
HAL Id: hal-01626326
https://hal.science/hal-01626326

Submitted on 30 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Homeomorphic Alignment of Edge-Weighted Trees
Benjamin Raynal, Michel Couprie, Venceslas Biri

To cite this version:
Benjamin Raynal, Michel Couprie, Venceslas Biri. Homeomorphic Alignment of Edge-Weighted
Trees. 7th IAPR-TC-15 International Workshop, GbRPR 2009, May 2009, Venise, Italy. pp.134-
143, �10.1007/978-3-642-02124-4_14�. �hal-01626326�

https://hal.science/hal-01626326
https://hal.archives-ouvertes.fr

Homeomorphic Alignment of Edge-Weighted

Trees

Benjamin Raynal, Michel Couprie, and Venceslas Biri

Université Paris-Est
Laboratoire d’Informatique Gaspard Monge, Equipe A3SI

UMR 8049 UPEMLV/ESIEE/CNRS

Abstract. Motion capture, a currently active research area, needs esti-
mation of the pose of the subject. This requires a match between a model
and the 3D shape, constructed using a multiview system. Our purpose
is to realize it in real-time, using the tree representation of the skeleton
of the 3D shape. In this paper, we propose a new alignment distance
between both rooted and unrooted weighted trees, taking in account
the different types of noise occuring in the data tree. Then, we develop
several algorithms with acceptable time complexity for our purpose.

Key words: Graphs, homeomorphism, aligment, matching algorithm

1 Introduction

Motion capture without markers is a highly active research area, as shown by
Moeslund and al. [1]:between 2000 and 2006, more than 350 papers on this topic
were published. One difficulty of motion capture consists in finding the initial
pose of the subject, represented by a 3D shape and constructed using a multiview
system. Therefore, our motivation is to match the different parts of this 3D shape
(the data) to a simple a priori model.

The model is an unrooted weighted tree (called the pattern tree), where
vertices represent the different parts of the shape, and edges model the links
between these parts. Edges are associated to a weight representing the distance
between the parts. Concerning the data, we extract the curve skeleton of the
3D shape, and compute the associated weighted unrooted tree (called the data

tree), by considering each multiple point and ending point, and linking them
when they are directly connected. The weight of an edge is the geodesic distance
between its vertices.

After this step, the main difficulty is to match the pattern tree in the data
tree, with a good preservation of both topology and distances.

Several approaches have been developed, using the skeleton of a shape, in
motion capture research area [2–4], and in 3D shape matching research area [5–
7]. The best time obtained for finding the initial pose is one second [3], which is
too slow, even for interactive time.

Moreover, several kinds of noise and deformities can appear in the data tree :

Spurious branches. Due to the skeletonization algorithm and to the amount
of noise of the shape surface, branchs of skeleton can appear, but without im-
portant topological signification. The method must be robust enough to work
on data trees with consequent amount of spurious branches.

Useless vertex. Vertices with exactly two neighbors are not useful to de-
scribe the topology of a shape, they uselessly split an edge (and its weight) in
two parts, making difficult a good matching. This kind of vertices can appear
when removing spurious branches. The method must be able to match two edges
joined by this kind of vertex, with a unique edge.

Splitted vertex. Vertices with more than 3 neighbors in the pattern tree
can correspond to a cluster of vertices linked by weakly weighted edges in the
data tree, due to the skeletonization algorithm. The method must be able to
match them.

Approaches found in the literature (see Sect. 3) do not permit to achieve a
robust matching, with respect to these pertubations. In the following, after re-
viewing basic notions, we introduce both a new alignment, called homeomorphic
alignment, and a robust tree-matching algorithm which may be used for realtime
pose estimation.

2 Basics Notions

Undirected Graphs. An undirected graph is a pair (V,E), where V is a finite set,
and E a subset of {{x, y}, x ∈ V, y ∈ V, x 6= y}. An element of E is called an
edge, an element of V is called a vertex. If {x, y} ∈ E, x and y are said to be
adjacent or neighbors. The set of all neighbors of x is denoted by N (x). The
number of vertices adjacent to a vertex v is called the degree of v, and is denoted
by deg(v). Let G = (V,E) be an undirected graph, and let x, y be in V , a path

from x to y in G is a sequence of vertices s0, ..., sk such that x = v0, y = vk and
{vi−1, vi} ∈ E, 1 ≤ i ≤ k. The number k is called the length of the path. If k = 0
the path is called a trivial path. A path is closed if x = y. A path is simple when
no vertex (except possibly x) occurs more than once in the sequence of vertices
of the path. A non-trivial simple closed path in which all edges are distinct is
called a cycle. A graph is connected if for all {x, y} ⊂ V , a path from x to y
exists in G. A tree is a connected graph with no cycles. A simple path from x to
y in a tree is unique and is denoted by π(x, y). An unconnected graph with no
cycles is called a forest, each of its connected components being a tree.

Directed Graphs. A directed graph is a pair (V,A), where V is a finite set, and
A a subset of V × V . An element of A is called an arc, an element of V is called
a vertex. Let G = (V,A) be a directed graph, and let x, y be in V , a path from
x to y in G is a sequence of vertices s0, ..., sk such that x = v0, y = vk and
(vi−1, vi) ∈ A, 1 ≤ i ≤ k. The undirected graph associated to G is the undirected
graph G′ = (V,E), such that {x, y} ∈ E if and only if (x, y) ∈ A or (y, x) ∈ A. A
vertex r ∈ V is a root of G if for all x ∈ V \ {r}, a path from r to x in G exists.
G is antisymetric if for all (x, y) ∈ A, (y, x) /∈ A. The graph G is a rooted tree

(with root r) if r is a root of G, G is antisymetric and if the undirected graph
associated to G is a tree. An unconnected graph, where each of its connected
components is a tree, is called a rooted forest.

Let G = (V,A) be a rooted tree. If (y, x) ∈ A, we say that y is the parent of
x (denoted by par(x)), and that x is a child of y. The set of all children of y is
denoted by C(y). The maximum length of a path between the root and another
node is called the height of the tree. The vertices on the path from the root to
a vertex x are called the ancestors of x. We denote the set of the ancestors of x
by anc(x).

Common Definitions. Unless otherwise indicated, all the other definitions and
notations in this article are similar for the two kinds of graphs. We will give
them for the directed graphs, the versions for undirected graphs can be obtained
by replacing arcs by edges.

Two graphs G = (VG, AG) and G′ = (VG′ , AG′) are said to be isomorphic if
there exists a bijection f : VG → VG′ , such that for any pair (x, y) ∈ VG × VG,
(x, y) ∈ AG if and only if (f(x), f(y)) ∈ AG′ .

A weighted graph is a triplet (V,A, ω), where V is a finite set, A a subset
of V × V , and ω a mapping from A to R. In a weighted tree, the weight of the
unique path from x to y, denoted by ω(x, y) is the sum of the weights of all arcs
traversed in the path.

Two weighted graphs (V,E, ω) and (V ′, E′, ω′) are isomorphic whenever the
graphs (V,E) and (V ′, E′) are isomorphic.

3 Measure of Similarity

The problem of comparing graphs occurs in diverse areas such as computational
biology, image analysis and structured databases. However, the graphs consid-
ered in these domains are most often with labeled vertices. Each notion in this
section will be introduced in the case of graphs with weighted edges/arcs.

We present here measure of similarity allowing the comparison of graphs. Af-
ter adapting basic edit operations for weighted trees, we define a new alignment
distance: the homeomorphic alignment distance, preserving topology and han-
dling useless and splited vertices. We then see how we handle spurious branches.

3.1 Edit Operations

An approach widely used to compare two graphs is to search for a sequence of
simple primitive operations (called edit operations) that transforms a graph into
the other and that has a minimal cost, called the edit distance.

For a graph G = (V,A, ω), commonly used operations are :

resize : Change the weight of an arc a = (u, v) ∈ A.
delete : Delete an arc a = (u, v) ∈ A and merge u and v into one vertex.
insert : Split a vertex in two vertices, and link them by a new arc.

The cost of these edit operations is given by a cost function γ(w,w′), where w
(respectively w′) is the total weight of the arcs involved in the operation before
(respectively after) its application. As a consequence, the cost of a deletion can
be denoted by γ(w, 0), where w is the weight of the deleted arc, and the cost of
an insertion by γ(0, w), where w is the weight of the created arc. Furthermore,
we asume that γ is a metric. Typically, γ(w,w′) = |w − w′| or (w − w′)2.

Various edit-based distances have been defined, using different constraints on
sequence order and different definitions of operations. These edit-based distances
can be classified, as proposed by Wang and al. [8] : Edit distance [9], alignment
distance [10, 11], isolated-subtrees distance [12], and top-down distance [13]. Pro-
posed edit distances, isolated-subtrees distances and top-down distances cannot
always match all the model tree, but only subparts, most often unconnected.
However, we will see in the next subsection that it is not the case for alignment
distance.

3.2 Alignment Distance

In [10], Jiang and al. propose a similarity measure between vertex-labeled trees,
that we transpose here for edge-weighted graphs.

Let G1 = (V1, A1, ω1) and G2 = (V2, A2, ω2) be two weighted graphs. Let
G′

1 = (V ′
1 , A′

1, ω
′
1) and G′

2 = (V ′
2 , A′

2, ω
′
2) be weighted graphs obtained by insert-

ing arcs weighted by 0 in G1 and G2, such that there exists an isomorphism I
between G′

1 and G′
2. The set of all couples of arcs A = {(a1, a2); a1 ∈ A′

1, a2 ∈
A′

2, a2 = I(a1)} is called an alignment of G1 and G2. The cost CA of A is given
by

CA =
∑

(a1,a2)∈A

γ(ω′
1(a1), ω

′
2(a2)) . (1)

The minimal cost of all alignments from G1 and G2, called the alignment

distance, is denoted by α(G1, G2). Alignment distance is an interesting way in
our case for three reasons:it preserves topological relations between trees, it can
be computed in polynomial time, and it enables to ”remove edges”, regardless
of the rest of the graph, solving the problem of splitted vertices.

3.3 Homeomorphic Alignment Distance

For the purpose of solving the useless vertex problem, we propose a new align-
ment, which removes 2-degree vertices.

Homeomorphism. A subdivision of an arc (u, v) in a weighted graph G =
(V,A, ω) is an operation which consists in adding a new vertex w in V and two
arcs (u,w) and (w, v) in A, removing (u, v) and assigning weights on the new
arcs, such as ω((u,w))+ω((w, v)) = ω((u, v)). A subdivision of a weighted graph
G is a graph obtained by a sequence of subdivisions of arcs of G.

The merging is the inverse operation of the subdivision, it applies only on
arcs sharing a 2-degree vertex. The merging of two arcs (u, v) and (v, w) in a
weighted graph G = (V,A, ω) consists in removing v in V , replacing (u, v) and
(v, w) by (u,w) in A, weighted by ω((u,w)) = ω((u, v)) + ω((v, w)).

Two weighted graphs G = (VG, AG, ωG) and G′ = (VG′ , AG′ , ωG′) are homeo-

morphic if there exists an isomorphism between some subdivision of G and some
subdivision of G′.

Merging Kernel. Considering that a merging on a vertex v on the graph
G = (V,A, ω) does not affect the degree of any vertex in V \ {v} (by defini-
tion of merging operation) and therefore the possibility of merging this vertex,
the number of possible mergings decreases by one after each merging. In conse-
quence, the maximal size of a sequence of merging operations, transforming G
into another graph G′ = (V ′, A′, ω′) is equal to the initial number of possible
mergings in G. It can be remarked that any sequence of merging operations of
maximal size yields the same result. The graph resulting of such a sequence on
G is called the merging kernel of G, and is denoted by MK(G). The following
proposition is straightforward :

Proposition 1. Two graphs G1 = (V1, A1, ω1) and G2 = (V2, G2, ω2) are home-

omorphic iff MK(G1) and MK(G2) are isomorphic.

Homeomorphic Alignment Distance. Let G1 = (V1, A1, ω1) and
G2 = (V2, A2, ω2) be two weighted graphs. Let G′

1 = (V ′
1 , A′

1, ω
′
1) and G′

2 =
(V ′

2 , A′
2, ω

′
2) be weighted graphs obtained by deleting arcs in G1 and G2, such

that there exists an homeomorphism between G′
1 and G′

2(not necessarily unique).
Let G′′

1 = (V ′′
1 , A′′

1 , ω′′
1) and G′′

2 = (V ′′
2 , A′′

2 , ω′′
2) be the merging kernels of G′

1 and
G′

2, respectively. From proposition 1, there exists an isomorphism I between G′′
1

and G′′
2 . The set of all couples of arcs H = {(a, a′); a ∈ A′′

1 , a′ ∈ A′′
2 , a′ = I(a)}

is called an homeomorphic alignment of G1 with G2.
The cost CH of H is defined as

CH =
∑

(a,a′)∈H

γ(ω′′
1 (a), ω′′

2 (a′)) +
∑

ad∈A1\A′

1

γ(ω1(ad), 0) +
∑

a′

d
∈A2\A′

2

γ(0, ω2(a
′
d)) .

(2)
This minimal cost of all homeomorphic alignments between G1 and G2, called

the homeomorphic alignment distance, is denoted by η(G1, G2).

3.4 Cut Operation

The last remaining problem is the presence of spurious branches, which have to
be removed without any cost. For this purpose, we propose to integrate the cut
operation in our alignment.

In [14], Wang et al. propose a new operation allowing to consider only a part
of a tree. Let G = (V,A, ω) be a weighted tree. Cutting G at an arc a ∈ A, means

G1 G′

1
G′′

1

G2 G′

2
G′′

2

4

8

8

9

9

4

7

1

8

16

4
8

7
16

4

8

8

6

9 4
8

8

4

8

7
16

6

15

Fig. 1. Example of homeomorphic alignment:G′

1 (resp. G′

2) is obtained from G1 (resp.
G2) by deletions of edges. G′′

1 = MK(G′

1) and G′′

2 = MK(G′

2). The dotted lines
represent a possible homeomorphic alignment of G1 and G2, with cost equal to 12,
assuming that γ(x, y) = |x − y|.

removing a, thus dividing G into two subtrees G1 and G2. The cut operation

consists of cutting G at an arc a ∈ A, then considering only one of the two
subtrees. Let K a subset of A. We use Cut(G,K, v) to denote the subtree of
G containing v and resulting from cutting G at all arcs in K. In the case of
a rooted tree, we consider that the root rGofG cannot be removed by the cut
operation, and then we can use the notation Cut(G,K) = Cut(G,K, rG). In the
case of a rooted forest, we consider that the root of each rooted tree composing
the rooted forest cannot be removed by the cut operation, and then we can use
the same notation than above:Cut(G,K).

Our main problem can be stated as follows:Given a weighted tree P =
(VP , AP , ωP) (the pattern tree) and a weighted tree GD = (VD, AD, ωD) (the
data tree), find ηcut(P,D) = minK⊆AD,v∈VD

{η(P,Cut(D,K, v)} (in the case
of rooted trees and rooted forests, ηcut(P,D) = minK⊆AD

{η(P,Cut(D,K))}),
and the associated homeomorphic alignment.

4 Algorithms

4.1 Algorithm for Rooted Trees

Let T = (V,A, ω) be a weighted tree rooted in rT . For each vertex v ∈ V \ {rT },
we denote by ↑ v the arc (w, v) ∈ A, w being the parent of v. We denote by
T (v), v ∈ V , the subtree of T rooted in v. We denote by Π(a, b) the set of all
vertices of the path π(a, b). Let va be an ancestor of v, we denote by Tcut(v, va)
the subgraph of T defined as follows :

Tcut(v, va) = Cut(T (va), {↑ p′, p′ ∈ C(p) \ Π(va, v), p ∈ Π(va, par(v))}) . (3)

We denote by T (v, va) the tree obtained from Tcut(v, va) by merging on
each vertex n ∈ Π(va, v) \ {va, v}. We denote by F(T, v) the rooted forest, the
connected components of which are the trees T (p, v), for all p ∈ C(v). By abuse

of notation we also denote by F(T, v) the set of all connected components of this
forest (that is, as set of trees).

a

b c

d e f g

h i j

a

b

d e f

h i j

d e f

h i j

bb b

T T (b, a) F(T, b)a

e

h i

T (e, a)

Fig. 2. Examples for a rooted tree T .

Proofs of the following propositions can be found in [15].

Proposition 2. Let P = (VP , EP , ωP) and D = (VD, ED, ωD) be two weighted

trees, rooted respectively in rP and rD.

ηcut(P,D) = ηcut(F(P, rP),F(D, rD)) . (4)

Proposition 3. Let i ∈ VP \ {p}, j ∈ VD \ {d}, ia ∈ anc(i), ja ∈ anc(j),

ηcut(∅, ∅) = 0
ηcut(P (i, ia), ∅) = ηcut(F(P, i), ∅) + γ(ω(ia, i), 0)

ηcut(F(P, ia), ∅) =
∑

i′∈C(ia)

ηcut(P (i′, ia), ∅)

ηcut(∅,D(j, ja)) = 0
ηcut(∅,F(D, ja)) = 0 .

(5)

Proposition 4. Let i ∈ VP \ {p}, j ∈ VD \ {d}, ia ∈ anc(i), ja ∈ anc(j).

ηcut(P (i, ia),D(j, ja)) =

min

ηcut(F(P, i), ∅) + γ(ω(ia, i), 0)
γ(ω(ia, i), ω(ja, j)) + ηcut(F(P, i),F(D, j))
minjc∈C(j){ηcut(P (i, ia),D(jc, ja))}

minic∈C(i){ηcut(P (ic, ia),D(j, ja)) +
∑

i′
c
∈C(i)\ic

ηcut(P (i′c, i), ∅)} .

(6)

Proposition 5. ∀A ⊆ F(P, i), B ⊆ F(D, j),

ηcut(A,B) =

min

minD(j′,j)∈B {ηcut(A,B \ {D(j′, j)})}
minP (i′,i)∈A {ηcut(A \ {P (i′, i)}, B) + ηcut(P (i′, i), ∅)}
minP (i′,i)∈A,D(j′,j)∈B {ηcut(A \ {P (i′, i)}, B \ {D(j′, j)})+

ηcut(P (i′, i),D(j′, j))}
minP (i′,i)∈A,B′⊆B {ηcut(A \ {P (i′, i)}, B \ B′)

+ηcut(F(P, i′), B′) + γ(Ω(i′), 0)}
minA′⊆A,D(j′,j)∈B {ηcut(A \ A′, B \ {D(j′, j)})+

ηcut(A
′,F(D, j′)j) + γ(0, Ω(j′))} .

(7)

The algorithm will use a bottom-up approach: for each (i, j) ∈ VP × VD

in suffix order, compute succesively ηcut(P (i, ia), ∅) and ηcut(F(P, i), ∅) (using
Prop. 3), ηcut(A,B), ∀A ⊆ F(P, i), B ⊆ F(D, j) (using Prop. 5), and
ηcut(P (i, ia),D(j, ja)), ∀ia ∈ anc(i), ja ∈ anc(j) (using Prop.4). Then, return
ηcut(P,D), using Prop.2.

The total computation time complexity is in O(|VP | ∗ |VD| ∗ (2dP ∗2dD ∗ (dD ∗
2dP + dP ∗ 2dD) + hP ∗ hD ∗ (dP

2 + dD)), where dG and hG denote, respectively,
the maximal degree of a vertex in G and the height of G. If the maximal degree
is bounded, the total computation time complexity is in O(|VP | ∗ |VD| ∗hP ∗hD).

4.2 Algorithm for Unrooted Trees

Let G = (V,E, ω) be a weighted tree, let r ∈ V , we denote by Gr the directed
weighted tree rooted in r, such that G is the undirected graph associated to Gr.

Proposition 6. Let P = (VP , EP , ωP) and D = (VD, ED, ωD) be two weighted

trees.

ηcut(P,D) = mini∈VP ,j∈VD
{ηcut(P

i,Dj)} . (8)

Let P = (VP , EP , ωP) and D = (VD, ED, ωD) be two undirected weighted
trees. We denote by F(P, a, b), a, b ∈ VP the set of rooted trees P r, r ∈ VP ,
such that b is an ancestor of a in P r. We denote by anc(P, a, b), a, b ∈ VP the
set of the ancestors of a in at least one rooted tree in F(P, a, b). We denote by
C(P, a, b), a, b ∈ VP the set of the children of a in at least one rooted tree in
F(P, a, b).

Our algorithm is based on an approach similar to bottom-up. It is easy
to see that for computing ηcut(P

p(i, ia),Dd(j, ja)) and ηcut(F(P p, i),F(Dd, j)),
for any p ∈ VP , d ∈ Vd we need to know ηcut(P

p(ic, i),D
d(jc, j)) for all ic ∈

C(P, i, p), jc ∈ C(D, j, d). We start by computing ηcut(P
p(i, ia),Dd(j, ja)) and

ηcut(F(P p, i),F(Dd, j)), for all i (respectively j) being a leaf of P p (respectively
Dd) and continue iteratively with vertices which have all their children already
computed.

The total computation time of this algorithm is in O(|VP | ∗ |VD| ∗ (dP ∗
2dP +2∗dD +dD ∗2dD+2∗dP + |VP | ∗ |VD| ∗ (dP

2 +dD))) complexity. If the maximal
degree is bounded, the total computation is in O(|VP |

2 ∗ |VD|2) time complexity.

5 Experimentation

5.1 Usage of Homeomorphic Alignment

In case of motion capture, we can use homeomorphic alignment in three different
ways :

– between the two unrooted trees, if we have no a priori knowledge.
– between two rooted trees, obtained from the unrooted trees by rooting them

on vertices we want to match together.
– between a rooted tree and an unrooted tree, if we want to be sure that the

root is conserved by the homeomorphic alignment.

5.2 Results

Our model tree contains seven vertices, representing head, torso, crotch, the
two hands and the two feet. Experimentally, the data tree obtained from the
skeleton of the visual hull has a degree bounded by 4, and its number of vertices
is between seven and twenty, with a gaussian probability repartition centred on
ten. All the results have been obtained on a computer with a processor Xeon 3
GHz and 1 Go of RAM.

For finding the average time of computation of our algorithm, we have ran-
domly generated 32 pattern trees, and for each pattern tree, we have generated
32 data trees, which yields 1024 pairs of trees. Each pattern tree has seven ver-
tices, one of which has a degree equals to 4. Each data tree has at least one
4-degree vertex. The results of the four kinds of alignments are shown on Fig. 3.

In the average case (|VD| ≤ 12), the homeomorphic alignement between a
rooted pattern tree and a unrooted data tree (we assume than the torso is always
aligned), can be easily computed in real time (frequence superior to 24Hz) and
in the worst case (|VD| ≃ 20), we keep an interactive time (frequence superior
to 12Hz). For tracking, if we can use the homeomorphic alignment between two
rooted trees, we are widely above 50Hz.

 0

 50

 100

 150

 200

 250

 10 15 20 25 30

fr
eq

ue
nc

e
(H

z)

|Vd|

Frequence of HA for |Vp| = 7

HA(rooted P,rooted D)
HA(rooted P, D)
HA(P, rooted D)

HA(P, D)
real time

interactive time

Fig. 3. Frequences of the differents homeomorphic alignments for variable sizes of data
tree.

6 Conclusion

In this paper, we have introduced a new type of alignment between weighted
trees, the homeomorphic aligment, taking into account the topology and avoiding
the noise incluced by spurious branches, splited and useless 2-degree vertices.
We have also developed several robust algorithms to compute it with a good
complexity, which enable its application in real time for motion capture purpose.

In future works, we will take into account more useful information on the
model, such as spatial coordinates of data vertices, and include them in our
algorithm, for a better robustness. Finally, using this alignment, we will propose
a new fast method of pose initialization for motion capture applications.

References

1. Moeslund, T.B., Hilton, A., Krüger, V.: A Survey of Advances in Vision-based Hu-
man Motion Capture and Analysis. In: Computer Vision and Image Understanding
vol. 104(2-3), pp. 90–126. Elsevier (2006)

2. Chu, C., Jenkins, O., Mataric, M.: Markerless Kinematic Model and Motion Cap-
ture from Volume Sequences. In: IEEE Computer Society Conference on Computer
Vision and Pattern Recognition. vol 2., IEEE Computer Society (2003)

3. Menier, C., Boyer, E., Raffin, B.: 3d Skeleton-based Body Pose Recovery. In: Pro-
ceedings of the 3rd International Symposium on 3D Data Processing, Visualization
and Transmission, Chapel Hill (USA). (2006)

4. Brostow, G., Essa, I., Steedly, D., Kwatra, V.: Novel Skeletal Representation for
Articulated Creatures. LNCS, pp. 66?78. Springer, Heidelberg (2006)

5. Sundar, H., Silver, D., Gagvani, N., Dickinson, S.: Skeleton Based Shape Matching
and Retrieval. In SMI, pages 130–139, (2003)

6. Baran, I., Popović, J.: Automatic rigging and animation of 3D characters. In: Inter-
national Conference on Computer Graphics and Interactive Techniques, ACM Press
New York, NY, USA (2007)

7. Cornea, N., Demirci, M., Silver, D., Shokoufandeh, A., Dickinson, S., Kantor, P.:
3D Object Retrieval using Many-to-many Matching of Curve Skeletons. In: Shape
Modeling and Applications. (2005)

8. Wang, J., Zhang, K.: Finding similar consensus between trees: an algorithm and a
distance hierarchy. Pattern Recognition 34(1) pp. 127–137. Elsevier (2001)

9. Tai, K.: The Tree-to-Tree Correction Problem. Journal of the ACM 26(3) pp.
422?433. ACM New York, NY, USA (1979)

10. Jiang, T., Wang, L., Zhang, K.: Alignment of Trees - an Alternative to Tree Edit.
In: CPM 94: Proceedings of the 5th Annual Symposium on Combinatorial Pattern
Matching, London, UK, pp. 75–86. Springer-Verlag (1994)

11. Jansson, J., Lingas, A.: A Fast Algorithm for Optimal Alignment between Similar
Ordered Trees. LNCS vol. 2089 pp. 232–??. Springer, Heidelberg (2001)

12. Tanaka, E., Tanaka, K.: The Tree-to-tree Editing Problem. International Journal
of Pattern Recognition and Artificial Intelligence. 2(2) pp. 221–240 (1988)

13. Selkow, S.: The Tree-to-Tree Editing Problem. Information Processing Letters 6(6)
pp. 184–186 (1977)

14. Wang, J., Zhang, K., Chang, G., Shasha, D.: Finding Approximate Patterns in
Undirected Acyclic Graphs. In : Pattern Recognition vol.35(2) pp. 473?483. Elsevier
(2002)

15. Raynal, B., Biri, V., Couprie, M.: Homeomorphic Alignment of Weighted Trees.
Internal report IGM 2009-01. LIGM, Université Paris-Est (2009)

