 0)

}
be an n−simplex. This simplex can be generalized to the infinite dimension:

∆N =

{
(xn)n∈N ∈ l1(N,R∗+)|

∞∑
i=0

xi = 1

}
and

∆Z =

{
(xn)n∈Z ∈ l1(Z,R∗+)|

∑
i∈Z

xi = 1

}
,

where the summation over Z is done by integration with respect to the counting
measure. In the sequel, ∆ will denote ∆n, ∆N or ∆Z. We define a gauge (gi)i∈I ∈ GI
with γ̃i(1) = (γi(1), gi) where

γi = [s0, s1] ∗ . . . ∗ [si−1, si] if i > 0

and
γi = [s0, s−1] ∗ . . . ∗ [si+1, si] if i < 0.

We set gi = Hol(s0,1G)γi. Let us recall that, for two paths c and c′ such that c ∗ c′
exists (i.e. c(1) = c′(0)), if p = (c(0), eG), p′ = (c′(0), eG) and h = Holpc, we have:
Let

(2.3) ai,j = gj .Hol(s0;eG)

(
γi[si, sj ]γ

−1
j

)
.g−1i .

In the light of these specifications, we set, for any connection θ ∈ Ω1(∆, g),

A = Mat(ai,j)

and the required notion of consistency is contravariant consistency.

Proposition 2.3. A is a PC matrix.

Proof. This follows from holonomy in “reverse orientation”. �

Let γi,j,k = γi ∗ [si, sj ] ∗ [sj , sk] ∗ [sk, si] ∗ γ−1i be the loop based on si along the
border of the oriented 2-vertex [si, sj , sk], where ∗ is the composition of paths.
Contravariant consistency seems to fit naturally with flatness of connections:

∀i, j, k, ai,k = aj,k.ai,j

⇔ ak,i.aj,k.ai,j = ai,i = 1G

⇔ Hol(γi,j,k) = 1G

By fixing an indicator map, defined in [11] as

In : G→ R
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to In(1G) = 0, we get a generalization of the inconsistency indicator by setting

iiIn = sup
{
In(Hol(γi,j,k))|(i, j, k) ∈ I3

}
.

For example, if d is a left-invariant distance on G, a natural indicator map can be:

In : g 7→ d(1G, g
−1).

Such definitions extend to triangularized manifolds along the lines of [15], where
one can see that the notion of holonomy on a manifold can be discretized, inserting
”gaps” (i.e. 0 entries) on a larger matrix gathering all the PC matrices over the
simplexes of the triangulation, along the lines of [14]. We then recover the discretiza-
tion of connections via holonomies decribed in [17]. When G = R∗+ In (classical)
pairwise comparisons, matrix coefficients are scalar, which enable to simplify the
settings obtained. The indicator ii appears as the distance of the holonomy of the
loop [sisi+1...si+nsi] to identity.

3. Correspondances and open questions

We give here the following table of correspondences, that we comment. We first
highlight how the notions on PC matrices correcpond to geometric objects.

PC matrices discretized gauge theories continuum gauge theories
consistency 0-holonomy 0-curvature
consistency 0-holonomy Ω(X,Y ) = 0

in 3× 3 matrices on the border of with X,Y
a 2-simplex ∆2 tangent to ∆2

Koczkodaj’s sup d(Hol(∂∆2), 1G) supM ||Ω||
inconsitency when ∆2

indicator ii is any 2-simplex of
the triangulation

Minimization ? Minimization
of inconsistency of the curvature norm

Minimization of inconsistency is an important feature for applications of PC ma-
trices. For decison making, it consists in adapting slighlty the parameters of the
studied situation in order to make ”approximately consistent” choices. In order to
check if the adapted PC matrix is ”approximately consistent”, the criteria is given
by the chosen inconsistency indicator, e.g. Koczkodaj’s ii, which needs to have a
value ε ≥ 0 small enough. Again for Koczkodaj’s ii, it is trivial to see that the sets

Vε = ii−13 [0; ε[

form a filter base of open neighborhoods of the set of consistent PC matrices. The
analog for continuum gauge theories is considering

Uε =

{
θ ∈ C(P )| sup

M
||Ω|| < ε

}
.

This defines a filter base of open neighborhoods of the set of 0-curvature connec-
tions. This leads to the following open problem.

On one hand, the procedures developped to get consistencizations of PC matrices
are specific to the caseG = R∗+. However, there exists many methods for minimizing
functionnals, and one may wonder whether minimization of the curvature norm have
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a physical meaning. The corresponding physical quantity would be the Yang-Mills
action functionnal, but there we get here an average value instead of a supremum.
This questions the choice of the supremum in the formula

ii3(A) = sup {ii3(B)|B is a 3× 3 PC submatrix of A} .

On the other hand, considering flat connections, or only connections such that
Ω = dθ is a common feature in gauge fixing. Since minimal states represent stable
solutions, consistencization may appear as a way to equilibrum.

Let us now reverse the perspective and consider second quantization. We now
analyze how the Feynman-like integration (i.e. cylindrical integration for discretized
theories) may arise in PC matrices.

Continuum integration discretized integration PC matrices
heuristic Lebesgue Lebesgue measure ?

measure (finite dimension,
Whitney discretization)

integral to be studied Product measure on Gn×n Measures on n× n
(G compact), on the PC matrices

discretization by holonomies

If G is compact, we can assume that it is of volume 1. In this case, there is a
convergence at the continuum limit to an integral. this si the approach suggested
in [17], which is an alternative approach to the classical integration with respect
to the heuristic Lebesgue integral, see e.g. [3]. On one hand, for both cases, the
possible interpretations in terms of applications of PC matrices are not investigated.
Heuristically, measures on PC matrices may arise when evaluations are random, or
subject to measurement errors. On the other hand, PC matrices may furnish an
interpretation in terms of information theory of Feynman type integration.

The author declares that there is no conflict of interest with respect to the
publication of this paper.
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