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We examine how implicit functions on ILB-Fréchet spaces can be obtained without metric or norm estimates which are classically assumed. We obtain implicit functions defined on a domain D which is not necessarily open, but which contains the unit open ball of a Banach space. The corresponding inverse functions theorem is obtained, and we finish with an open question on the adequate (generalized) notion of differentiation, needed for the corresponding version of the Fröbenius theorem.

Introduction

Classical inverse functions theorems, implicit functions theorems and Fröbenius theorems on Banach spaces are known to be equivalent. There exists numerous extensions to setting on Fréchet or locally convex spaces, and to our knowledge almost all proofs are based on a contraction principle. In order to obtain in the proofs a mapping which is contracting, one needs to assume conditions which are not automatically fulfilled by a mapping on Fréchet spaces, but which are automatically locally fulfilled (on an open set) by a sufficiently regular mapping on Banach spaces.For classical statements, one can see [START_REF] Dieudonné | Foundations of modern analysis[END_REF][START_REF] Glöckner | Implicit functions from topological vector spaces to Banach spaces[END_REF][START_REF] Hamilton | The inverse function theorem of Nash and Moser[END_REF][START_REF] Hogbe-Nlend | Théorie des bornologies et applications Lect[END_REF][START_REF] Krantz | The Implicit Function Theorem[END_REF][START_REF] Omori | Infinite dimensional Lie groups AMS translations of mathematical monographs[END_REF][START_REF] Penot | Sur le théorème de Frobenius Bull[END_REF].

We analyze here how a very classical proof of the implicit function theorem can be adapted on a ILB setting, more precisely on a slightly more general framefork, that is when Fréchet spaces E ∞ considered are projective limits of a sequence of Banach spaces (E i ) without assumption of density for teh inclusion E i+1 ⊂ E i , and when the functions f ∞ on Fréchet spaces are restrictions of bounded functions f i on the sequence of Banach space. This is what one may call order 0 maps, by analogy with the order of differential operators. Then we get (Theorem 1.6) an implicit function which is defined on a domain D, which is not a priori open in the Fréchet topology, but which contains the open ball of a Banach space. This results can be adapted to some functions f ∞ for which there does not exist any extension to a Banach space. These functions have to be controlled by a family of injective maps {Φ x }, which explains the terminology "tame" (Theorem 1.9). As a special case of applications, we recover the maps f ∞ which extend to maps E i → E i-r (called order r maps)

We have to remark that the domain D can be very small. This is the reason why regularity results on implicit functions cannot be stated: differentiability, in a classical sense, requires open domains or at least manifolds. This leads to natural questions for the adequate setting for analysis beyond the Banach setting. Even if not open, following the same motivations as the ones of Kriegl and Michor in [START_REF] Kriegl | The convenient setting for global analysis Math[END_REF] when they consider smoothness on non open domains, the domain D may inherit some kind of generalized setting for differential calculus, such as diffeologies [START_REF] Iglesias-Zemmour | [END_REF] which are used in [START_REF] Magnot | Cauchy diffeology, numerical methods and implicit function theorem[END_REF]. This question is left open, because out of the scope of this work: the most adapted (generalized) framework for the extension of the regularity (i.e. differentiability) has to be determined.

We then give consequences for an inverse functions theorem, which can be stated with the same restrictions as before on the nature of teh domain D, and with an obstruction to follow the classical proof of the Fröbenius theorem from [START_REF] Penot | Sur le théorème de Frobenius Bull[END_REF] where differentiation on D is explicitely needed. Finally, in last section, we show how this theorem can describe a Banach Lie gbgroup of a topological group arising in the ILH setting. 

f : U × V → F (1)
be a C r -function (r ≥ 1) in the Fréchet sense, such that f (0, 0) = 0 (2) and

D 2 f (0; 0) = Id F . (3) 
Theorem 1.1. There exists a constant c > 0 such that, on the open ball B(0, c) ⊂ E, there is an unique map u :

B(0, c) → V such that (4) ∀x ∈ B(0, c), f (x, u(x)) = 0.
Let us remark that regularity if the function u is ignored for it is not necessary for next developments. We now divide the main arguments of the classical direct proof of this theorem into three lemmas. Lemma 1.2. There exists c 0 > 0 and K > 0 such that

||(x, y)|| E×F < c 0 ⇒ ||D 1 f (x, y)|| L(E,F ) < K. Proof. Since f is C 1 , there exists a neighborhood of (0, 0) ∈ E × F such that ||D 1 f (x, y)|| L(E,F ) is bounded. Lemma 1.3. There exists c 1 > 0 such that ||(x, y)|| E×F < c 1 ⇒ ||D 2 f (x, y) -Id F || L(F ) < 1 2 . (5) Proof. The map f is of class C r , with r ≥ 1, so that, the map D 2 f : (x, y) ∈ U × V → D 2 f (x, y)(.) ∈ L(F ) is of class C r-1
, and in particular of class C 0 . By the way,

∃c 1 > 0, ||(x, y)|| E×F < c 1 ⇒ ||D 2 f (x, y) -D 2 f (0; 0)|| L(F ) < 1 2 . Lemma 1.4. Let c 1 be teh constant of Lemma 1.3. There exists c 2 > 0 such that ||x|| E < c 2 ⇒ ||f (x, 0)|| F < c 1 4 . ( 6 
)
Proof. The map f is of class C r , with r ≥ 1, so that it is in particular of class C 0 . By the way, there exists a constant c 2 such that

||x -0|| E < c 2 ⇒ ||f (x, 0) -f (0, 0)|| F < c 1 4 . Lemma Let c = min{c 0 , c 1 , c 2 , 1}. Let x such that ||x|| < c.
Then the sequence (u n ) N ∈ F N , defined by induction by

(7) u 0 = 0 ∀n ∈ N, u n+1 = u n -f (x, u n )
is well-defined and converges to u(x) ∈ V.

Proof. Let us assume x fixed. Let g(x, y) = y -f (x, y). By the way, u n = g n (u 0 ). Applying Lemma 1.3, let (y, y ) ∈ F 2 such that both (x, y) and (x, y) are in B(0, c) ⊂ B(0, c 1 ).

f (x, y) -f (x, y ) = 1 0 D 2 f (x, ty + (1 -t)

y ).(y -y)dt

By the way

||g(x, y) -g(x, y )|| F ≤ 1 0 ||D 2 g(x, ty + (1 -t)y ).(y -y)|| F dt ≤ 1 0 ||D 2 f (x, ty + (1 -t)y ) -Id F || L(F ) .||y -y|| F dt ≤ ||y -y|| F 2 
By the way, g is 1 2 -Lipschitz. Thus, applying Lemma 1.4, we obtain by induction:

||u 1 -u 0 || F < c 1 4 ⇒ ||u n+1 -u n || F < c 1 2 n+2 . and ∀n ∈ N, |u n || F ≤ c 1 (2 n -1) 2 n+2 < c 1 .
Hence (u n ) is converging to u(x), which is in V.

Proof of Theorem 1.1. By Lemma 1.5 the function x → u(x) exists for ||x|| E < c.

We now adapt these results to the following setting. Let (E i ) i∈N and (F i ) i∈N be two decreasing sequences of Banach spaces, i.e. ∀i ∈ N, we have E i+1 ⊂ E i and F i+1 ⊂ F i , with continuous inclusion maps. We then consider U 0 and V 0 two open neighborhoods of 0 in E 0 and F 0 respectively, and a function f 0 , of class C r with the same properties as in equations [START_REF] Dieudonné | Foundations of modern analysis[END_REF][START_REF] Dodson | Geometry in a Fréchet Context: A Projective Limit Approach london Math[END_REF][START_REF] Glöckner | Implicit functions from topological vector spaces to Banach spaces[END_REF]. Let us now define, for i ∈ N, U i = U 0 ∩ E i and V i = V 0 ∩ V i , and let us assume that f 0 restricts to C r -maps

f i : U i × V i → F i . (8) Let E ∞ = lim ← -{E i ; i ∈ N}, let F ∞ = lim ← -{F i ; i ∈ N} and let f ∞ = lim ← -{F i ; i ∈ N}. Theorem 1.6. There exists a non-empty domain D ∞ ⊂ U ∞ , possibily non-open in U ∞ , and a function u ∞ : D ∞ → V ∞ such that, ∀x ∈ D ∞ , f ∞ (x, u ∞ (x)) = 0,
and such that D ∞ contains the unit ball of the Banach space B f∞ ⊂ E ∞ defined as the domain of the norm

||x|| f∞ = sup i∈N ||x|| Ei c i .
Proof. Let i ∈ N. We now consider a maximal domain D i ⊂ U i where there exists an unique function u i such that

∀x ∈ D i , f i (x, u i (x)) = 0.
This domain is non empty since it contains 0 ∈ E i and, applying Theorem 1.1, there exists a constant c i > 0 such that

||x|| Ei < c i ⇒ x ∈ D i .
By the way, any maximal D i is an open neighborhood of 0. By the way, setting D ∞ as the intersection of such a family (D i ), we get that D ∞ contains 0 ∈ E ∞ . Of course, D ∞ is not a priori open in th e projective limit topology. However, let

B f∞ = x ∈ E ∞ | sup i∈N ||x|| Ei c i < +∞ .
This space is a Banach space for the norm

||.|| f∞ = sup i∈N ||.|| Ei c i . Since ||x|| f∞ < 1 ⇔ ∀i ∈ N, ||x|| Ei < c i , we get
that the open ball of radius 1 in B f∞ is a subset of D ∞ , which ends the proof.

Let us now extend it to a class of functions that we call tame. For this, we define the sequences (E i ) i∈N and (F i ) i∈N as before, as well as E ∞ and F ∞ . We also define a similar sequence (G i ) i∈N of Banach spaces and G ∞ the projective limit of this family.

Definition 1.7. Let U 0 × V 0 be an open neighborhood of 0 in E 0 × F 0 and let U ∞ = U 0 ∩ E ∞ and V ∞ = V 0 ∩ F ∞ . Let us fix {Φ x } x∈U∞ be a family of injective maps from G ∞ toF ∞ . A map f : U ∞ × V ∞ → G ∞ is Φ-tame if and only if f ∞ = Φ x • f : U ∞ × V ∞ → V ∞ extends to C r -maps (r ≥ 1) f i : U i × V i → V i Example 1.8.
If there exists a linear isomorphism A : E 0 → E 1 which restricts to isomorphisms E i → E i+1 , setting Φ x = A r , the family of tame maps are exactly the family of functions f ∞ which extend to C r -maps E i → E i-r . Theorem 1.9. Let f be a Φ-tame map, such that, ∀i ∈ N,

D 2 f i (0, 0) = Id Fi .
Then there exists a non-empty domain

D ∞ ⊂ U ∞ , possibily non-open in U ∞ , and a function u ∞ : D ∞ → V ∞ such that, ∀x ∈ D ∞ , f (x, u ∞ (x)) = 0,
Moreover, there exists a sequence of positive real numbers (c i ) such that D ∞ contains the unit ball of the Banach space B f,Φ ⊂ E ∞ defined as the domain of the norm

||x|| f,Φ = sup i∈N ||x|| Ei c i .
Proof. We apply Theorem 1.6 to Φ • f. Then, since ∀x,

Φ x is injective, Φ x • f (x, .) = 0 ⇔ f (x, .) = 0.
2. Tentatives for inverse functions and Frobenius theorem 2.1. "Local" inverse theorem. Let (E i ) i∈N be an decreasing sequence of Banach spaces, i.e. ∀i ∈ N, we have E i+1 ⊂ E i with continuous inclusion maps and let E ∞ be the projective limit of teh family (E i ) i∈N . Let U 0 be an open neighborhood of 0 in E 0 , and define for i ∈ N ∪ {∞}, U i = U 0 ∩ E i . Let V 0 be an open neighborhood of 0 in E 0 , and define for i ∈ N ∪ {∞},

V i = V 0 ∩ E i . Let f ∞ : U ∞ → V ∞ be a C r -map (r ≥ 1) such that f (0) = 0, which extends to C r -maps f i : U i → V i and such that Df i (0) = Id Ei .
Theorem 2.1. There exists a domain D ⊂ U ∞ , which contains the open unit ball of a Banach space B f∞ ⊂ E ∞ , with norm defined by a sequence (k i ) of positive numbers by

||.|| f∞ = sup i∈N ||.|| Ei k i such that f ∞ | D is a bijection D ⊂ U ∞ → f ∞ (D) ⊂ V ∞ .
Proof. We apply Theorem 1.6 to g(x, y

) = x -f ∞ (y), for (x, y) ∈ V ∞ × U ∞ . Indeed, we define a C r -map g : V ∞ × U ∞ → E ∞ which extends to the maps g i : (x, y) ∈ V i × U i → x -f i (y) ∈ E i .
We have that D 2 g i (0; 0) = Df i (0) = Id Ei , so that there exists a domain D ∞ ⊂ V ∞ , and a sequence (c i ) of positive real numbers such that D ∞ contains the unit open ball of the Banach space

B g∞ ⊂ E ∞ with norm ||.|| g∞ = sup i∈N ||.|| E i ci and a function u ∞ : D ∞ → U ∞ such that ∀x ∈ D ∞ , x -f ∞ (u ∞ (x)) = 0. We set D = u ∞ (D ∞ ). Since each f i is a C 0 -map, there exists a sequence (k i ) of positive numbers such that ||x|| Ei < k i ⇒ ||f i (x)|| Ei < c i . By the way, ∀x ∈ U ∞ , sup i∈N ||x|| Ei k i < 1 ⇒ sup i∈N ||f ∞ (x)|| Ei c i < 1 ⇒ f ∞ (x) ∈ D ∞ ⇒ x = u ∞ •f ∞ (x) ∈ D.

2.2.

An obstruction for a Frobenius theorem. A setting for an adapted Frobenius theorem would be teh following: Let

f i : O i → L(E i , F i ), i ∈ -N
be a collection of smooth maps satisfying the following condition:

i > j ⇒ f j | Oi restricts as a linear map to f i and such that,

∀(x, y) ∈ O i , ∀a, b ∈ E i (D 1 f i (x, y)(a)(b) + (D 2 f i (x, y))(f i (x, y)(a))(b) = (D 1 f i (x, y)(b)(a) + (D 2 f i (x, y))(f i (x, y)(b))(a)
(this condition is the analogous of the Frobenius condition in a Banach setting, that we call the ILH Frobenius condition).

Then, ∀(x 0 , y 0 ) ∈ O ∞ , there exists Frölicher space D that contains (x 0 , y 0 ) and a smooth map J : D → F such that (conditions linked to differentiability of J)

Let us now try to adapt the classical proof in e.g. [START_REF] Penot | Sur le théorème de Frobenius Bull[END_REF], with the help of theorem 1.6. We can assume with no restriction that f (0; 0) = 0. We consider

G i = C 1 b ([0, 1], F i ) = {γ ∈ C 1 ([0, 1], F i )|γ(0) = 0} and H i = C 0 ([0, 1], F i )
, endowed with their usual topologies. Obviously, if i < j, the injections G j ⊂ G i and H j ⊂ H i are continuous.

Let us consider B 0 an open ball of E 0 centered in x 0 , B 0 an open ball of F 0 centered in y 0 , B 0 an open ball of G 0 centered in 0. We set

B i = B 0 ∩ E i , B i = B 0 ∩ F i and B i = B 0 ∩ G i . Then, we define, for i ∈ N ∪ {∞}, g i : B i × B i × B i → H i g(x, y, γ)(t) = dγdt(t) -f i (t(x -x 0 ) + x 0 , y + γ(t)).(x -x 0 ).
We then apply Theorem 1.6 to

(.) 0 •g ∞ : B ∞ ×B ∞ ×B ∞ ⊂ (E ∞ ×E ∞ )×G ∞ → G ∞ .
There exists a domain D ∞ such that we can define the function α ∞ as the unique function such that

α ∞ (x 0 ) = 0 g i (x, y, α ∞ (x, y)) = 0, ∀(x, y) ∈ D ∞ .
Since we set J(x, y) = y + α ∞ (x, y)(1) Uniqueness follows from Theorem 1.6.

Open problem:

We are now facing a theorical impossibility. Classical theory of differentiation is valid for functions on open domains. We need here to consider D 1 J, which is here defined on D ∞ which is not a priori open. There exists numerous extensions of the classical theory of differentiation, one of them is used in [START_REF] Magnot | Cauchy diffeology, numerical methods and implicit function theorem[END_REF] based on [START_REF] Iglesias-Zemmour | [END_REF]. Which one is better for this setting?

3. An application of the implicit functions theorem on L ∞

We consider here a sequence of Banach spaces (E i ) as before, and we asssume also that ∀i, E i+1 is dense in E i . Following [START_REF] Dodson | Geometry in a Fréchet Context: A Projective Limit Approach london Math[END_REF][START_REF] Omori | Infinite dimensional Lie groups AMS translations of mathematical monographs[END_REF], we consider the set of linear maps E ∞ → E ∞ which extend to bounded linear maps E i → E i . Let us note it as L ∞ , and GL ∞ = i∈N GL(E i ) is a group known as a topological group [START_REF] Dodson | Geometry in a Fréchet Context: A Projective Limit Approach london Math[END_REF], and [START_REF] Omori | Infinite dimensional Lie groups AMS translations of mathematical monographs[END_REF] quotes "natural differentiation rules" that are identified in [START_REF] Magnot | Ambrose-Singer theorem on diffeological bundles and complete integrability of the KP equation[END_REF][START_REF] Magnot | The diffeology of Milnor's classifying space Top[END_REF] as generating a smooth Lie group for generalized differentiation on Frölicher or diffeological spaces. Let i ∈ N, we define

L i = a ∈ L(E i ) a| E∞ ∈ L ∞ .
We equip these spaces with the norms

||a|| i = max ||a|| L(Ei-r) 0 ≤ r ≤ i .
We apply Theorem 1.6 to the map

f ∞ : (a, b) ∈ L 2 ∞ → (Id + a)(Id + b) -Id,
for the sequence of Banach spaces (L i ) with projective limit L ∞ . We already know that the maximal domain D ∞ of the implicit function obtained will be

D ∞ ⊃ a ∈ L ∞ Id + a ∈ GL ∞
and the implicit function will be u ∞ : a ∈ D ∞ → (Id + a) -1 -Id where (Id + a) -1 is the left inverse of Id + a. But the main question about GL ∞ is the most adequate structure for it: it behaves like a Lie group [START_REF] Omori | Infinite dimensional Lie groups AMS translations of mathematical monographs[END_REF][START_REF] Magnot | Ambrose-Singer theorem on diffeological bundles and complete integrability of the KP equation[END_REF], but does not carry a priori charts which allows us only to consider it as a topological group [START_REF] Dodson | Geometry in a Fréchet Context: A Projective Limit Approach london Math[END_REF]. Applying Theorem 1.6, there exists a Banach subspace B of L ∞ defined by the norm

||a|| = sup i∈N ||a|| i c i .
But we easily show that each L i is a Banach algebra, so that, c i = 1 since its group of the units contains te open ball of radius 1 centrered at Id. By the way,

||a|| = sup i∈N ||a|| L(Ei) ,
and B is a Banach algebra, with group of the units GL(B) ⊂ GL ∞ which is a Banach Lie group. We finish with the special case when (E i ) is a ILH sequence (i.e. a sequence of Hilbert spaces with bounded and dense inclusion, see [START_REF] Omori | Infinite dimensional Lie groups AMS translations of mathematical monographs[END_REF]) and when there exists a self-adjoint, positive (unbounded) operator Q such that (Q i a, b) E0 = (a, b) Ei .

In this case, there exists (e k ) k∈N an orthonormal base in E 0 of eigenvectors of Q in E ∞ with is also orthogonal in E i . In this case, the orthogonal projections a → (e k , a) E0 e k

1 .

 1 Implicit functions from Banach spaces to projective limits Let (E, ||.|| E ) anf (F, ||.|| F ) be two Banach spaces. The Banach space E × F is endowed wthh ine norm ||(x, y)|| E×F = max{||x|| E , ||y|| F }. We note by D 1 and D 2 the (Fréchet) differential with respect to the variables in E and F respectively. Let us first give the statement and a proof of a classical implicit function theorem on Banach spaces, for the sake of extracting key features for generalization. For this, let U be an open neighborhood of O in E, let V be an open neighborhood of 0 in F, and let

restrict to operators in B, which shows that B is an infinite dimensional Banach algebra.

Open question: There is a natural right action of GL(B) on GL ∞ by composition. What is the structure of GL ∞ /GL(B)?