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Abstract. The hippocampus is a brain structure that is involved in several cogni-
tive functions such as memory and learning. It is a structure of great interest in 
the study of the healthy and diseased brain due to its relationship to several neu-
rodegenerative pathologies. In this work, we propose a novel patch-based method 
that uses an ensemble of boosted neural networks to perform the hippocampus 
subfield segmentation on multimodal MRI. This new method minimizes both 
random and systematic errors using an overcomplete autocontext patch-based la-
beling using a novel boosting strategy. The proposed method works well on high 
resolution MRI but also on standard resolution images after superresolution. Fi-
nally, the proposed method was compared with a similar state-of-the-art methods 
showing better results in terms of both accuracy and efficiency. 

1 Introduction 

The hippocampus (HC) is a complex gray matter structure located under the surface 
of each temporal lobe. It is involved in many cognitive functions such as memory and 
spatial reasoning [1]. It has been largely studied in the last years to understand its 
healthy evolution across the lifespan in normal aging [2] but also due to its key role in 
several dysfunctions such as epilepsy [3], schizophrenia [4] or Alzheimer's disease [5]. 

The hippocampus is composed of multiple subfields that can be divided into sections 
called the dentate gyrus, the cornu ammonis (CA) and the subiculum. The CA is also 
subdivided in sub-sections CA1, CA2, CA3, CA4, layers alveus, stratum oriens, stra-
tum pyramidale, stratum radiatum, stratum lancosum and stratum moleculare. These 
layers present a high neuron density and are very compact so high resolution imaging 
is required to identify them. 

Due to this morphological complexity and MR related image resolution limitations, 
mainly whole hippocampus volume analysis has been performed in the past by seg-
menting it as a single object [6]. Even with this limitations whole HC volume has been 
shown to be a good biomarker for Alzheimer's disease [7]. However, hippocampus sub-
fields have shown to be affected differently by AD and normal aging in ex-vivo studies 
[5] which makes them excellent candidates for early diagnosis. 
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Although high resolution MRI is becoming more accessible in research scenarios,  
manual segmentation, which is the most accurate analysis method, is not a feasible op-
tion since it is a highly time consuming procedure which requires expert trained raters 
taking many hours per case. 

To overcome this problem some automated segmentation solutions have been devel-
oped in the last years. One of the first methods was proposed by Van Leemput et al. 
using a statistical model of MR image formation around the hippocampus to produce 
automatic segmentation [7]. Recently, Iglesias et al. pursued this work and replaced the 
model by a more accurate atlas generated using ultra-high resolution ex-vivo MR im-
ages [8]. Chakravarty et al. proposed a multiatlas method based on the estimation of 
several non-linear deformations and a label fusion step [9]. Also using a multiatlas ap-
proach, Yushkevich proposed a method where a multiatlas approach is combined with 
a similarity-weighted voting and a learning-based label bias correction [10] and 
Romero et al also proposed a multiatlas multispectral method[21].  

In this work, we propose a fast and accurate patch-based method to segment the 
hippocampus subfields using an ensemble of boosted neural networks. In the next sec-
tions, we will describe the method details as well as some experiments to demonstrate 
the accuracy and efficiency of the proposed approach. 

2 Material and Methods 

2.1 Image data 

In this paper, we used a High Resolution (HR) dataset composed of 25 cases with T1-
weighted and T2-weighted images to construct a library of manually labeled cases. This 
dataset includes 25 subjects from a public repository (http://www.nitrc.org/pro-
jects/mni-hisub25) (31 ± 7 yrs, 12 males, 13 females) with manually-drawn labels di-
viding the HC in three parts (CA1-3, DG-CA4 and Subiculum). MRI data from each 
subject consist of an isotropic 3D-MPRAGE T1-weighted (0.6x0.6x0.6 mm3) and ani-
sotropic 2D T2-weighted TSE images (0.4×0.4×2 mm3). Images underwent automated 
correction for intensity non-uniformity, intensity standardization and were linearly reg-
istered to the MNI152 space. T1w and T2w images were resampled to a resolution of 
0.4 mm3 (Figure 1). To reduce interpolation artifacts, the T2w data was upsampled us-
ing a non-local superresolution method [19]. For more details about the labeling proto-
col see the original paper [11]. 

2.2 Preprocessing 

All the images (T1 and T2) were first filtered with a spatially adaptive non-local 
means filter [15] and inhomogeneity corrected using the N4 method [16]. Later, they 
were linearly registered to the Montreal Neurological Institute space (MNI) using the 
ANTS package [17] and the MNI152 template. Next, we left-right flipped the images 
and cropped them to the right hippocampus area to produce 50 right hippocampus 
crops. After that, we non-linearly registered the cropped images to the cropped MNI152 
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template to better match the hippocampus anatomy. Finally, we normalized the image 
intensities using Nyúl and Udupa [18] method. Hippocampus labels were spatially reg-
istered to the same space.   

 

 
Figure 1: Example of an HR MRI case. Figure shows T1w and T2w images and its 
corresponding manual segmentation. 

2.3 Proposed method 

After the described preprocessing, a region of interest (ROI) is computed fusing all 
manual segmentations of the library and dilating the resulting region with a 5x5x5 
voxels kernel to create a HC candidate region. For each voxel of this candidate region 
a feature set is created to be used to train a classifier. Several classifiers can be used to 
relate the image features and the corresponding labels. Lately high performance classi-
fiers such as random forest [12] have been used. In our proposed method, we have used 
a neural network-based classifier [13].  
 
• Features: The features used to train the network were three 3D patches per image 

modality of different size around the voxel/s to be classified, the x, y and z voxel 
coordinates of the center voxel of the patches and a value representing the a priori 
label probability. This apriori label probability map was obtained computing the 
average of all training label masks (convolved with a 5 mm3 Gaussian kernel). In 
our experiments, we used a P1 of size 3x3x3, a P2 of 7x7x7 and P3 of 9x9x9 voxels 
(however, for efficiency, we subsampled the patches P2 and P3 so we took only 27 
samples uniformly spaced in all three dimensions). This leads to a feature vector 
X of 166 elements (i.e. 27 for P1, 27 for P2 and 27 for P3 on T1, the same for T2, x, 
y and z coordinates and the prior probability). 
 

• Network topology: A feedforward multilayer perceptron with two hidden layers 
was used. The network that we used had 166x85x55x27 weights. The network out-
put is a patch of the same size of P1. Note that an overcomplete approach was used 
so each voxel has contributions from several adjacent patches. This improves seg-
mentation accuracy (more votes per voxel) and enforces the final label regularity. 
To further improve classification results a second autocontext network is trained 
using an expanded feature vector constructed concatenating the original feature 
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vector X with the output of the first network. This leads to a feature vector Xa of 
193 elements (166 + 27). Final classification is obtained from the output of network 
2. Note that both networks are independently trained (Figure 2) .     
 

Ensemble-based classification  

A common approach for improving classification results is the use of the so-called 
ensemble learning. Ensemble methods (i.e. combination of several classifiers) allow in 
general to improve classification results by minimizing random and systematic errors. 

In our proposed method, we have used a boosting strategy to leverage classification 
accuracy. Boosting [14] is an algorithm that combines the output of several classifiers 
to minimize the variance and bias of the final classification. In boosting, each classifier 
is trained using the information of the previous one to minimize the errors of the current 
prediction. This is done giving more weight to the samples wrongly classified by the 
previous classifier or performing a non-random selection on the training dataset select-
ing with higher probability samples wrongly classified previously. While typically each 
network uses random initial weights (network reset) we decided to use the weights of 
the previous network as done in transfer learning which improves ensemble classifier 
accuracy while minimizing training time due to faster convergence. Finally, the differ-
ent classifier outputs are combined according to their accuracy. 

We trained four ensembles of M autocontext modules (figure 2) (one ensemble per 
subfield plus the background) over the whole hippocampus region and each voxel was 
labeled with the class of higher network output. 

   

 
Figure 2: Autocontext neural network. Original feature vector x used to train network 
1 is expanded using the output of the network (posterior probabilities) to train network 
2.  
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3 Experiments and results 

In this section, a set of experiments are presented to show the performance of the 
proposed method. All the experiments have been done by processing the cases from the 
described library splitting the 50 cases first into a 30 training cases set and 20 test cases 
and later switching training and test datasets to evaluate the whole dataset.  

3.1 Ensemble training  

We explored two variants of ensemble training, the classical one with network reset 
and one without reset. For these experiments, we trained M=10 autocontext networks 
using only 10000 samples randomly selected from the candidate regions of the training 
dataset. All resulting networks outputs were averaged according to the accuracy to pro-
duce the final output.  

We evaluated the impact of the two boosting variants (with and without reset) and 
estimated the optimal number of neural networks. In figure 3 (left), the evolution of the 
DICE coefficient (during training without reset) as a function of the number of individ-
ual and averaged trained networks is shown. In figure 3 (right), the same results with 
reset option are also shown.  

 
As can be noticed, both boosting variants improved the classification results reach-

ing a plateau at around 10 networks. However, no-reset boosting produced a more pro-
nounced improvement compared to classical reset approach (0.9091 versus 0.9052). To 
understand the improved results we can look at the accuracy of each individual network 
of the ensemble. As can be noticed, reseted networks show a pseudo stable behaviour 
while non-reseted networks show maintained improvements as long as the number of 
ensemble networks increases. In fact, non-reseted last individual networks almost reach 
the accuracy of the whole ensemble.  

   
Figure 3. Left: Dice coefficient in function of the number of networks for each network 
in nthe ensemble and for the ensemble prediction with the proposed boosting. Right: 
Same results with classical boosting. Note that using previous network in the embeding 
not only improves overall ensemble accuarcy but also produces more accurate 
individual networks.    
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With this settings, we trained the final network ensemble (M=10) using randomly 
selected sets of 1000000 samples from the total population of 2600000 patches. To train 
the 4 ensembles took around 8 hours while the time to segment a new case is around 10 
seconds. To evaluate all 50 cases we trained two ensemble sets (one using the 30 train-
ing cases and applied to the remaining 20 cases and another trained on the 20 cases and 
applied to the 30 cases). We could do a leave-one-out approach to further improving 
the results but this would result on a large training time of around two weeks. Table 1 
shows the dice coefficient of the different subfields for the 50 cases. We have also 
included the results when using only the best network instead of the ensemble (thus 
requiring only 1 second to perform the segmentation). 

 
Table 1: Mean DICE and standard deviation for each structure segmentation using two 
variants of the proposed method. Best results in bold. 

Structure Proposed (best network) Proposed (ensemble) 
Average 0.8681 0.8695 
CA1-3 0.8992 0.9001 

CA4\DG 0.8384 0.8404 
Subiculum 0.8667 0.8678 

Hippocampus 0.9518 0.9523 

3.2 Standard resolution vs High resolution 

High resolution MR images are not widely available, especially in clinical environ-
ments. For this reason, we analyzed the effectiveness of the proposed method on up-
sampled standard resolution images. For this purpose, we reduced the resolution of the 
library HR images by a factor 2 by convolving the HR images with a 2x2x2 boxcar 
kernel and then decimating the resulting image. The down-sampled images were up-
sampled by a factor 2 using BSpline interpolation and a superresolution method called 
Local Adaptive SR (LASR) [19]. Results are shown in Table 2. As can be noticed, 
segmentations performed on images upsampled with SR were better than using BSpline 
interpolation. Moreover, this experiment shows that the proposed method is able to 
produce competitive results even when using standard resolution images.    

 
Table 2: Mean DICE for each structure segmentation using the high resolution library 
and applying BSpline interpolation and LASR to the previously downsampled image to 
be segmented. Best results in bold. 

Structure BSpline LASR HR 
Average 0.8595 0.8662 0.8695 
CA1-3 0.8930 0.8981   0.9001 

CA4\DG 0.8250  0.8349 0.8404 
Subiculum 0.8605  0.8655 0.8678 

Hippocampus 0.9480  0.9513 0.9523 
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3.3 Comparison 

We compared our method with other recent methods applied to hippocampus seg-
mentation using the same number of structures and labeling protocol. The compared 
methods are called ASHS[10] and Surfpatch [20]. Table 3 shows that the proposed 
method obtained higher DICE coefficients for all the structures. In terms of computa-
tion efficiency, our method requires only few seconds while ASHS and Surfpatch have 
an execution time of several hours per case.  

 
Table 3: Mean DICE in the native space for each structure. Segmentation performed 
by ASHS, SurfPatch, proposed method and human rater (intra-rater and inter-rater). 
Best results (for automatic segmentation) in bold. 

Structure     ASHS    SurfPatch    Proposed Inte-rater Intra-rater 

Average 0.8513 0.8503 0.8584 0.8833 0.9113 

CA1-3 0.8736 0.8743 0.8903 0.8760 0.9290 

CA4\DG 0.8254 0.8271 0.8283 0.9030 0.9000 

Subicu-
lum 

0.8548 0.8495 0.8565 0.8710 0.9050 

4 Discussion 

In this paper, we present a new hippocampus subfield segmentation method based 
on a boosted ensemble of autocontext neural networks. The proposed method achieves 
state-of-the-art accuracy very efficiently. Furthermore, the proposed method has been 
shown to perform well on standard resolution images, obtaining competitive results on 
typical clinical data. This fact is very important because it will allow analyzing large 
amounts of legacy data. Finally, it has been also shown that the proposed method com-
pares well to another related state-of-art method obtaining better results in terms of both 
accuracy and reduced execution time.  
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