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Cross-diffusions and Turing instabilities

Ayman Moussa∗† Benôıt Perthame∗†‡§ Delphine Salort†§¶

October 29, 2017

Abstract

We show that the ill-posedness observed for cross-diffusion systems, that is due to backward
parabolicity, can be interpreted as a limiting Turing instability of a corresponding semi-linear
parabolic system. Our analysis is based on the, now well established, derivation of cross-diffusions
from reaction-diffusion systems for fast reaction rates.

We illustrate our observation with two generic examples for 2 × 2 and 4 × 4 reaction-diffusion
systems. For these examples, we prove that backward parabolicity in cross-diffusion systems is
equivalent to Turing instability for fast reaction rates. In one dimension, the Turing patterns are
periodic solutions which frequency increases with the reaction rate. Furthermore, in some specific
cases, the structure of the equations at hand involves classical entropy/Lyapunov functions which
lead to a priori estimates allowing to rigorously pass to the fast reaction limit in the absence of
Turing instabilities.

2010 Mathematics Subject Classification. 35B36; 35B10; 35K57; 35Q92
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1 Introduction and model equations

The derivation of cross-diffusion dynamic from fast reactions in parabolic systems, after it was observed
in [10, 13], has known a growing interest during the past few decade [5, 4, 7, 1, 20] and the subject is
well established.

Here, we consider specific form of cross-diffusion systems as in

∂twi −∆[Ai(w)] = 0, i = 1, ..., I,
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where the nonlinearity A depends on the solution vector w = (w1, ..., wI) and satisfies Ai(w)
∣∣
wi=0

= 0.
We aim at proving the equivalence between instability by backward parabolicity for these cross-
diffusion equations and Turing instabilities for fast reaction-diffusion systems. Let us point out that
this type of instability is very different from that mentioned already in [10, 13] which is the continuation
of Turing instability through their asymptotic process when some reaction terms remain in the cross-
diffusion system, as it is the case in the famous SKT model [25, 6].

Our motivation comes from the fast dynamics of attachment and detachment of synaptic receptors to
scaffold proteins which has been observed and modeled in [24, 9], leading to large dynamical aggregates
[22]. This attachment and detachment dynamics has been analyzed, with a different scaling than that
we propose here, in [11].

For our purpose, we first consider the simple case of two coupled equations with mass conservation
leading formally to a nonlinear diffusion equation when the reaction rate goes to infinity. Then, we
extend our analysis to the setting of four coupled reaction-diffusion equations with mass conservation,
leading formally, when the reaction rate goes to infinity, to two coupled cross-diffusion equations.

We now describe more precisely the two settings of our study, the main general properties of the
involved equations and the limit equation obtained heuristically when the fast of the reaction term
goes to +∞.

1.1 Case of 2 coupled reaction-diffusion equations

We begin with a very simple example. We consider a smooth bounded domain Ω ⊂ Rd and nongative
solutions of the the singular perturbation problem with Neumann boundary conditions

∂tuε − d1∆uε = ε−1(vε − F (uε)), x ∈ Ω, t ≥ 0

∂tvε − d2∆vε = −ε−1(vε − F (uε)),

∂uε
∂ν = ∂vε

∂ν = 0, on ∂Ω,

(1)

where the diffusion coefficients satisfy d1 > 0, d2 > 0 and

F ∈ C 2(R+;R+) satisfies F ′ > −1, F (0) = 0, F (u) > 0 for u > 0. (2)

With these assumptions, solutions remain non-negative, and it is also convenient to impose an upper
bound u ≤ uM , v ≤ vM = F (uM ) for some uM such that

vM ≥ F (u) ∀u, 0 ≤ u ≤ uM .

In particular the set of equibria is parametrized by the equation v = F (u). The small parameter
ε > 0 measures the time scale of reaction compared to diffusion.

This particular setting is also used to model mechanisms of cell polarisation [12], [19], and have gen-
erated many mathematical contributions [23, 17, 15, 16]. Indeed, the authors, see [17] and references
therein, exhibit specific entropy functionals that we recall below and allow for a full asymptotic theory.

As specified, summing the two equations, we obtain the first basic property of this system, that is
the conservation law,

∂twε −∆[d1uε + d2vε] = 0, wε = uε + vε, (3)
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which implies that ∫
Ω

(
uε(x, t) + vε(x, t)

)
dx =: M is independent of t. (4)

Heuristically, when ε → 0, we expect that (uε, vε) → (u, v), and v = F (u). Therefore, from (3), we
get

∂tw −∆(d1u+ d2F (u)) = 0, w = u+ F (u).

The condition (2) implies that one can invert the mapping u 7→ w = u+ F (u), and thus write

d1u+ d2F (u) = A(w), A ∈ C 1(R+ × R+),

which formally generates the equation{
∂tw −∆A(w) = 0, x ∈ Ω, t ≥ 0,

∂w
∂ν = 0, on ∂Ω.

(5)

Notice that we have

A′(w) =
d1 + d2F

′(u)

1 + F ′(u)
, w = u+ F (u).

Using the assumption (2), when d2/d1 ≤ 1, this equation is parabolic, of porous medium type, and
there is an entropy/Lyapunov functional, i.e., a functional of uε, vε which is decreasing with time if
F ′ ≥ −d2

d1
(see Proposition 2.8).

Our goal is to give conditions on F , around a given constant steady state (ū, v̄), that means
v̄) = F (ū), for which the following holds. For d2/d1 large enough and ε small enough, the state
(ū, v̄) is Turing unstable for (1), and this turns out to be equivalent to the backward parabolicity of
the limiting equation, which means A′(w̄) < 0.

We recall that the forward-backward parabolic Equation (5) is ill-posed under the condition A′(w̄) <
0, however this problem has attracted a lot of interest and a theory of Young-measure solutions could
certainly be derived along the lines of [18, 2, 21, 8, 26, 14].

1.2 Case of 4 coupled reaction-diffusion equations

Next, we extend the method to the case of four coupled equations, leading, in the fast reaction rate
limit, to a 2 × 2 cross-diffusion equations. We explore again the correspondance between Turing
instability and backward parabolicity in the cross-diffusion system equation.

We consider the following system, built with symmetry between two sets of variables,

∂tu
1
ε − d1∆u1

ε = 1
ε

[
R(vε, wε) + u2ε

2 −
u1ε
2

]
,

∂tu
2
ε − d2∆u2

ε = −1
ε

[
R(vε, wε) + u2ε

2 −
u1ε
2

]
,

∂tu
3
ε − d3∆u3

ε = 1
ε

[
S(vε, wε) + u4ε

2 −
u3ε
2

]
,

∂tu
4
ε − d4∆u4

ε = −1
ε

[
S(vε, wε) + u4ε

2 −
u3ε
2

]
,

(6)
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with

vε =
u1
ε + u2

ε

2
, wε =

u3
ε + u4

ε

2
.

This system can be seen as the extension of the system (1) with the modification that the nonlinearity
F (u + v) − v replaces F (u) − v. The corresponding equilibrium, which cancel the right hand side,
turns out to be defined by {

u1 = v +R(v, w), u2 = v −R(v, w),

u3 = w + S(v, w), u4 = w − S(v, w).
(7)

We immediately see that, formally, the corresponding cross-diffusion system is given by{
∂tv −∆A(v, w) = 0,

∂tw −∆B(v, w) = 0,
(8)

with

A(v, w) =
d1 + d2

2
v +

d1 − d2

2
R(v, w), B(v, w) =

d3 + d4

2
w +

d3 − d4

2
S(v, w). (9)

At this stage, it is useful to introduce some assumptions. In order to preserve positivity, we assume
(consider first that u1

ε vanishes and then u2
ε, and argue in the same way for u3

ε and u4
ε),

− v ≤ R(v, w) ≤ v, −w ≤ R(v, w) ≤ w, (10)

− v ≤ S(v, w) ≤ v, −w ≤ S(v, w) ≤ w. (11)

Additionally, it is convenient to control solution with the maximum principle. That is the case when
there exists uM > 0 such that

u− uM
2

≤ R(
u+ uM

2
, w) ≤ uM − u

2
, ∀w ≥ 0, ∀ 0 ≤ u ≤ uM , (12)

u− uM
2

≤ S(v,
u+ uM

2
) ≤ uM − u

2
, ∀v ≥ 0, ∀ 0 ≤ u ≤ uM . (13)

Finally, we want that the self-diffusion is always positive and that instabilities stem from the cross-
terms

Av > 0⇔ (d1 + d2) + (d1 − d2)Rv > 0, Bw > 0⇔ (d3 + d4) + (d3 − d4)Sw > 0. (14)

Again, for a given constant steady state, our goal is to prove equivalence between Turing instability
for (6) and backward parabolicity for the cross-diffusion system (7). However, unlike the case sys-
tem (1), for the 4 × 4 system, there does not exist entropy functionals in general, except in specific
settings that we discuss in section 3.2.

1.3 Organisation of the paper

In section 2, we consider the system (1). We first prove that, being given a constant steady state,
there is equivalence between Turing instabilities when ε is small enough and backward parabolicity
in (5). Then, we study the different possible non-constant steady states with respect to ε. We exhibit
a wide family of periodic steady states and study their isochronous character that may be induced by
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F . Finally, we exhibit some classical entropy inequalities which give results in accordance with the
criteria obtained on the function F for the existence of Turing instabilities.

In section 3, we extend our analysis to the system (6). We show that, again, there is equivalence
between asymptotic Turing instabilities for ε small and he backward parabolicity for the cross-diffusion
terms in the equation (8). The last part of this section is devoted to the existence of an entropy
functional in specific settings.

2 Turing instability and analysis of Equation (1)

We begin with several aspects of the fast reaction in the system (1) under assumpation (2). We plan
to, on the one hand, understand the set of non constant steady states in dimension 1, and on the other
hand, interpret our results with respect to some well-known entropy/Lyapunov structure on those
equations [17].

2.1 Turing instability of system (1) and backward parabolic equation

To tackle the question of the equivalence between Turing instability and backward parabolicity for
Equation (1), we consider a constant steady state (ū, v̄), v̄ = F (ū) and we recall some basic observations
and definitions.

Firstly, we consider the dynamical system

d

dt

(
u
v

)
=

(
v − F (u)
F (u)− v

)
.

Because the quantity M := u(t) + v(t) is constant, the solution is reduced to the simple equation
du
dt = M − u− F (u). Therefore, the state (ū, v̄) is attractive for initial data satisfying M = F (ū) + ū
thanks to the assumption (2).

Around such a steady state Ū , the linearized system reads{
∂tδuε − d1∆δuε = ε−1[δvε − F ′(ū)δuε],

∂tδvε − d2∆δvε = ε−1[F ′(ū)δuε − δvε].
(15)

Its stability can be analyzed by decomposition on the spectral basis (wi)i∈N associated with the
Laplacian

−∆wi = λiwi in Ω
∂wi
∂ν

= 0 on ∂Ω.

Considering the projections (αi, βi) =
∫

Ω(δuε, δvε)widx, the system (15) is written as linear indepen-
dent equations {

dαi
dt + d1λiαi = ε−1[βi − F ′(ū)αi],

dβi
dt + d2λiβi = ε−1[F ′(ū)αi − βi].

(16)

Definition 2.1 We say that the steady state (ū, v̄) is asymptotically Turing unstable if, for ε small
enough, it is Turing instable for the system (1), i.e., one of the components i ∈ N of the system (16)
has a uniformly negative real part for ε small enough.

The following result holds
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Proposition 2.2 (Equivalence in the scalar case.) We assume (2) and consider a steady state
(ū, v̄). It is asymptotically Turing unstable for (1), if and only if the equation (5) is backward parabolic
that is if A′(ū+ F (ū)) < 0 or also

d1 + d2F
′(ū) < 0. (17)

Remark 2.3 It will be clear from our proof below that this result still holds replacing v − F (u) by a
function φ(u, v) with adequate assumptions. Namely for u ≥ 0, v ≥ 0 one should impose φ(0, v) ≥ 0,
φ(u, 0) ≤ 0, for some uM > 0 φ(uM , v) ≤ 0 and φ(u, uM ) ≥ 0, ∂vφ(u, v) = 0 and φ(u, F (u)) = 0.

Proof. To characterize asymptotic Turing instability we look for a value λ with Reλ > 0 such that
(αi(t), βi(t)) = eλt(ᾱi, β̄i). This is written{

λᾱi + d1λiᾱi = ε−1[β̄i − F ′(ū)ᾱi],

λβ̄i + d2λiβ̄i = ε−1[F ′(ū)ᾱi − β̄i].

This system can be reduced to λ(ᾱi + β̄i) + λi(d1ᾱi + d2β̄i) = 0 and

λᾱi + d1λiᾱi = ε−1[−ᾱi
λ+ λid1

λ+ λid2
− F ′(ū)ᾱi].

A non-zero solution exists if and only if we can find a root to the polynomial

P(λ) := ελ2 + λ(1 + F ′(ū) + ελi(d1 + d2)) + ελ2
i d1d2 + λi(d1 + d2F

′(ū)).

If d1 + d2F
′(ū) ≥ 0 this convex polynomial with positive value at λ = 0 and positive derivative at 0

cannot have a positive root and Turing instability is not possible.
If d1 + d2F

′(ū) < 0, choose any eigenvalue λi > 0 and ε small enough such that

2ελid1d2 < |d1 + d2F
′(ū)|.

Then, it is immediate to check that there is a positive root with the form λ = λiΛ(ελi) which depends
smoothly on ελi with Λ(0) = −A′(ū+ F (ū)) > 0 and thus, asymptotic turing instability holds. �

2.2 Study of stationary states

We consider here the case of dimension 1 with Ω = (0, L) that is:{
∂tuε − d1∆uε = ε−1(vε − F (uε)),

∂tvε − d2∆vε = −ε−1(vε − F (uε)).
(18)

We assume that F ∈ C2 and, for some uM > 0,{
F ′(·) > −1, F ′(0) > 0, F ′(u) > 0 for u ≥ uM ,
F (u) < F (uM ) ∀u < uM ,

(19)

Recalling the characterisation (17) of asymptotic Turing instability that we established previously, we
consider the assumption

d1 + d2F
′(u) ≥ 0, ∀ u ≥ 0. (20)

The following description for the stationary states of the system (18) holds.
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Theorem 2.4 Assume L > 0 given. We have two possible outcomes

• If (20) is satisfied, then any stationary state of (18) is constant.

• If (20) is not satisfied, let ū such that d1
d2

+ F ′(ū) < 0 and sε :=
√
εd1. Then, there exists T (ū)

such that if L ∈ T (ū)sεN, there exists a non constant T (ū)sε periodic steady state of (18) with
u(0) = ū.

Remark 2.5 Let us mention, that in the above Theorem, we only prove existence of periodic solution
for discret parameters ε. This is because the function d1

d2
u + F (u) may be isochronous [3]. A typical

example is the case where F is locally linear. Indeed, in this case, the solution u of (18), for initial
data close enough to ū, are all proportional to

cos(s−1
e

2π

T (ū)
x).

In Theorem 2.6 we give a simple criteria on the function F in order to discard the isochronous setting.

Proof of Theorem 2.4. We first note that if (u, v) are stationary states of Equation (18) then

d1u
′′ + d2v

′′ = 0,

and so, using the Neumann boundary condition, we also have

d1u
′ + d2v

′ = 0.

In particular, there exists λ ∈ R such that

v = −d1

d2
u+ λ. (21)

Plugging this in the equation satisfied by u we get

u′′ = (d1ε)
−1
(d1

d2
u− λ+ F (u)

)
, (22)

u′(0) = u′(L) = 0. (23)

If (20) holds, then consider w = u′ and differentiate (22) to get

w′′ = (d1ε)
−1w

(d1

d2
u+ F ′(u)

)
.

Integrating the previous equality against w and using w(0) = w(L) = 0 and using (20) leads to

−
∫ L

0
|w′(x)|2dx ≤ 0,

so that w = 0 and u is constant (and so is v).

Now assume on the contrary that (20) does not hold. For any λ ∈ R, if u solves (22) and v is defined
by (21), then (u, v) is a stationary solution of (18). In particular, if z solves

z′′ =
d1

d2
z − λ+ F (z), (24)

z′(0) = z′(L/sε) = 0, (25)
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then if u(x) := z(x/sε) and v is defined by (21), then (u, v) is a stationary solution of (18). If z is
non constant and T -periodic, then u and v are non constant and sεT -periodic. We thus only need to
prove the existence of z, a non constant periodic solution of (24)-(25). Since we are refuting (20), we
have the existence ū > 0 such that

d1

d2
+ F ′(ū) < 0.

Define

λ :=
d1

d2
ū+ F (ū),

this means that Y := (z, z′) solves the Hamiltonian system defined by the vector field Θ(y1, y2) =
(y2, µ(y1)), where

µ(y1) :=
d1

d2
y1 − λ+ F (y1).

We infer from Propositions A.1 of the Appendix the existence of (non constant) periodic solutions for
our system. In order to conclude, we need to get a period T such that L ∈ sεTN. This ends the proof
of Theorem 2.4. �

2.3 Continuum set of parameters with periodic solutions

We now prove that there exists a continuum of periodic solutions with fixed total mass, assuming
the following stronger assumption on F : there exists a value U in the unstable range, satisfying the
conditions

− 1 < F ′(U) < −d1

d2
, F ′′(U) 6= 0, U + F (U) = M0/L. (26)

More precisely, the following theorem holds.

Theorem 2.6 Assume that F is smooth and that (26) holds. For all n ∈ N∗, there are non-constant
periodic solutions with n (minimal) periods and with mass M0, defined when ε belongs to a small

interval [εn, ε
+
n ], where εn = 1

d1

(
L
n

ω(U)
2π

)2
, εn < ε+

n and ω(U) =
√
−
(
d1
d2

+ F ′(U)
)
.

Proof of Theorem 2.6. The idea of the proof of Theorem 2.6 is to consider a small perturbation
of an unstable constant steady state ū and to make some Taylors expansions in order to construct,
modulo small order terms, explicitly the solution of (24)-(25). This allow us to compute the Taylor
expansion of the period and then to conclude the proof of our Theorem.
Let us first introduce the following notations

y = x/
√
εd1, w(y) = u(x), V (u) =

d1

d2

u2

2
+G(u), G(u) =

∫ u

0
F (s)ds.

Then, we consider two parameters (ū, δ) with δ > 0 small and ū close to U . We choose λ = V ′(ū), the
equation is then written {

w′′ = V ′(w)− V ′(ū), y ∈ R

w′(0) = 0, w(0) = ū− δ.
(27)
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By opposition to the harmonic oscillator, we consider a value U such that the condition (26) holds,
which means, using the notation V ′′′ = V (3),

V ′′(U) < 0, V (3)(U) 6= 0, and we set ω(U) =
√
−V ′′(U). (28)

We have M0 = [U + F (U)]L = (1− d1
d2

)U + V ′(U). We are then reduced to find periodic solutions w,
with a period T := T (ū, δ) for which a multiple n ∈ N∗ gives

nT
√
εd1 = L, (29)

and for which the mass conservation gives

n
√
εd1

[
(1− d1

d2
)

∫ T

0
w + T V ′(ū)

]
= M0

and thus

(1− d1

d2
)

1

T

∫ T

0
w + V ′(ū) =

M0

L
· (30)

Our claim is that, when ε varies in an appropriate interval, we can select a one parameter family of
values (ū(δ), δ) around (U, 0) where both conditions on the mass M0 in (30) and the period (29) are
fulfilled.

Expansion of the solution and of the period. The following Lemma holds

Lemma 2.7 Let ū be an unstable constant steady state and let T (ū, δ) be the smallest period of the
solution of Equation (27). Assume that T is C3 with respect to the variable δ. Then the following
Taylor expansion holds

T (ū, δ) =
2π

ω

(
1 + δ2 (V (3))2

24ω4

)
+O(δ3).

Proof of Lemma 2.7. We first compute an approximation of Equation (27) as follows. We set
z = w − ū, and the equation (27) is written z′′ = V ′(z + ū)− V ′(ū) = V ′′(ū)z + V (3)(ū)

2 z2 + V (4)(ū)
6 z3 +O(δ4)

z′(0) = 0, z(0) = −δ.

We now simplify notations ignoring the dependency of ū in the formulas. We expand, departing from
our knowledge of the first order term, under the form

z = −δ cos(ωy) + δ2z1 + δ3z3 +O(δ4).

At second order, z1 is the solution of

z′′1 = −ω2z1 +
1

2
V (3) cos(ωy)2, z1(0) = z′1(0) = 0.

Using the identity cos(ωy)2 = 1
2 + cos(2ωy)

2 , we deduce that

z′′1 = −ω2z1 +
1

2
V (3)

(
1

2
+

cos(2ωy)

2

)
.
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Setting z2 := z1 − V (3)

4ω2 , we obtain

z′′2 = −ω2z2 +
V (3)

4
cos(2ωy), z2(0) = −V

(3)

4ω2
, z′2(0) = 0,

z2(y) = B1 cos(ωy) +B2 cos(2ωy), B1 = −V
(3)

6ω2
, B2 = − V

(3)

12ω2
·

At third order, z3 is the solution of the equation

z′′3 = −ω2z3 −
V (3)

2
z1 cos(ωy)− V (4)

6
cos3(ωy), z3(0) = z′3(0) = 0.

We then deduce that there exists α, β, γ such that

z3(y) = −B1V
(3)

4ω2
+ α cos(ωy) + β cos(2ωy) + δ cos(3ωy),

that is

z3(y) =
1

24

(
V (3)

ω2

)2

+ α cos(ωy) + β cos(2ωy) + δ cos(3ωy).

We are now able to compute the Taylor expansion of the period T with respect to δ. Integrating
Equation (27) between 0 and T (δ, ū), and to simplify notations we simply use T , we deduce that

0 =

∫ T

0

[
V ′(w(y))− V ′(ū)

]
dy.

We insert the Taylor expansion of V ′(w − ū+ ū)

V ′(w)− V ′(ū) = V ′′(ū)z +
1

2
V (3)(ū)z2 +

1

6
V (4)(ū)z3 +O(δ4).

and thus we arrive at

O(δ4) = V ′′
∫ T

0

[
−δ cos(ωy) + δ2

[
B1 cos(ωy) +B2 cos(2ωy) +

V (3)

4ω2

]
+ δ3z3

]
dy

+δ2V
(3)

2

∫ T

0
cos2(ωy)dy + δ3V (3)

∫ T

0
cos(ωy)z1dy + δ3V

(4)

6

∫ T

0
cos3(ωy)dy.

Next, we set

T (δ) = T (0) + T ′(0)δ + T ′′(0)
δ2

2
+O(δ3)

and the first order term gives

T (0) =
2π

ω
·

Next, we use that for all n ≥ 1 ∫ T (0)

0
cos(nωy)dy = 0,
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and we deduce that

O(δ3) = V ′′
∫ T

0

− cos(ωy) + δ
[
B1 cos(ωy) +B2 cos(2ωy) +

V (3)

4ω2

]
+ δ2 1

24

(
V (3)

ω2

)2
 dy

+δ
V (3)

2

∫ T

0
cos2(ωy)dy

= V ′′
∫ T

0

[
− cos(ωy) + δ

[
B1 cos(ωy) +B2 cos(2ωy)

]]
dy + δT

V ′′V (3)

4ω2

+δ2T (0)
V ′′

24

(
V (3)

ω2

)2

+ δ
V (3)

2

∫ T

0
cos2(ωy)dy.

Next, we arrive at

O(δ3) = V ′′
∫ T

T (0)

[
− cos(ωy) + δ

[
B1 cos(ωy) +B2 cos(2ωy)

]]
dy − δT V

(3)

4

−δ2T (0)
1

24

(
V (3)

ω

)2

+ δ
V (3)

2

[
T (0)

2
+

∫ T

T (0)
cos2(ωy)dy

]

and because cos(ωy) ≈ 1− ω(y−T (0))2

2 near T (0), we find

O(δ3) = V ′′
∫ T

T (0)

[
−1 + δ

[
B1 +B2

]]
dy − δT V

(3)

4

−δ2T (0)
1

24

(
V (3)

ω

)2

+ δ
V (3)

2

[
T (0)

2
+

∫ T

T (0)
dy

]

= V ′′
[
−δT ′(0)− δ2

2
T ′′(0) + T ′(0)δ2

[
B1 +B2

]]
− δ2T ′(0)

V (3)

4

−δ2T (0)
1

24

(
V (3)

ω

)2

+ δ2V
(3)

2
T ′(0).

The first order term implies that

T ′(0) = 0.

and the second order term gives

T ′′(0) = T (0)
(V (3))2

12ω4
·

This ends the proof of Lemma 2.7. �

Mass conservation. We need again to expand the solution w itself. We write

w′′ = −ω2
(
w(y)− ū

)
+O(δ2). (31)

11



Therefore we can expand
w = ū− δ cos(ωy) +O(δ2).

Integrating the equation (31) between 0 and T
2 , we find

0 = −ω2

∫ T
2

0
[w(y)− ū]dy +

1

2
V (3)(ū)

∫ T
2

0
[w(y)− ū]2dy +O(δ3),

that is also written

ω2

∫ T
2

0
[w(y)− ū]dy = δ2

2 V
(3)(ū)

∫ T
2

0
cos(ωy)2dy +O(δ3)

= δ2

2
V (3)(ū)

ω

∫ ω T
2

0
cos(y′)2dy′ +O(δ3)

= δ2

2
V (3)(ū)

ω

∫ π

0
cos(y′)2dy′︸ ︷︷ ︸

=π/2

+O(δ3).

Therefore the mass condition (30) can be written successively as

(1− d1

d2
)

2

T

∫ T/2

0
(w − ū) + [(1− d1

d2
)ū+ V ′(ū)

]
=
M0

L
,

(1− d1

d2
)δ2V

(3)(ū)

Tω3

π

2
+O(δ3) + ū+ F (ū) = U + F (U).

Because u 7→ u+ F (u) is locally invertible around U , and because δ is small, this means that we can
choose ū(δ) according to this expression and get

ū(δ) = U − δ2

1 + F ′(U)
(1− d1

d2
)
V (3)(U)

ω(U)2

1

4
+O(δ3).

Conclusion According to Lemma 2.7, the intervals of values ε are finally given by

√
εd1 = L

n
ω(ū)
2π

[
1 + δ2(V (3)(ū))2

24ω(ū)4
+O(δ3)

]
= L

n
ω(U)
2π

[
1 + δ2 (V (3)(U))2

(ω(U))2

(
1

24(ω(U))2
+

L(1− d1
d2

)

16nπ(1+F ′(U))ω(U)

)
+O(δ3)

]
.

This ends the proof of Theorem 2.6. �

2.4 Interpretation via entropy functionals

In this part, we again consider equation on a regular bounded domain Ω ⊂ Rd{
∂tuε − d1∆uε = ε−1 (vε − F (uε)) ,

∂tvε − d2∆vε = −ε−1 (vε − F (uε)) .

12



Following [17], several entropy functionals allow to tackle, on the one hand the asymptotic dynamic
of the solution and on the other hand the fast reaction limit, in the case where no Turing instabilities
may appear. More precisely, we have the following three keys equality

Let G be an antiderivative of F . Multiplying the equation on uε by F (uε) and on vε by vε, we have

d

dt

∫
Ω

(
G(uε)(x, t) +

1

2
v2
ε(x, t)

)
dx = −d1

∫
Ω
F ′(uε)|∇uε|2dx− d2

∫
Ω
|∇vε|2dx

−1

ε

∫
Ω

(
vε − F (uε)

)2
dx.

(32)

Multiplying the equation on wε = uε + vε by wε, we find that

d

dt

∫
Ω

w2
ε

2
dx = −

∫
Ω
∇wε.(d1∇uε + d2∇vε)dx. (33)

Multiplying the equation on uε by ∆uε, we find that

d

dt

∫
Ω

|∇uε|2

2
dx = −d1

∫
Ω

(∆uε)
2dx+

1

ε

(∫
Ω
∇uε.∇vεdx−

∫
Ω
F ′(uε)|∇uε|2dx

)
, (34)

and that
d

dt

∫
Ω

|∇uε|2

2
dx = −d1

∫
Ω

(∆uε)
2dx− 1

ε

(∫
Ω

(vε − F (uε))∆uεdx

)
. (35)

From this, we deduce the following proposition, taken from [17] (see also Appendix B, for more
details)

Proposition 2.8 Combining equalities (32)–(35), the following equality holds

d

dt

∫
Ω

(
G(uε)(x, t) +

1

2
v2
ε(x, t) +

εd1

2
|∇uε|2 +

εd2
1

4(d2 − d1)
w2
ε

)
dx =

−ε
∫

Ω

(
d1∆uε +

1

ε
(vε − F (uε))

)2

dx− 1

d2 − d1

∫
Ω

(d1∇uε + d2∇vε)2dx.

(36)

Combining equalities (32) and (33), the following equality holds for d2 > d1

d

dt

∫
Ω

(
G(uε)(x, t) +

1

2
v2
ε(x, t) +

d1

d2 − d1
w2
ε

)
dx = −d1

∫
Ω

(
F ′(uε) +

d1

d2

)
|∇uε|2dx

− d1 + d2

d2(d2 − d1)

∫
Ω

(d1∇uε + d2∇vε)2dx− 1

ε

∫
Ω

(vε − F (uε))
2dx.

(37)

and for d1 > d2

d

dt

∫
Ω

(
G(uε)(x, t) +

1

2
v2
ε(x, t) +

d2

d1 − d2
w2
ε

)
dx = −d1

∫
Ω

(
F ′(uε) +

d2

d1

)
|∇uε|2dx

− d1 + d2

d2(d1 − d2)

∫
Ω

(d1∇uε + d2∇vε)2dx− 1

ε

∫
Ω

(vε − F (uε))
2dx.

(38)

These inequalities have standard consequences in term of behaviors of solutions that we recall and
complete with a larger range of validity for the parameters.
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Long time asymptotic, ε > 0 fixed. Using the energy dissipation, the equality (36) ensures that,
asymptotically, as t → ∞, the solutions converge to a stationary state. We refer to [15, 16] for more
precise results on this topic.

The limit ε → 0, d1 6= d2. The equalities (37), (38) are useful in the two cases when d2 > d1 and
d1
d2

+ F ′(· ) ≥ co > 0 or d1 > d2 and d2
d1

+ F ′(· ) ≥ co > 0. On the one hand, it shows that the solution
necessary converges in long time to a constant stationary state in accordance with Theorem 2.4.

On the other hand, these equalities provide us with uniform bounds, with respect to ε, on the
derivatives of u and v. They give the existence of a constant C > 0 independent of ε > 0 such that∫ +∞

t=0

∫
Ω
|∇uε|2 + |∇vε|2dxdt < C.

The situation is exactly the same as in [4] which treats the case F ′(·) ≥ 0. Therefore, we can extend
the result in [4], with the same proof, to obtain the

Theorem 2.9 Assume d1 < d2 and d1
d2

+ F ′(· ) ≥ co > 0, or d1 > d2 and d2
d1

+ F ′(· ) ≥ co > 0. As
ε→ 0, wε = uε + vε converges a.e. to a function w that satisfies the equation{

∂tw −∆A(w) = 0, x ∈ Ω, t ≥ 0

∂w
∂ν = 0 on ∂Ω,

(39)

where A is defined in Section 1.1 and is written

A(w) := d1u+ d2F (u), with w = u+ F (u).

Let us mention that the question of convergence of uε, vε, when ε→ 0, in the case where (20) is not
satisfied, is very difficult to tackle because of the oscillations of size 1√

d1ε
that may appear as shown

in Section 2.2.

The case d1 = d2 is simpler but requires a specific proof because wε satisfies the heat equation.

3 A 2× 2 cross diffusion system

In Section 2, in the context of a system of two reaction-diffusion equations, we established an equiva-
lence between Turing instability for a steady state of (1), and ill-posedeness (e.g. “backward parabol-
icity”) of the corresponding fast reaction limit equation. Here, we aim at exhibiting a class of 4 × 4
reaction-diffusion systems for which the asymptotic ε→ 0 produces a full 2×2 cross diffusion systems
and in which the equivalence Turing instability / backward parabolicity holds as before.
We use the notations and assumptions of section 1.2.

3.1 Turing instabilities and backward cross-diffusion equation

Here again, we obtain the direct analog of the “backward parabolicity” property for the cross diffusion
system (8), that is the negativity of the Jacobian of the matrix M defined below. More precisely we
have the following result
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Proposition 3.1 Assume (14). Then, a linearly constant steady state Ū = t(ū1, ū2, ū3, ū4) is asymp-
totically Turing unstable for (6) if and only if detM(V̄ ) < 0, where

M =

(
Av Aw
Bv Bw

)
, V̄ :=

1

2

(
ū1 + ū2

ū3 + ū4

)
.

In other words, Turing instability is equivalent to backward parabolicity of the cross-diffusion system.

We recall that, because we assume self-diffusion is positive in (14), that means Av > 0, Bw > 0, the
matrix M has always an eigenvalue with positive real part; the cross-diffusion system cannot be fully
backward with two negative eigenvalues.

Proof of Proposition 3.1. We define the change of variables

vε =
u1
ε + u2

ε

2
, wε =

u3
ε + u4

ε

2
, yε =

d1u
1
ε + d2u

2
ε

2
, zε =

d3u
3
ε + d4u

4
ε

2
·

We find that

u1
ε = 2

d2vε − yε
d2 − d1

and u3 = 2
d4wε − zε
d4 − d3

·

With the new variables, we obtain the following system of equations
∂tyε = (d2 + d1)∆yε − d1∆vε + (d1−d2)

2ε

(
R(vε, wε)− vε (d1+d2)

(d2−d1) + 2yε
(d2−d1)

)
,

∂tvε = ∆yε,

∂tzε = (d4 + d3)∆zε − d3∆wε + (d3−d4)
2ε

(
S(vε, wε)− wε (d3+d4)

(d4−d3) + 2zε
(d4−d3)

)
,

∂twε = ∆zε,

and so 
∂tyε = (d2 + d1)∆yε − d1∆vε + 1

ε (A(v, w)− yε) ,
∂tvε = ∆yε,
∂tzε = (d4 + d3)∆zε − d3∆wε + 1

ε (B(v, w)− zε) ,
∂twε = ∆zε.

The linearized equation, around a stationary state (v̄, w̄, ȳ, z̄), is given by
∂tyε = (d2 + d1)∆yε − d1∆vε + 1

ε (Av(v̄, w̄)vε +Aw(v̄, w̄)wε)− yε
ε ,

∂tvε = ∆yε,
∂tzε = (d4 + d3)∆zε − d3∆wε + 1

ε (Bv(v̄, w̄)vε +Bw(v̄, w̄)wε)− zε
ε ,

∂twε = ∆zε.

(40)

Now, we decompose each solution of (40) with respect to the eigenfunctions Ei of the Laplacian
associated to the eigenvalues λi ≤ 0, that is we write

vε =
+∞∑
i=0

Eiv
i
ε(t), wε =

+∞∑
i=0

Eiw
i
ε(t), yε =

+∞∑
i=0

Eiy
i
ε(t), zε =

+∞∑
i=0

Eiz
i
ε(t).

We find that

d

dt


viε
wiε
yiε
ziε

 = Mi


viε
wiε
yiε
ziε

 , Mi =


0 0 λi 0
0 0 0 λi
a31 a32 a33 0
a41 a42 0 a44
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with

a31 = −d1λi +
1

ε
Av, a32 =

1

ε
Aw, a33 = (d1 + d2)λi −

1

ε
,

a41 =
1

ε
Bv, a42 = −d3λi +

1

ε
Bw, a44 = (d3 + d4)λi −

1

ε
.

Let us mention that, because λi < 0, Av > 0, Bw > 0 we have

a31 > 0, a33 < 0, a42 > 0, a44 < 0.

We find that

P (η) := Det(Ai − ηI4)

= η4 + η3(−a33 − a44) + η2(a33a44 − λi(a42 + a31)) + ηλi(a
31a44 + a42a33) + λ2

i (a
31a42 − a41a32).

We have

a31a42 − a41a32 < 0⇔ (AvBw −BvAw) < 0 if ε small enough,

hence, we obtain for ε > 0 small enough, that P has a positive root if and only if (AvBw−BvAw) < 0
which ends the proof of Proposition 3.1. �

3.2 Entropy functional

In general, we could not find an entropy functional for the system (6). However, when there exists
two functions φ1 and φ2 such that

φ1(w) +

∫ v

0
A(y, w)dy = φ2(v) +

∫ w

0
B(v, y)dy := Φ(v, w), (41)

the following proposition holds

Proposition 3.2 Assume that assumption (41) holds. Let

E1(t) :=
1

2

(
‖∇y‖2L2(Ω) + ‖∇z‖2L2(Ω) + d1‖∇v‖2L2(Ω) + d3‖∇w‖2L2(Ω)

)
+

1

ε

∫
Ω

Φ(t, x)dx.

Then, the following estimate holds

d

dt
E1(t) = −1

ε

(
‖∇y‖2L2(Ω) + ‖∇z‖2L2(Ω)

)
− (d1 + d2)‖∆y‖2L2(Ω) − (d3 + d4)‖∆z‖2L2(Ω).

Proof of Proposition 3.2. We work on the system (40). Multiplying the equation on yε by ∆yε
and the equation on zε by ∆zε, and the equations on v and w by Φ, we find that

d
dt

(
1
2(‖∇y‖2L2(Ω) + ‖∇z‖2L2(Ω) + d1‖∇v‖2L2(Ω) + d3‖∇w‖2L2(Ω)) + 1

ε

∫
Ω Φ(t, x)dx

)
= −1

ε

(
‖∇y‖2L2(Ω) + ‖∇z‖2L2(Ω)

)
− (d1 + d2)‖∆y‖2L2(Ω) − (d3 + d4)‖∆z‖2L2(Ω).

�
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A Hamiltonian system

We give another approach to the existence of periodic solutions in the context of Theorem 2.6.
We consider µ ∈ C 1(R) and the vector field Θ : R2 → R2

Θ

(
y1

y2

)
=

(
y2

µ(y1)

)
.

We assume appropriate growth conditions on µ so that, for any Y0 ∈ R2 the system

Y ′(t) = Θ(Y (t)),

Y (0) = Y0,

admits a global solution. We denote by Φt(Y0) the corresponding flow.

Proposition A.1 If µ′(ū) < 0 = µ(ū) for some real number ū, there exists a neighborhood V of (ū, 0)
such that for any Y0 ∈ V \ (ū, 0), t 7→ Φt(Y0) is periodic and non constant.

Proof. By assumption the point Ȳ := (ū, 0) is an equilibrium for our system. A straightforward
computation shows that if γ′ = µ and t 7→ (y1(t), y2(t)) is a solution, then the following function is
constant

t 7→ y2(t)2

2
− γ(y1(t)).

The corresponding Hamiltonian H satisfies ∇H(y1, y2) = (−µ(y1), y2) and

D2H(y1, y2) =

(
−µ′(y1) 0

0 1

)
.

In particular ∇H(Ȳ ) = 0 and D2H(Ȳ ) > 0 : H has a local strict minimum at Ȳ . Take W a
neighborhood of Ȳ on which Y 6= Ȳ ⇒ H(Y ) > H(Ȳ ) and also µ(y1)(y1 − ū) < 0, the latter being
possible thanks to the assumption µ′(ū) < 0 = µ(ū). Consider a closed circle C ⊂ W around Ȳ . If
δ = minC H, by continuity we have the existence of a neighborhood V of Ȳ on which supV H < δ.
For any Y0 ∈ V the map t 7→ H(Φt(Y0)) is constant, in particular Φt(Y0) may not cross C . If D is the
open disk delimited by C we have just proved Y0 ∈ V ⇒ {Φt(Y0) : t ≥ 0} ⊂ D.

Now if Y0 ∈ V and Φt(Y0) = (y1(t), y2(t)), it is not possible to have y1 > ū near +∞. Indeed,
recall that near +∞ a bounded concave nonincreasing function is constant. In particular, if y1 > ū
near +∞, then y′′1 = y2 = µ(y1) < 0 near infinity, so that y1 is concave and non constant ; since
{Φt(Y0) : t ≥ 0} ⊂ D, y1 must be increasing. But then the same argument applies on y′1 which is
nonincreasing (because y′′1 < 0) and concave (because y′′1 = µ(y1) is decreasing). In a similar way, we
cannot have y1(t) < ū near +∞.

We eventually proved that t 7→ y1(t) takes the value ū infinitely many times. But because of the
Hamiltonian equation, for a given value of y1(t), there are at most two possible choices for y2(t) : the
map t 7→ (y1(t), y2(t)) may not be injective and is hence periodic. Since Θ vanishes only at Ȳ on V ,
t 7→ Φt(Y0) is non constant if Y0 6= Ȳ .

Proposition A.2 Under the Assumptions of Proposition A.1, for a possibly smaller neighborhood V ,
the following holds: for any z0 < ū such that (z0, 0) ∈ V , the period function T (z0) is well-defined.
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Proof. Fix γ such that γ′ = µ and γ(µ̄) = 0. Then, γ is strictly increasing before µ̄ (γ↑ the restriction)
and strictly decreasing after (γ↓ the restriction). In particular, taking V smaller if necessary, we can
assume that for any z0 < µ̄ such that (z0, 0) ∈ V , there exists h(z0) > µ̄ such that γ(z0) = γ(h(z0)).
The function h is actually defined by the formula h(z0) = γ−1

↓ (γ(z0)) and is C 1. As noticed before,

along the flow the map (y1, y2) 7→ y2
2/2 − γ(y1) is constant, in particular starting from (z0, 0), the

value of the hamiltonian remains equal to H0 := −γ(z0). But the only other point of the real axis
(belonging to V ) on which the hamiltonian can take the same value is (h(z0), 0). Since the phase
portrait is symmetric w.r.t. to the real axis, the period function is given by T (z0) := 2 min{t > 0 :
γ(y1(t)) = −H0}. On the interval (0, T (z0)/2) the map t 7→ y1(t) is strictly increasing so that we infer
(using s = y1(t))

T (z0)

2
=

∫ T (z0)
2

0
dt =

∫ y1(
T (z0)

2
)

y1(0)

ds

y′1(y−1
1 (s))

=

∫ h(z0)

z0

ds

y2(y−1
1 (s))

.

Using the constraint y2(t)2/2− γ(y1(t)) = H0, we get here

T (z0)

2
=

1√
2

∫ h(z0)

z0

ds√
H0 + γ(s)

·

B The entropy

We explain why two specific idendities are singled out in section 2.4. We set

α =
d1 + d2

|d2 − d1|
− 1 (42)

and define

I(t) =

∫
Ω

(
G(uε)(x, t) +

1

2
v2
ε(x, t) + α

w2
ε

2

)
dx,

J(t) =
1

ε

∫
Ω

(
vε − F (uε)

)2
dx.

We compute, combining the idendities (32) and (33)

dI(t)

dt
+ J(t) = −d1

∫
Ω F

′(uε)|∇uε|2dx− d2

∫
Ω |∇vε|

2dx − α
∫

Ω
∇wε.(d1∇uε + d2∇vε)dx

= −d1

∫
Ω[F ′(uε) + β] |∇uε|2dx

−
∫

Ω

[
d2(1 + α)|∇vε|2 + α(d1 + d2)∇uε.∇vε + d1(α− β)|∇uε|2

]
dx

Depending on our choice of α, we find β such that the last expression is a square, that is

α2(d1 + d2)2 = 4d2(1 + α)d1(α− β),

−α2(d1 − d2)2 + 4d1d2α = 4d1d2(α+ 1)β.
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And thus the largest value of β is given by

4d1d2β = max
α>0

−α2(d1 − d2)2 + 4d1d2α

α+ 1

the first order condition gives

α2(d1 − d2)2 + 2α(d1 − d2)2 − 4d1d2 = 0,

(d1 − d2)2(α+ 1)2 = (d1 − d2)2 + 4d1d2 = (d1 + d2)2

and the positive root is the value in (42).

• For d2 > d1, we find

α =
2d1

d2 − d1
, β =

d1

d2
,

because 4d1d2β = 2α(d1−d2)2−4d1d2+4d1d2α
α+1 =

2α(d21+d22)−4d1d2
α+1 = 1

d1+d2
[4d1(d2

2 + d2
1)− 4d1d2(d2 − d1)].

• For d1 > d2, we find

α =
2d2

d1 − d2
, β =

d2

d1
,

References

[1] M. Bendahmane, T. Lepoutre, A. Marrocco, and B. Perthame, Conservative cross
diffusions and pattern formation through relaxation, J. Math. Pures Appl.,, 92 (2009), pp. 651–
667.

[2] M. Bertsch, F. Smarrazzo, and A. Tesei, Pseudo-parabolic regularization of forward-
backward parabolic equations: power-type nonlinearities, J. Reine Angew. Math., 712 (2016),
pp. 51–80.

[3] S. Bolotin and R. S. MacKay, Isochronous potential, in Proceedings of the third conference:
Localization and Energy Transfer in Nonlinear Systems, L. Vázquez, R. S. MacKay, and M. P.
Zorzano, eds., London 2003, pp. 217–224.

[4] D. Bothe and D. Hilhorst, A reaction-diffusion system with fast reversible reaction, Journal
of Mathematical Analysis and Applications, 286 (2003), pp. 125 – 135.

[5] D. Bothe, M. Pierre, and G. Rolland, Cross-diffusion limit for a reaction-diffusion sys-
tem with fast reversible reaction, Communications in Partial Differential Equations, 37 (2012),
pp. 1940–1966.
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