

Algorithmes pour la formation des équations de la machine électrique généralisée sous forme tensorielle

Yuri Sohor, Olivier Maurice

▶ To cite this version:

Yuri Sohor, Olivier Maurice. Algorithmes pour la formation des équations de la machine électrique généralisée sous forme tensorielle. 2017. hal-01626183

HAL Id: hal-01626183 https://hal.science/hal-01626183v1

Preprint submitted on 6 Nov 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Algorithmes pour la formation des équations de la machine électrique généralisée sous forme tensorielle

Yuri SOHOR *1 and Olivier MAURICE $^{\dagger 2}$

¹La chaire d'ESA, université de Pskov ²Département CEM & Laser, ARIANE Group

27 octobre 2017

Résumé

Le formalisme de l'analyse tensorielle de Gabriel Kron offre de grandes possibilités dont certaines restent encore à développer. L'objectif de cet article est de présenter d'une façon que nous espérons claire une partie de ces possibilités rattachée aux analyses électrotechniques. Dans ce cadre nous examinons en détail l'équation généralisée de la machine électrique établie à partir du formalisme d'Euler-Lagrange. Une attention particulière est portée sur les cœfficients de Christoffel dont nous conduisons les calculs avec l'aide du logiciel wxMaxima.

1 Les équations de la machine électrique généralisée

Pour modéliser les machines électriques, nous posons en général les hypothèses suivantes [1]-[2]:

-l'entrefer est uniforme;

-la répartition spatiale des conducteurs statoriques est sinusoïdale;

-la saturation du circuit magnétique, l'hystérésis et les

courants de Foucault sont négligeables.

Pour la simplicité de l'exposé le nombre de paires de pôles est égal 1.

^{*}dia-connect@hotmail.com

 $^{^{\}dagger}olivier.maurice@ariane.group$

1.1 Les équations d'Euler-Lagrange

Avant tout nous choisissons un système de coordonnées rattaché à des éléments remarquables de la machine. Nous définissons :

les coordonnées $\gamma: \{1, 2, 3, 4, 5\}$ qui correspondent à

 $1 \rightarrow as$ - bobinage longitudinal du stator $2 \rightarrow bs$ - bobinage transversal du stator $3 \rightarrow ar$ - bobinage longitudinal du rotor $4 \rightarrow br$ - bobinage transversal du rotor $5 \rightarrow r$ - rotor

les variables $x^{\gamma}: x^1, x^2, x^3, x^4, x^5$ qui correspondent

– aux charges : $x^1 \rightarrow q^{as}, x^2 \rightarrow q^{bs}, x^3 \rightarrow q^{ar}, x^4 \rightarrow q^{br}$ – à l'angle de rotation du rotor : $x^5 \rightarrow \theta^r$ Les dérivées $i^{\gamma} = i^1, i^2, i^3, i^4, i^5$ qui correspondent :

les courants dans les bobines $d_{(n)}$

$$-i^{1} = \frac{d(x^{2})}{dt} \rightarrow i^{as}$$
$$-i^{2} = \frac{d(x^{2})}{dt} \rightarrow i^{bs}$$
$$-i^{3} = \frac{d(x^{3})}{dt} \rightarrow i^{ar}$$
$$-i^{4} = \frac{d(x^{4})}{dt} \rightarrow i^{br}$$

la vitesse de rotation du rotor $i^5 = rac{d(x^5)}{dt}
ightarrow \omega^r = rac{d(heta^r)}{dt}$

les influences extérieures $Q_{\gamma} = e_1, e_2, e_3, e_4, e_5$ qui correspondent :

aux tensions appliquée

 $- e_1 \rightarrow e_{as};$ $- e_2 \rightarrow e_{bs};$ $- e_3 \rightarrow e_{ar};$ $- e_4 \rightarrow e_{br}$

au couple extérieur $e_5 \rightarrow M_r$

l'énergie cinétique

$$T = \frac{1}{2} g_{\alpha\beta} i^{\alpha} i^{\beta} \tag{1}$$

$$g_{\alpha\beta} = \begin{array}{ccccc} i_{as} & i_{bs} & i_{ar} & i_{br} & \omega_r \\ i_{as} & Ls & \ddots & Lm \cdot \cos(\theta) & -Lm \cdot \sin(\theta) & \ddots \\ \vdots & Ls & Lm \cdot \sin(\theta) & Lm \cdot \cos(\theta) & \ddots \\ Lm \cdot \cos(\theta) & Lm \cdot \sin(\theta) & Lr & \ddots & \ddots \\ -Lm \cdot \sin(\theta) & Lm \cdot \cos(\theta) & \ddots & Lr & \ddots \\ \vdots & \vdots & \ddots & \ddots & \ddots & J \end{array} \right)$$
(2)

 $g_{\alpha\beta}$ – étant la matrice des inductances (ou métrique).

l'énergie potentielle : P = 0

la dispersion de l'énergie

$$D = \frac{1}{2} R_{\alpha\beta} i^{\alpha} i^{\beta} \tag{3}$$

et les équations de Euler-Lagrange

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{x}^{\gamma}}\right) - \frac{\partial L}{\partial x^{\gamma}} + \frac{\partial D}{\partial \dot{x}^{\gamma}} = Q_{\gamma} \tag{4}$$

où L = T - P.

par remplacement nous trouvons :

$$\frac{d}{dt}\left(\frac{\partial T}{\partial \dot{x}^{\gamma}}\right) - \frac{\partial T}{\partial x^{\gamma}} + \frac{\partial D}{\partial \dot{x}^{\gamma}} = e_{\gamma} \tag{5}$$

En remplaçant T et D par leurs développements, nous obtenons :

$$\frac{1}{2}\frac{d}{dt}\left(\frac{\partial g_{\alpha\beta}i^{\alpha}i^{\beta}}{\partial i^{\gamma}}\right) - \frac{1}{2}\left(\frac{\partial g_{\alpha\beta}i^{\alpha}i^{\beta}}{\partial x^{\gamma}} - \frac{\partial R_{\alpha\beta}i^{\alpha}i^{\beta}}{\partial i^{\gamma}}\right) = e_{\gamma} \tag{6}$$

Après différenciation de la multiplication, nous obtenons :

$$\left(\frac{\partial g_{\alpha\beta}i^{\alpha}i^{\beta}}{\partial i^{\gamma}}\right) = \frac{\partial}{\partial i^{\gamma}}\left(g_{\alpha\beta}i^{\alpha}i^{\beta}\right) = \left(\frac{\partial g_{\alpha\beta}}{\partial i^{\gamma}}i^{\alpha}i^{\beta} + g_{\alpha\beta}\frac{\partial i^{\alpha}}{\partial i^{\gamma}}i^{\beta} + g_{\alpha\beta}i^{\alpha}\frac{\partial i^{\beta}}{\partial i^{\gamma}}\right)$$
(7)

Sous l'hypothèse que de l'inductance ne dépend pas du courant, il s'en suit : $\partial_{\underline{}}$

$$\frac{\partial g_{\alpha\beta}}{\partial i^{\gamma}} = 0 \tag{8}$$

Compte tenu de :

$$g_{\alpha\beta}\frac{\partial i^{\alpha}}{\partial i^{\gamma}}i^{\beta} = g_{\alpha\beta}\delta^{\alpha}_{\gamma}i^{\beta} = g_{\gamma\beta}i^{\beta}$$
(9)

оù

La dérivée s'exprime alors par :

$$\left(\frac{\partial g_{\alpha\beta}i^{\alpha}i^{\beta}}{\partial i^{\gamma}}\right) = 2g_{\gamma\beta}i^{\beta} \tag{10}$$

En agissant de même pour $R_{\alpha\beta}$ et en calculant les dérivées :

$$\frac{1}{2}\frac{d}{dt}\left(2g_{\gamma\beta}i^{\beta}\right) - \frac{1}{2}\left(\frac{\partial g_{\alpha\beta}i^{\alpha}i^{\beta}}{\partial x^{\gamma}} - 2R_{\gamma\beta}i^{\beta}\right) = e_{\gamma} \tag{11}$$

ou encore :

$$\frac{d}{dt}\left(g_{\gamma\beta}i^{\beta}\right) - \left(\frac{1}{2}\frac{\partial g_{\alpha\beta}i^{\alpha}i^{\beta}}{\partial x^{\gamma}} - R_{\gamma\beta}i^{\beta}\right) = e_{\gamma} \tag{12}$$

Calculons la dérivée par rapport au temps :

$$\frac{d}{dt}\left(g_{\gamma\beta}i^{\beta}\right) = g_{\gamma\beta}\frac{di^{\beta}}{dt} + \frac{\partial g_{\gamma\beta}}{\partial t}i^{\beta} = g_{\gamma\beta}\frac{di^{\beta}}{dt} + \frac{\partial g_{\gamma\beta}}{\partial x^{\alpha}}\frac{\partial x^{\alpha}}{\partial t}i^{\beta} = g_{\gamma\beta}\frac{di^{\beta}}{dt} + \frac{\partial g_{\gamma\beta}}{\partial x^{\alpha}}i^{\alpha}i^{\beta}$$
(13)

en résumé :

$$g_{\gamma\beta}\frac{di^{\beta}}{dt} + \frac{\partial g_{\gamma\beta}}{\partial x^{\alpha}}i^{\alpha}i^{\beta} - \left(\frac{1}{2}\frac{\partial g_{\alpha\beta}}{\partial x^{\gamma}}i^{\alpha}i^{\beta} - R_{\gamma\beta}i^{\beta}\right) = e_{\gamma}$$
(14)

En faisant le regroupement :

$$g_{\gamma\beta}\frac{di^{\beta}}{dt} + R_{\gamma\beta}i^{\beta} + \left(\frac{\partial g_{\gamma\beta}}{\partial x^{\alpha}} - \frac{1}{2}\frac{\partial g_{\alpha\beta}}{\partial x^{\gamma}}\right)i^{\alpha}i^{\beta} = e_{\gamma}$$
(15)

Nous pouvons exprimer $\frac{\partial g_{\gamma\beta}}{\partial x^{\alpha}}$ sous forme de deux termes :

$$\frac{\partial g_{\gamma\beta}}{\partial x^{\alpha}} = \frac{1}{2} \left(\frac{\partial g_{\gamma\beta}}{\partial x^{\alpha}} + \frac{\partial g_{\gamma\alpha}}{\partial x^{\beta}} \right)$$
(16)

alors:

$$g_{\gamma\beta}\frac{di^{\beta}}{dt} + R_{\gamma\beta}i^{\beta} + \frac{1}{2}\left(\frac{\partial g_{\gamma\beta}}{\partial x^{\alpha}} + \frac{\partial g_{\gamma\alpha}}{\partial x^{\beta}} - \frac{\partial g_{\alpha\beta}}{\partial x^{\gamma}}\right)i^{\alpha}i^{\beta} = e_{\gamma}$$
(17)

Définissons le cœfficient de Christoffel de première espèce :

$$\Gamma_{\alpha\beta,\gamma} = \frac{1}{2} \left(\frac{\partial g_{\gamma\beta}}{\partial x^{\alpha}} + \frac{\partial g_{\gamma\alpha}}{\partial x^{\beta}} - \frac{\partial g_{\alpha\beta}}{\partial x^{\gamma}} \right)$$
(18)

Nous pouvons alors réécrire l'équation 17 en utilisant les symboles de Christoffel : $\cdot^{\cdot\beta}$

$$g_{\gamma\beta}\frac{di^{\beta}}{dt} + R_{\gamma\beta}i^{\beta} + \Gamma_{\alpha\beta,\gamma}i^{\alpha}i^{\beta} = e_{\gamma}$$
(19)

1.2 Analyse

Nous pouvons regarder l'équation (19). Comment la géométrisation du problème peut apporter un nouveau jour dans l'analyse de la machine électrique ? Considérons l'équation 19 comme l'équation d'une hypersurface paramétrée[6]. Nous pourrions croire que la maîtrise de la force appliquée e_{γ} implique le flux i^{α} . En fait les deux espaces naturels et dual sont intriqués et indissociables. Le flux implique également une force. Cette interopérabilité est traduite par les opérateurs métriques (g, R). Analysons $\partial_{\beta} e_{\gamma}$:

$$\frac{\partial e_{\gamma}}{\partial i^{\beta}} = R_{\alpha\beta} + \Gamma_{\alpha\beta,\gamma} i^{\alpha} \tag{20}$$

En faisant l'hypothèse que la métrique ne dépend pas directement du courant mais de son intégrale (c'est un cas particulier mais cela permet de simplifier l'analyse sans rien enlever à la démarche).

Si la métrique ne dépend pas du courant, cette dérivée partielle se réduit à $R_{\alpha\beta}$. C'est à dire que la dépendance de la force au flux est une dissipation, une loi parfaitement linéaire et qui ne dépend pas du flux. Si l'on assimile dans le regard que nous portons à e_{γ} comme une hypersurface les courants aux coordonnées curviligne d'un plan tangent local, ce plan est en tout point i^{β} identique est la surface est plane, sans courbure. L'espace est cartésien et (en raisonnant en une dimension) pour une résistance de 1 Ω et un courant de 1 A nous mesurons une force de 1 V. L'espace dans lequel nous nous déplaçons pourrait avoir une métrique quelconque, de 2,751 Ω cela ne changerait rien, la surface reste plane. C'est le monde classique dans lequel nous vivons : si nous nous déplaçons à la vitesse v de x m/s, pour un temps métrique de t = 1 s nous parcourons ds = x m de distance.

$$ds = \sqrt{t_{\alpha\alpha} v^{\alpha} v^{\alpha}}$$

Le temps (la métrique) ne dépend pas de la vitesse. Dans notre cas, l'inductance ne dépend pas du courant et le temps est traduit par la dissipation.

Si par contre la valeur d'inductance dépend du courant, ce qui était au départ qu'un "simple circuit R-L" : $g_{\gamma\beta}\frac{di^{\beta}}{dt} + R_{\gamma\beta}i^{\beta}$, est complété par un terme qui est une fonction qui dépend bien sûr du courant, venant ainsi pondérer l'expression de l'impédance en fonction du courant. La dépendance dépend cœfficient de Christoffel. La fonction de dépendance est un opérateur r deux fois covariant car :

$$\frac{\partial e_{\gamma}}{\partial i^{\beta}} = r_{\gamma\beta} \tag{21}$$

suivant les règles de l'algèbre tensorielle. C'est donc un opérateur de même nature que la métrique ou la dissipation (en impédance). L'équation 20 est bien sûr homogène. Comment interpréter "physiquement" ce cœfficient de Christoffel ? Multiplié par un courant, il correspond à une forme

$$\frac{L}{it}i \to L\frac{d}{dt}$$

qui a la dimension $[H][s]^{-1}$ et est effectivement une impédance. Le coefficient de Christoffel est une impedance par ampère quand il est associé à l'opérateur de dérivation temporelle. Le terme $\Gamma_{\alpha\beta,\gamma}i^{\alpha}$ ajoute donc une impédance proportionnelle au courant. A mesure que cette impédance gagne en amplitude, l'augmentation de la force engendre un courant proportionnellement de plus en plus faiblement augmenté. Cet effet de non linéarité, comme dans le cas réduit à $R_{\gamma\beta}$, vient du fait que le matériau par saturation, ne conserve pas ses propriétés inductives quand le courant devient trop fort.

1.3 Calcul des symboles de Christoffel

On peut présenter les symboles de Christoffel sous forme matricielle. Considérons un problème de dimension 5 :

FIGURE 1 – Les symboles de Christoffel sous la forme matricielle. Pour $\gamma=1$ on met en relief les éléments non nuls

Des exemples concrets de l'usage des symboles de Christoffel peut être trouvés dans [7].

Dans le cas précédent nous pouvons remarquer que les symboles de Christoffel qui contiennent les dérivées suivantes ne seront pas nuls :

 $g_{13,5}$ $g_{31,5}$ $g_{14,5}$ $g_{41,5}$ $g_{23,5}$ $g_{32,5}$ $g_{24,5}$ $g_{42,5}$

ceci résulte du fait que les éléments g_{ij} dépendent seulement de θ (or x^5)

Dans les annexes 2.1 et 2.2 nous présentons l'établissement des symboles de Christoffel. On synthétise ci-dessous les éléments non nuls :

$\Gamma_{35,1} =$	$\frac{1}{2}g_{13,5} =$	$-\frac{1}{2}Lm\sin(\theta)$
$\Gamma_{45,1} =$	$\frac{1}{2}g_{14,5} =$	$-\frac{1}{2}Lm\cos(\theta)$
$\Gamma_{35,2} =$	$\frac{1}{2}g_{23,5} =$	$\frac{1}{2}Lm\cos(\theta)$
$\Gamma_{45,2} =$	$\frac{1}{2}g_{24,5} =$	$-\frac{1}{2}Lm\sin(\theta)$
$\Gamma_{15,3} =$	$\frac{1}{2}g_{31,5} =$	$-\frac{1}{2}Lm\sin(\theta)$
$\Gamma_{25,3} =$	$\frac{1}{2}g_{32,5} =$	$\frac{1}{2}Lm\cos(\theta)$
$\Gamma_{15,4} =$	$\frac{1}{2}g_{41,5} =$	$-\frac{1}{2}Lm\cos(\theta)$
$\Gamma_{25,4} =$	$\frac{1}{2}g_{42,5} =$	$-\frac{1}{2}Lm\sin(\theta)$
$\Gamma_{13,5} =$	$-\frac{1}{2}g_{13,5} =$	$\frac{1}{2}Lm\sin(\theta)$
$\Gamma_{14,5} =$	$-\frac{1}{2}g_{14,5} =$	$\frac{1}{2}Lm\cos(\theta)$
$\Gamma_{23,5} =$	$-\frac{1}{2}g_{23,5} =$	$-\frac{1}{2}Lm\cos(\theta)$
$\Gamma_{24,5} =$	$-\frac{1}{2}g_{24,5} =$	$\frac{1}{2}Lm\sin(\theta)$

1.4Équations de la machine électrique généralisée avec des symboles de Christoffel sous forme scalaire

Nous revenons une nouvelle fois à l'équation (19) : J:B

$$g_{\gamma\beta}rac{du^{
ho}}{dt}+R_{\gamma\beta}i^{eta}+\Gamma_{lphaeta,\gamma}i^{lpha}i^{eta}=e_{\gamma}$$

Après quelques opérations matricielles, nous faisons apparaître la forme scalaire :

$$\begin{array}{cccc} dt & dt & dt \\ g_{44} \overset{di^{4}}{--} + g_{41} \overset{di^{1}}{--} + g_{42} \overset{di^{2}}{--} + R_{44}i^{1} + i^{1}\Gamma_{15,4}i^{5} + i^{2}\Gamma_{25,4}i^{5} + i^{5}\Gamma_{51,4}i^{1} + i^{5}\Gamma_{52,4}i^{2} \\ \end{array} = e_{4}$$

$$g_{55}\frac{dt}{dt} + i^{1}\Gamma_{13,5}i^{3} + i^{1}\Gamma_{14,5}i^{4} + i^{2}\Gamma_{23,5}i^{3} + i^{2}\Gamma_{24,5}i^{4} + i^{1}\Gamma_{13,5}i^{3} + i^{4}\Gamma_{41,5}i^{1} + i^{3}\Gamma_{32,5}i^{2} + i^{4}\Gamma_{42,5}i^{2} = e_{5}$$
(22)

En prenant en considération la symétrie $\Gamma_{\alpha\beta,\gamma} = \Gamma_{\beta\alpha,\gamma}$ et en remplaçant les indices des tenseurs par des indices associés à leur sens physique, nous obtenons :

$$\begin{cases} L_{as}\frac{di^{as}}{dt} + Lm \cdot \cos(\theta)\frac{di^{ar}}{dt} - Lm \cdot \sin(\theta)\frac{di^{br}}{dt} + R_{as}i^{as} - \omega^{r}Lm\sin(\theta)i^{ar} - \omega^{r}Lm\cos(\theta)i^{br} = e_{as} \\ L_{bs}\frac{di^{bs}}{dt} + Lm \cdot \sin(\theta)\frac{di^{ar}}{dt} + Lm \cdot \cos(\theta)\frac{di^{br}}{dt} + R_{bs}i^{bs} + \omega^{r}Lm\cos(\theta)i^{ar} - \omega^{r}Lm\sin(\theta)i^{br} = e_{bs} \\ L_{ar}\frac{di^{ar}}{dt} + Lm \cdot \cos(\theta)\frac{di^{as}}{dt} + Lm \cdot \sin(\theta)\frac{di^{bs}}{dt} + R_{ar}i^{ar} - \omega^{r}Lm\sin(\theta)i^{as} + \omega^{r}Lm\cos(\theta)i^{bs} = e_{ar} \\ L_{br}\frac{di^{br}}{dt} - Lm \cdot \sin(\theta)\frac{di^{as}}{dt} + Lm \cdot \cos(\theta)\frac{di^{bs}}{dt} + R_{br}i^{br} - \omega^{r}Lm\cos(\theta)i^{as} - \omega^{r}Lm\sin(\theta)i^{bs} = e_{br} \\ J\frac{\omega^{r}}{dt} + Lm\sin(\theta)i^{ar}i^{as} + Lm\cos(\theta)i^{br}i^{as} - Lm\cos(\theta)i^{bs}i^{ar} + Lm\sin(\theta)i^{bs}i^{br} = M_{r} \end{cases}$$

$$(23)$$

En général on écrit les équations (23) sous forme de 2 équations : l'une pour la partie électrique et l'autre pour la partie mécanique - équation scalaire : **,** .

$$\begin{cases} L\frac{di}{dt} + Ri + G_{fem}i = U\\ J\frac{d\omega}{dt} + i_t \cdot G \cdot i = M \end{cases}$$
(24)

où U est le vecteur des tensions appliquée, i est le vecteur des courants, L est la matrice des inductances et R la matrice des résistances, $i_t \cdot G \cdot i = M_{em}$ est le couple électromagnétique de la machine électrique, M est le couple extérieur, J est le moment d'inertie. G_{fem} - matrice des forces EM est liée à la matrice du couple électromagnétique : $G_{fem} = \omega \cdot G$

En comparant (19) et (24) on peut faire une conclusion importante : l'usage des symboles de Christoffel permet d'utiliser seulement une équation. Le calcul $\Gamma_{\alpha\beta,\gamma}i^{\alpha}i^{\beta}$ est équivalent au calcul des f.e.m. et au calcul du moment électromagnétique de la machine électrique réalisés simultanément. Ce point est également relevé dans [4].

1.5 Transformation des équations de la machine électrique généralisée lors d'un changement de coordonnées

En transformant les équations (19) dans un nouveau système de coordonnées par une matrice transformation $C^{\alpha}_{\alpha'}$, liant l'ancien système de coordonnées x^{α} et le nouveau système de coordonnées $x^{\alpha'}$ selon de formule :

$$dx^{\alpha} = C^{\alpha}_{\alpha'} \cdot dx^{\alpha'} \tag{25}$$

ou

$$i^{\alpha} = C^{\alpha}_{\alpha'} \cdot i^{\alpha'} \tag{26}$$

En remplaçant (26) dans (19) :

$$g_{\gamma\beta}\frac{d}{dt}(C^{\beta}_{\beta'}i^{\beta'}) + R_{\gamma\beta}C^{\beta}_{\beta'}i^{\beta'} + \Gamma_{\alpha\beta,\gamma}C^{\alpha}_{\alpha'}i^{\alpha'}C^{\beta}_{\beta'}i^{\beta'} = e_{\gamma}$$
(27)

Développons le terme entre parenthèses :

$$\begin{split} \frac{d}{dt}(C^{\beta}_{\beta'}i^{\beta'}) &= \frac{dC^{\beta}_{\beta'}}{dt}i^{\beta'} + C^{\beta}_{\beta'}\frac{di^{\beta'}}{dt} = \frac{\partial C^{\beta}_{\beta'}}{\partial x^{\alpha}}\frac{dx^{\alpha}}{dt}i^{\beta'} + C^{\beta}_{\beta'}\frac{di^{\beta'}}{dt} = \\ &= \frac{\partial C^{\beta}_{\beta'}}{\partial x^{\alpha}}C^{\alpha}_{\alpha'} \cdot i^{\alpha'}i^{\beta'} + C^{\beta}_{\beta'}\frac{di^{\beta'}}{dt} \\ &\text{En remplaçant dans (27) :} \end{split}$$

$$g_{\gamma\beta}\frac{\partial C^{\beta}_{\beta'}}{\partial x^{\alpha}}C^{\alpha}_{\alpha'}\cdot i^{\alpha'}i^{\beta'} + g_{\gamma\beta}C^{\beta}_{\beta'}\frac{di^{\beta'}}{dt} + R_{\gamma\beta}C^{\beta}_{\beta'}i^{\beta'} + \Gamma_{\alpha\beta,\gamma}C^{\alpha}_{\alpha'}i^{\alpha'}C^{\beta}_{\beta'}i^{\beta'} = e_{\gamma} \quad (28)$$

En multipliant à partie gauche et à droite (28) par $C_{\gamma'}^{\gamma}$:

$$C^{\gamma}_{\gamma'}g_{\gamma\beta}\frac{\partial C^{\beta}_{\beta'}}{\partial x^{\alpha}}C^{\alpha}_{\alpha'}\cdot i^{\alpha'}i^{\beta'} + C^{\gamma}_{\gamma'}g_{\gamma\beta}C^{\beta}_{\beta'}\frac{di^{\beta'}}{dt} + C^{\gamma}_{\gamma'}R_{\gamma\beta}C^{\beta}_{\beta'}i^{\beta'} + C^{\gamma}_{\gamma'}\Gamma_{\alpha\beta,\gamma}C^{\alpha}_{\alpha'}i^{\alpha'}C^{\beta}_{\beta'}i^{\beta'} = C^{\gamma}_{\gamma'}e_{\gamma}$$

après regroupement :

$$C^{\gamma}_{\gamma'}g_{\gamma\beta}C^{\beta}_{\beta'}\frac{di^{\beta'}}{dt} + C^{\gamma}_{\gamma'}R_{\gamma\beta}C^{\beta}_{\beta'}i^{\beta'} + \left(C^{\gamma}_{\gamma'}\Gamma_{\alpha\beta,\gamma}C^{\alpha}_{\alpha'}C^{\beta}_{\beta'} + C^{\gamma}_{\gamma'}g_{\gamma\beta}\frac{\partial C^{\beta}_{\beta'}}{\partial x^{\alpha}}C^{\alpha}_{\alpha'}\right) \cdot i^{\alpha'}i^{\beta'} = C^{\gamma}_{\gamma'}e_{\gamma} \quad (29)$$

On convient de noter :

$$g_{\gamma'\beta'} = C^{\gamma}_{\gamma'}C^{\beta}_{\beta'}g_{\gamma\beta} \tag{30}$$

$$R_{\gamma'\beta'} = C_{\gamma'}^{\gamma} C_{\beta'}^{\beta} R_{\gamma\beta}$$
(31)

$$\Gamma_{\alpha'\beta',\gamma'} = C^{\gamma}_{\gamma'}C^{\alpha}_{\alpha'}C^{\beta}_{\beta'}\Gamma_{\alpha\beta,\gamma} + C^{\gamma}_{\gamma'}C^{\alpha}_{\alpha'}g_{\gamma\beta}\frac{\partial C^{\beta}_{\beta'}}{\partial x^{\alpha}}$$
(32)

$$e_{\gamma'} = C^{\gamma}_{\gamma'} e_{\gamma} \tag{33}$$

Compte tenu de (30) - (33), l'équation (29) peut être réécrite sous la forme de :

$$g_{\gamma'\beta'}\frac{di^{\beta'}}{dt} + R_{\gamma'\beta'}i^{\beta'} + \Gamma_{\alpha'\beta',\gamma'}i^{\alpha'}i^{\beta'} = e_{\gamma'}$$
(34)

On note que la forme de l'équation (34) coïncide avec la forme de l'équation (19). Dans [2], la forme invariante des équations de la machine électrique généralisée en utilisant la dérivée covariante d'un vecteur devient :

$$g_{\gamma\beta}\frac{\delta i^{\beta}}{\delta t} + R_{\gamma\beta}i^{\beta} = e_{\gamma} \tag{35}$$

Rappelons la dérivée covariante d'un vecteur (35) i^{β} :

$$\frac{\delta i^{\beta}}{\delta t} = \frac{di^{\beta}}{dt} + \Gamma^{\gamma}_{\alpha\beta} i^{\alpha} i^{\beta} \tag{36}$$

où $\Gamma^{\gamma}_{\alpha\beta} = g^{\gamma\mu}\Gamma_{\alpha\beta,\mu}$ - sont les symboles de Christoffel de deuxième espèce, $g^{\gamma\mu} = (g_{\gamma\mu})^{-1}$

La transformation des équations de la machine électrique généralisée sous forme tensorielle est examinée dans [3] et [4]. La signification de la dérivation covariante est examiné dans [5].

1.6 Les équations de la machine électrique généralisée dans un nouveau système des coordonnées sous forme scalaire

Soit les coefficients de la transformation : $C^{\gamma}_{\gamma'}$, correspondant au passage vers un nouveau système de coordonnées stationnaire :

$$C_{\gamma'}^{\gamma} = \begin{array}{cccc} i^{\alpha'_{s}} & i^{\beta'_{s}} & i^{\alpha'_{r}} & i^{\beta'_{r}} & \omega'_{r} \\ i^{\alpha_{s}} & \begin{pmatrix} 1 & \cdot & \cdot & \cdot & \cdot \\ \cdot & 1 & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cos(x^{5}) & \sin(x^{5}) & \cdot & \cdot \\ \cdot & \cdot & -\sin(x^{5} & \cos(x^{5}) & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & 1 \end{array} \right)$$
(37)

Dans l'annexe 2.3 nous utilisons le logiciel wx Maxima, permettant de former les termes de l'équation de la machine électrique généralisée se lon les équations (30) - (33). Nous présentons ici les résultats obtenus :

-la métrique dans un nouveau système de coordonnées :

$$g_{\gamma'\beta'} = \begin{pmatrix} Ls & 0 & Lm & 0 & 0\\ 0 & Ls & 0 & Lm & 0\\ Lm & 0 & Lr & 0 & 0\\ 0 & Lm & 0 & Lr & 0\\ 0 & 0 & 0 & 0 & J \end{pmatrix}$$

-le tenseur des résistances qui reste inchangé $R_{\gamma'\beta'}=R_{\gamma\beta}$:

$$R_{\gamma'\beta'} = \begin{pmatrix} Rs & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & Rs & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & Rr & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & Rr & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \end{pmatrix}$$

- les symboles de Christoffel non nuls :

$\Gamma_{54,1}$	=	$\frac{Lm}{2}$	$\Gamma_{45,1}$	=	$-\frac{Lm}{2}$
$\Gamma_{53,2}$	=	$-\frac{Lm}{2}$	$\Gamma_{35,2}$	=	$\frac{Lm}{2}$
$\Gamma_{52,3}$	=	$\frac{Lm}{2}$	$\Gamma_{25,3}$	=	$\frac{Lm}{2}$
$\Gamma_{54,3}$	=	Lr	$\Gamma_{53,4}$	=	-Lr
$\Gamma_{51,4}$	=	$-\frac{Lm}{2}$	$\Gamma_{15,4}$	=	$-\frac{Lm}{2}$
$\Gamma_{41,5}$	=	$\frac{Lm}{2}$	$\Gamma_{14,5}$	=	$\frac{Lm}{2}$
$\Gamma_{23,5}$	=	$-\frac{Lm}{2}$	$\Gamma_{32,5}$	=	$-\frac{Lm}{2}$

En effectuant les opérations matricielles correspondantes, nous obtenons la forme scalaire :

$$\begin{cases} L_s \frac{di^1}{dt} + L_m \frac{di^3}{dt} + R_s i^1 + i^4 \Gamma_{45,1} i^5 + i^5 \Gamma_{54,1} i^4 &= e_1 \\ L_s \frac{di^2}{dt} + L_m \frac{di^4}{dt} + R_s i^2 + i^3 \Gamma_{35,2} i^5 + i^5 \Gamma_{53,2} i^3 &= e_2 \\ L_r \frac{di^3}{dt} + L_m \frac{di^1}{dt} + R_r i^3 + i^2 \Gamma_{25,3} i^5 + i^5 \Gamma_{52,3} i^2 + i^5 \Gamma_{54,3} i^4 &= e_3 \quad (38) \\ L_r \frac{di^4}{dt} + L_m \frac{di^2}{dt} + R_r i^4 + i^1 \Gamma_{15,4} i^5 + i^5 \Gamma_{51,4} i^1 + i^5 \Gamma_{53,4} i^3 &= e_4 \\ J \frac{di^5}{dt} + i^1 \Gamma_{14,5} i^4 + i^2 \Gamma_{23,5} i^3 + i^4 \Gamma_{41,5} i^1 + i^3 \Gamma_{32,5} i^2 &= e_5 \end{cases}$$

Puis comme précédemment, en remplaçant les indices tensoriels par des indices en lien avec leur correspondant physique :

$$\begin{cases} L_s \frac{di^{\alpha_s}}{dt} + L_m \frac{di^{\alpha_r}}{dt} + R_s i^{\alpha_s} &= e_{\alpha_s} \\ L_s \frac{di^{\beta_s}}{dt} + L_m \frac{di^{\beta_r}}{dt} + R_s i^{\beta_s} &= e_{\beta_s} \\ L_r \frac{di^{\alpha_r}}{dt} + L_m \frac{di^{\alpha_s}}{dt} + R_r i^{\alpha_r} + \omega^r L_m i^{\beta_s} + \omega^r L_r i^{\beta_r} &= e_{\alpha_r} \\ L_r \frac{di^{\beta_r}}{dt} + L_m \frac{di^{\beta_s}}{dt} + R_r i^{\beta_r} - \omega^r L_m i^{\alpha_s} - \omega^r L_r i^{\alpha_r} &= e_{\beta_r} \\ J \frac{\omega^r}{dt} + L_m i^{\alpha_s} i^{\beta_r} - L_m i^{\beta_s} i^{\alpha_r} &= M_r \end{cases}$$
(39)

Les équations (39) ainsi que (23) s'inscrivent sous forme d'équations matricielles (24).

2 Annexe

2.1 Liste complète des symboles de Christoffel

Nous donnons ci-dessous la liste complète des symboles de Christoffel. Les éléments non nuls sont repérés par les lettres grasses.

		1
		$g_{\gamma\beta,\alpha} + g_{\gamma\alpha,\beta} - g_{\alpha\beta,\gamma}$
$\Gamma_{11,1}$	$\alpha = 1, \beta = 1, \gamma = 1$	$g_{11,1} + g_{11,1} - g_{11,1}$
$\Gamma_{12.1}$	$\alpha = 1, \beta = 2, \gamma = 1$	$g_{12,1} + g_{11,2} - g_{12,1}$
$\Gamma_{13,1}$	$\alpha = 1, \beta = 3, \gamma = 1$	$q_{13,1} + q_{11,3} - q_{13,1}$
Γ14.1	$\alpha = 1, \beta = 4, \gamma = 1$	$a_{14,1} + a_{11,4} - a_{14,1}$
Γ14,1	$\alpha = 1, \beta = 1, \gamma = 1$	$g_{14,1} + g_{11,4} + g_{14,1}$
г 15,1 Г	$\alpha = 1, \beta = 0, \gamma = 1$	$g_{15,1} + g_{11,5} - g_{15,1}$
$\Gamma_{22,1}$	$\alpha = 2, \beta = 2, \gamma = 1$	$g_{12,2} + g_{12,2} - g_{22,1}$
1 23,1	$\alpha = 2, \beta = 3, \gamma = 1$	$g_{13,2} + g_{12,3} - g_{23,1}$
$\Gamma_{24,1}$	$\alpha = 2, \beta = 4, \gamma = 1$	$g_{14,2} + g_{12,4} - g_{24,1}$
$\Gamma_{25,1}$	$\alpha = 2, \beta = 5, \gamma = 1$	$g_{15,2} + g_{12,5} - g_{25,1}$
$\Gamma_{33,1}$	$\alpha = 3, \beta = 3, \gamma = 1$	$g_{13,3} + g_{13,3} - g_{33,1}$
$\Gamma_{34,1}$	$\alpha = 3, \beta = 4, \gamma = 1$	$g_{14,3} + g_{13,4} - g_{34,1}$
$\Gamma_{35,1}$	$\alpha = 3, \beta = 5, \gamma = 1$	$g_{15,3} + \mathbf{g_{13,5}} - g_{35,1}$
$\Gamma_{44,1}$	$\alpha = 4, \beta = 4, \gamma = 1$	$g_{14,4} + g_{14,4} - g_{44,1}$
$\Gamma_{45,1}$	$\alpha = 4, \beta = 5, \gamma = 1$	$q_{15,4} + \mathbf{g_{14,5}} - q_{45,1}$
Γ55 1	$\alpha = 5, \beta = 5, \gamma = 1$	$q_{15,5} + q_{15,5} - q_{55,1}$
00,1	- / / - / / -	
Г	$\alpha = 1 \rho = 1 \phi$	$\frac{y_{\gamma\beta,\alpha} + y_{\gamma\alpha,\beta} - y_{\alpha\beta,\gamma}}{z}$
L 11,2	$\alpha = 1, \beta = 1, \gamma = 2$	$g_{21,1} + g_{21,1} - g_{11,2}$
$\Gamma_{12,2}$	$\alpha = 1, \beta = 2, \gamma = 2$	$g_{22,1} + g_{21,2} - g_{12,2}$
$\Gamma_{13,2}$	$\alpha = 1, \beta = 3, \gamma = 2$	$g_{23,1} + g_{21,3} - g_{13,2}$
$\Gamma_{14,2}$	$\alpha = 1, \beta = 4, \gamma = 2$	$g_{24,1} + g_{21,4} - g_{14,2}$
$\Gamma_{15,2}$	$\alpha = 1, \beta = 5, \gamma = 2$	$g_{25,1} + g_{21,5} - g_{15,2}$
$\Gamma_{22,2}$	$\alpha = 2, \beta = 2, \gamma = 2$	$g_{22,2} + g_{22,2} - g_{22,2}$
$\Gamma_{23,2}$	$\alpha = 2, \beta = 3, \gamma = 2$	$g_{23,2} + g_{22,3} - g_{23,2}$
$\Gamma_{24,2}$	$\alpha = 2, \beta = 4, \gamma = 2$	$g_{24,2} + g_{22,4} - g_{24,2}$
$\Gamma_{25,2}$	$\alpha = 2, \beta = 5, \gamma = 2$	$q_{25\ 2} + q_{22\ 5} - q_{25\ 2}$
Γ33.2	$\alpha = 3, \beta = 3, \gamma = 2$	$q_{23,3} + q_{23,3} - q_{33,2}$
Γ24.2	$\alpha = 3, \beta = 4, \gamma = 2$	$g_{24,2} + g_{22,4} - g_{24,2}$
Гат а	$\alpha = 3, \beta = 5, \gamma = 2$	$g_{24,3} + g_{23,4} + g_{34,2}$
- 35,2 Γιιο	$\alpha = 0, \beta = 0, \gamma = 2$	$g_{25,3} + g_{23,5} - g_{35,2}$
L 44,2	$\alpha = 4, \beta = 4, \gamma = 2$	$g_{24,4} + g_{24,4} - g_{44,2}$
г 45,2 Г	$\alpha = 4, \beta = 5, \gamma = 2$	$g_{25,4} + g_{24,5} - g_{45,2}$
1 55,2	$\alpha \equiv 5, \beta \equiv 5, \gamma \equiv 2$	$g_{25,5} + g_{25,5} - g_{55,2}$
		$g_{\gamma\beta,\alpha} + g_{\gamma\alpha,\beta} - g_{\alpha\beta,\gamma}$
$\Gamma_{11,3}$	$\alpha = 1, \beta = 1, \gamma = 3$	$g_{31,1} + g_{31,1} - g_{11,3}$
$\Gamma_{12,3}$	$\alpha = 1, \beta = 2, \gamma = 3$	$g_{32,1} + g_{31,2} - g_{12,3}$
$\Gamma_{13,3}$	$\alpha = 1, \beta = 3, \gamma = 3$	$g_{33,1} + g_{31,3} - g_{13,3}$
$\Gamma_{14,3}$	$\alpha = 1, \beta = 4, \gamma = 3$	$g_{34,1} + g_{31,4} - g_{14,3}$
$\Gamma_{15,3}$	$\alpha = 1, \beta = 5, \gamma = 3$	$g_{35,1} + g_{31,5} - g_{15,3}$
$\Gamma_{22.3}$	$\alpha = 2, \beta = 2, \gamma = 3$	$g_{32,2} + g_{32,2} - g_{22,3}$
Γ23.3	$\alpha = 2, \beta = 3, \gamma = 3$	$q_{33,2} + q_{32,3} - q_{23,3}$
Γ24.2	$\alpha = 2, \beta = 4, \gamma = 3$	$a_{34,2} + a_{32,4} - a_{24,2}$
Γ _{24,3}	$\alpha = 2, \beta = 1, \gamma = 0$ $\alpha = 2, \beta = 5, \gamma = 3$	$g_{34,2} + g_{32,4} + g_{24,3}$
± 25,3 Год с	$\alpha = 2, \beta = 0, \gamma = 0$ $\alpha = 3, \beta = 3, \gamma = 3$	933,2 + 632,3 + 925,3
т 33,3 Голо	$\alpha = 3, \beta = 5, \gamma = 5$	$933,3 \pm 933,3 \pm 933,3$
1 34,3 Г	$\alpha = 3, \beta = 4, \gamma = 3$	$y_{34,3} + y_{33,4} - y_{34,3}$
1 35,3	$\alpha = 3, \beta = 5, \gamma = 3$	$g_{35,3} + g_{33,5} - g_{35,3}$
1 44,3	$\alpha = 4, \beta = 4, \gamma = 3$	$g_{34,4} + g_{34,4} - g_{44,3}$
$\Gamma_{45,3}$	$\alpha = 4, \beta = 5, \gamma = 3$	$g_{35,4} + g_{34,5} - g_{45,3}$
$\Gamma_{55,3}$	$\alpha = 5, \beta = 5, \gamma = 3$	$g_{35,5} + g_{35,5} - g_{55,3}$

L	-	$g_{\gamma\beta,\alpha} + g_{\gamma\alpha,\beta} - g_{\alpha\beta,\gamma}$
$\Gamma_{11,4}$	$\alpha = 1, \beta = 1, \gamma = 4$	$g_{41,1} + g_{41,1} - g_{11,4}$
$\Gamma_{12,4}$	$\alpha = 1, \beta = 2, \gamma = 4$	$g_{42,1} + g_{41,2} - g_{12,4}$
$\Gamma_{13,4}$	$\alpha = 1, \beta = 3, \gamma = 4$	$g_{43,1} + g_{41,3} - g_{13,4}$
$\Gamma_{14,4}$	$\alpha = 1, \beta = 4, \gamma = 4$	$g_{44,1} + g_{41,4} - g_{14,4}$
$\Gamma_{15,4}$	$\alpha = 1, \beta = 5, \gamma = 4$	$g_{45,1} + \mathbf{g_{41,5}} - g_{15,4}$
$\Gamma_{22,4}$	$\alpha = 2, \beta = 2, \gamma = 4$	$g_{42,2} + g_{42,2} - g_{22,4}$
$\Gamma_{23,4}$	$\alpha=2,\beta=3,\gamma=4$	$g_{43,2} + g_{42,3} - g_{23,4}$
$\Gamma_{24,4}$	$\alpha=2,\beta=4,\gamma=4$	$g_{44,2} + g_{42,4} - g_{24,4}$
$\Gamma_{25,4}$	$\alpha=2,\beta=5,\gamma=4$	$g_{45,2} + \mathbf{g_{42,5}} - g_{25,4}$
$\Gamma_{33,4}$	$\alpha=3,\beta=3,\gamma=4$	$g_{43,3} + g_{43,3} - g_{33,4}$
$\Gamma_{34,4}$	$\alpha=3,\beta=4,\gamma=4$	$g_{44,3} + g_{43,4} - g_{34,4}$
$\Gamma_{35,4}$	$\alpha=3,\beta=5,\gamma=4$	$g_{45,3} + g_{43,5} - g_{35,4}$
$\Gamma_{44,4}$	$\alpha=4,\beta=4,\gamma=4$	$g_{44,4} + g_{44,4} - g_{44,4}$
$\Gamma_{45,4}$	$\alpha = 4, \beta = 5, \gamma = 4$	$g_{45,4} + g_{44,5} - g_{45,4}$
$\Gamma_{55,4}$	$\alpha=5,\beta=5,\gamma=4$	$g_{45,5} + g_{45,5} - g_{55,4}$
		$g_{\gamma\beta,\alpha} + g_{\gamma\alpha,\beta} - g_{\alpha\beta,\gamma}$
$\Gamma_{11,5}$	$\alpha = 1, \beta = 1, \gamma = 5$	$g_{51,1} + g_{51,1} - g_{11,5}$
$\Gamma_{12,5}$	$\alpha = 1, \beta = 2, \gamma = 5$	$g_{52,1} + g_{51,2} - g_{12,5}$
$\Gamma_{13,5}$	$\alpha = 1, \beta = 3, \gamma = 5$	$g_{53,1} + g_{51,3} - \mathbf{g_{13,5}}$
$\Gamma_{14,5}$	$\alpha = 1, \beta = 4, \gamma = 5$	$g_{54,1} + g_{51,4} - \mathbf{g_{14,5}}$
$\Gamma_{15,5}$	$\alpha = 1, \beta = 5, \gamma = 5$	
T	,,,,	$g_{55,1} + g_{51,5} - g_{15,5}$
$\Gamma_{22,5}$	$\alpha = 2, \beta = 2, \gamma = 5$	$g_{55,1}+g_{51,5}-g_{15,5}\ g_{52,2}+g_{52,2}-g_{22,5}$
$\Gamma_{22,5}$ $\Gamma_{23,5}$	$\alpha = 2, \beta = 2, \gamma = 5$ $\alpha = 2, \beta = 3, \gamma = 5$	$g_{55,1}+g_{51,5}-g_{15,5}\ g_{52,2}+g_{52,2}-g_{22,5}\ g_{53,2}+g_{52,3}-\mathbf{g_{23,5}}$
$\Gamma_{22,5}$ $\Gamma_{23,5}$ $\Gamma_{24,5}$	$\begin{array}{l} \alpha=2,\beta=2,\gamma=5\\ \alpha=2,\beta=3,\gamma=5\\ \alpha=2,\beta=4,\gamma=5 \end{array}$	$\begin{array}{c} g_{55,1}+g_{51,5}-g_{15,5}\\ g_{52,2}+g_{52,2}-g_{22,5}\\ g_{53,2}+g_{52,3}-\mathbf{g_{23,5}}\\ g_{54,2}+g_{52,4}-\mathbf{g_{24,5}} \end{array}$
$ \Gamma_{22,5} $ Γ _{23,5} Γ _{24,5} Γ _{25,5}	$ \begin{array}{c} \alpha = 2, \beta = 2, \gamma = 5 \\ \alpha = 2, \beta = 3, \gamma = 5 \\ \alpha = 2, \beta = 4, \gamma = 5 \\ \alpha = 2, \beta = 5, \gamma = 5 \end{array} $	$\begin{array}{c} g_{55,1}+g_{51,5}-g_{15,5}\\ g_{52,2}+g_{52,2}-g_{22,5}\\ g_{53,2}+g_{52,3}-\mathbf{g_{23,5}}\\ g_{54,2}+g_{52,4}-\mathbf{g_{24,5}}\\ g_{55,2}+g_{52,5}-g_{25,5} \end{array}$
$ \begin{array}{c} \Gamma_{22,5} \\ \Gamma_{23,5} \\ \Gamma_{24,5} \\ \Gamma_{25,5} \\ \Gamma_{33,5} \end{array} $	$\begin{array}{l} \alpha=2,\beta=2,\gamma=5\\ \alpha=2,\beta=3,\gamma=5\\ \alpha=2,\beta=4,\gamma=5\\ \alpha=2,\beta=4,\gamma=5\\ \alpha=2,\beta=5,\gamma=5\\ \alpha=3,\beta=3,\gamma=5 \end{array}$	$\begin{array}{c} g_{55,1}+g_{51,5}-g_{15,5}\\ g_{52,2}+g_{52,2}-g_{22,5}\\ g_{53,2}+g_{52,3}-\mathbf{g_{23,5}}\\ g_{54,2}+g_{52,4}-\mathbf{g_{24,5}}\\ g_{55,2}+g_{52,5}-g_{25,5}\\ g_{53,3}+g_{53,3}-g_{33,5} \end{array}$
$ \begin{array}{c} \Gamma_{22,5} \\ \Gamma_{23,5} \\ \Gamma_{24,5} \\ \Gamma_{25,5} \\ \Gamma_{33,5} \\ \Gamma_{34,5} \end{array} $	$\begin{array}{l} \alpha=2,\beta=2,\gamma=5\\ \alpha=2,\beta=3,\gamma=5\\ \alpha=2,\beta=4,\gamma=5\\ \alpha=2,\beta=5,\gamma=5\\ \alpha=2,\beta=5,\gamma=5\\ \alpha=3,\beta=3,\gamma=5\\ \alpha=3,\beta=4,\gamma=5 \end{array}$	$\begin{array}{c} g_{55,1}+g_{51,5}-g_{15,5}\\ g_{52,2}+g_{52,2}-g_{22,5}\\ g_{53,2}+g_{52,3}-\mathbf{g_{23,5}}\\ g_{54,2}+g_{52,4}-\mathbf{g_{24,5}}\\ g_{55,2}+g_{52,5}-g_{25,5}\\ g_{53,3}+g_{53,3}-g_{33,5}\\ g_{54,3}+g_{53,4}-g_{34,5} \end{array}$
$\begin{array}{c} \Gamma_{22,5} \\ \Gamma_{23,5} \\ \Gamma_{24,5} \\ \Gamma_{25,5} \\ \Gamma_{33,5} \\ \Gamma_{34,5} \\ \Gamma_{35,5} \end{array}$	$\begin{array}{l} \alpha = 2, \beta = 2, \gamma = 5\\ \alpha = 2, \beta = 3, \gamma = 5\\ \alpha = 2, \beta = 3, \gamma = 5\\ \alpha = 2, \beta = 4, \gamma = 5\\ \alpha = 2, \beta = 5, \gamma = 5\\ \alpha = 3, \beta = 3, \gamma = 5\\ \alpha = 3, \beta = 4, \gamma = 5\\ \alpha = 3, \beta = 5, \gamma = 5\end{array}$	$\begin{array}{c} g_{55,1}+g_{51,5}-g_{15,5}\\ g_{52,2}+g_{52,2}-g_{22,5}\\ g_{53,2}+g_{52,3}-\mathbf{g_{23,5}}\\ g_{54,2}+g_{52,4}-\mathbf{g_{24,5}}\\ g_{55,2}+g_{52,5}-g_{25,5}\\ g_{53,3}+g_{53,3}-g_{33,5}\\ g_{54,3}+g_{53,4}-g_{34,5}\\ g_{55,3}+g_{53,5}-g_{35,5}\\ \end{array}$
$\Gamma_{22,5} \\ \Gamma_{23,5} \\ \Gamma_{24,5} \\ \Gamma_{25,5} \\ \Gamma_{33,5} \\ \Gamma_{34,5} \\ \Gamma_{35,5} \\ \Gamma_{44,5} \\ \Gamma_{44,5} \\ \Gamma_{44,5} \\ \Gamma_{25,5} \\ \Gamma_{44,5} $	$\begin{array}{l} \alpha = 2, \beta = 2, \gamma = 5\\ \alpha = 2, \beta = 3, \gamma = 5\\ \alpha = 2, \beta = 3, \gamma = 5\\ \alpha = 2, \beta = 4, \gamma = 5\\ \alpha = 2, \beta = 5, \gamma = 5\\ \alpha = 3, \beta = 3, \gamma = 5\\ \alpha = 3, \beta = 4, \gamma = 5\\ \alpha = 3, \beta = 5, \gamma = 5\\ \alpha = 4, \beta = 4, \gamma = 5\end{array}$	$\begin{array}{l} g_{55,1}+g_{51,5}-g_{15,5}\\ g_{52,2}+g_{52,2}-g_{22,5}\\ g_{53,2}+g_{52,3}-\mathbf{g_{23,5}}\\ g_{54,2}+g_{52,4}-\mathbf{g_{24,5}}\\ g_{55,2}+g_{52,5}-g_{25,5}\\ g_{53,3}+g_{53,3}-g_{33,5}\\ g_{54,3}+g_{53,4}-g_{34,5}\\ g_{55,3}+g_{53,5}-g_{35,5}\\ g_{54,4}+g_{54,4}-g_{44,5} \end{array}$
$\begin{array}{c} \Gamma_{22,5} \\ \Gamma_{23,5} \\ \Gamma_{24,5} \\ \Gamma_{25,5} \\ \Gamma_{33,5} \\ \Gamma_{34,5} \\ \Gamma_{35,5} \\ \Gamma_{44,5} \\ \Gamma_{45,5} \end{array}$	$\begin{array}{l} \alpha = 2, \beta = 2, \gamma = 5\\ \alpha = 2, \beta = 3, \gamma = 5\\ \alpha = 2, \beta = 3, \gamma = 5\\ \alpha = 2, \beta = 4, \gamma = 5\\ \alpha = 2, \beta = 5, \gamma = 5\\ \alpha = 3, \beta = 3, \gamma = 5\\ \alpha = 3, \beta = 4, \gamma = 5\\ \alpha = 3, \beta = 5, \gamma = 5\\ \alpha = 4, \beta = 4, \gamma = 5\\ \alpha = 4, \beta = 5, \gamma = 5\end{array}$	$\begin{array}{c} g_{55,1}+g_{51,5}-g_{15,5}\\ g_{52,2}+g_{52,2}-g_{22,5}\\ g_{53,2}+g_{52,3}-\mathbf{g_{23,5}}\\ g_{54,2}+g_{52,4}-\mathbf{g_{24,5}}\\ g_{55,2}+g_{52,5}-g_{25,5}\\ g_{53,3}+g_{53,3}-g_{33,5}\\ g_{54,3}+g_{53,4}-g_{34,5}\\ g_{55,3}+g_{53,5}-g_{35,5}\\ g_{54,4}+g_{54,4}-g_{44,5}\\ g_{55,4}+g_{54,5}-g_{45,5}\\ \end{array}$

2.2 Calcul des symboles de Christoffel avec le programme wxMaxima

\rightarrow kill(all) \$

entrée de matrice des inductances (or métrique) :

 $\begin{array}{rcl} & \longrightarrow & g : matrix([Ls, 0, Lm^*\cos(x5), -Lm^*\sin(x5), 0], [0, Ls, Lm^*\sin(x5), \\ & Lm^*\cos(x5), 0], [Lm^*\cos(x5), Lm^*\sin(x5), Lr, 0, 0], [-Lm^*\sin(x5), \\ & Lm^*\cos(x5), 0, Lr, 0], [0, 0, 0, 0, J]); \end{array}$

(Ls	0	$Lm \cos(x5)$	$-Lm\sin(x5)$	0	
0	Ls	$Lm \sin(x5)$	$Lm \cos(x5)$	0	
$Lm \cos(x5)$	$Lm \sin(x5)$	Lr	0	0	(g)
$-Lm\sin(x5)$	$Lm \cos(x5)$	0	Lr	0	
0	0	0	0	J	

déclaration de la matrice des coefficients de Christoffel :

 \rightarrow array (G, 5, 5,5)\$

déclaration de matrice des variables :

 \rightarrow array(x,5)\$

entrée des variables :

 $\longrightarrow x[1] : x1\$ x[2] : x2\$ x[3] : x3\$ x[4] : x4\$ x[5] : x5\$$

calcul des coefficients de Christoffel :

→ for i : 1 step 1 thru 5 do for j :1 step 1 thru 5 do for k :1 step 1 thru 5 do G[i,j,k] :1/2*(diff(g[k,j],x[i])+diff(g[k,i],x[j])-diff(g[i,j],x[k]))\$

visualisation des coefficients de Christoffel (seulement la partie symétrique) :

$$\begin{array}{l} \longrightarrow & \text{for i : 1 step 1 thru 5 do} \\ & \text{for j : i step 1 thru 5 do} \\ & \text{for k : 1 step 1 thru 5 do} \\ & \text{if } G[i,j,k] \ \# \ 0 \ \text{then display } (G[i,j,k]) \$ \\ G_{1,3,5} = \frac{Lm \sin(x5)}{2} & G_{1,4,5} = \frac{Lm \cos(x5)}{2} & G_{1,5,3} = -\frac{Lm \sin(x5)}{2} \\ G_{1,5,4} = -\frac{Lm \cos(x5)}{2} & G_{2,3,5} = -\frac{Lm \cos(x5)}{2} & G_{2,4,5} = \frac{Lm \sin(x5)}{2} \\ G_{2,5,3} = \frac{Lm \cos(x5)}{2} & G_{2,5,4} = -\frac{Lm \sin(x5)}{2} & G_{3,5,1} = -\frac{Lm \sin(x5)}{2} \\ G_{3,5,2} = \frac{Lm \cos(x5)}{2} & G_{4,5,1} = -\frac{Lm \cos(x5)}{2} & G_{4,5,2} = -\frac{Lm \sin(x5)}{2} \\ \end{array}$$

2.3 Calcul des transformations des termes de l'équation de la machine électrique généralisée avec le programme wx-Maxima

(% i0) kill(all)\$

entrée des matrices inductances (ou métrique) dans le système initial des coordonnées :

(% i1) g: matrix([Ls, 0, Lm* $\cos(x5)$, -Lm* $\sin(x5)$,0], [0, Ls, Lm* $\sin(x5)$, Lm* $\cos(x5)$,0], [Lm* $\cos(x5)$,Lm* $\sin(x5)$, Lr, 0, 0], [-Lm* $\sin(x5)$,Lm* $\cos(x5)$,0, Lr, 0], [0, 0, 0, 0, J]); (Ls 0 Lm $\cos(x5)$ -Lm $\sin(x5)$ 0)

$$\begin{pmatrix} Ls & 0 & Lm\cos(x5) & -Lm\sin(x5) & 0 \\ 0 & Ls & Lm\sin(x5) & Lm\cos(x5) & 0 \\ Lm\cos(x5) & Lm\sin(x5) & Lr & 0 & 0 \\ -Lm\sin(x5) & Lm\cos(x5) & 0 & Lr & 0 \\ 0 & 0 & 0 & 0 & J \end{pmatrix}$$
(g)

déclaration des coefficients de Christoffel :

(% i2) array (G, 5, 5,5)\$

déclaration des variables :

(% i3) array(x,5)\$

entrée des variables :

(% i8) x[1] :x1\$x[2] :x2\$x[3] :x3\$x[4] :x4\$x[5] :x5\$

calcul des coefficients de Christoffel :

(% i9) for k :1 step 1 thru 5 do
 for i : 1 step 1 thru 5 do
 for j :1 step 1 thru 5 do
 G[i,j,k] :1/2*(diff(g[k,j],x[i])+diff(g[k,i],x[j])-diff(g[i,j],x[k]))\$

visualisation des coefficients de Christoffel dans un système original des coordonnées (seule la partie symétrique est non nulle) :

 $\begin{array}{ll} (\% & \text{for } \mathbf{k} : 1 \text{ step } 1 \text{ thru } 5 \text{ do} \\ \mathbf{i10}) & \text{for } \mathbf{i} : 1 \text{ step } 1 \text{ thru } 5 \text{ do} \\ & \text{for } \mathbf{j} : \mathbf{i} \text{ step } 1 \text{ thru } 5 \text{ do} \\ & \text{if } G[\mathbf{i},\mathbf{j},\mathbf{k}] \neq 0 \text{ then display } (G[\mathbf{i},\mathbf{j},\mathbf{k}]) \$ \\ G_{3,5,1} = -\frac{Lm \sin(x5)}{2} & G_{4,5,1} = -\frac{Lm \cos(x5)}{2} & G_{3,5,2} = \frac{Lm \cos(x5)}{2} \\ G_{4,5,2} = -\frac{Lm \sin(x5)}{2} & G_{1,5,3} = -\frac{Lm \sin(x5)}{2} & G_{2,5,3} = \frac{Lm \cos(x5)}{2} \\ G_{1,5,4} = -\frac{Lm \cos(x5)}{2} & G_{2,5,4} = -\frac{Lm \sin(x5)}{2} & G_{1,3,5} = \frac{Lm \sin(x5)}{2} \\ G_{1,4,5} = \frac{Lm \cos(x5)}{2} & G_{2,3,5} = -\frac{Lm \cos(x5)}{2} & G_{2,4,5} = \frac{Lm \sin(x5)}{2} \end{array}$

entrée des coefficients de la transformation $C^{\alpha}_{\alpha'}$ sous forme matricielle :

entrée du tenseur des résistances $R_{\gamma\beta}$ dans un système initial des coordonnées sous forme matricielle :

déclaration du tenseur $R_{\gamma'\beta'}$ sous forme matricielle :

$$\begin{array}{ll} \mbox{(\%} & \mbox{Rg1b1}: \mbox{matrix}(\\ \mbox{i13)} & \mbox{[0,0,0,0,0]}, \\ & \mbox{[0,0,0,0]}, \\ & \$$

On réalise la multiplication contractée des indices γ et β : $R_{\gamma'\beta'} = C_{\gamma'}^{\gamma} C_{\beta'}^{\beta} R_{\gamma\beta}$

visualisation du tenseur $R_{\gamma'\beta'}$ dans un nouveau système de coordonnées :

;

$$\begin{pmatrix} Rs & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & Rs & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & Rr & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & Rr & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \end{pmatrix}$$
(% o17)

on peut obtenir le même résultat par les opérations matricielles suivantes :

$$\begin{pmatrix} Rs & 0 & 0 & 0 & 0 \\ 0 & Rs & 0 & 0 & 0 \\ 0 & 0 & Rr & 0 & 0 \\ 0 & 0 & 0 & Rr & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$
(% o18)

De façon similaire, on peut former la métrique dans un nouveau système de coordonnées :

(% trigreduce(transpose(C).g.C); i17)

$$\begin{pmatrix} Ls & 0 & Lm & 0 & 0 \\ 0 & Ls & 0 & Lm & 0 \\ Lm & 0 & Lr & 0 & 0 \\ 0 & Lm & 0 & Lr & 0 \\ 0 & 0 & 0 & 0 & J \end{pmatrix}$$
 (% o19)

Ensuite on accomplit la transformation des symboles de Christoffel vers un nouveau système de coordonnées : $\Gamma_{\alpha'\beta',\gamma'} = C_{\gamma'}^{\gamma}C_{\alpha'}^{\alpha}C_{\beta'}^{\beta}\Gamma_{\alpha\beta,\gamma} + C_{\gamma'}^{\gamma}C_{\alpha'}^{\alpha}g_{\gamma\beta}\frac{\partial C_{\beta'}^{\beta}}{x^{\alpha}}$ On peut présenter le résultat définitif en forme de deux termes

 $\Gamma_{\alpha'\beta',\gamma'} = \Gamma \mathbf{1}_{\alpha'\beta',\gamma'} + \Gamma \mathbf{2}_{\gamma'\beta',\alpha'}$ où premier terme : $\Gamma \mathbf{1}_{\alpha'\beta',\gamma'} = C_{\gamma'}^{\gamma}C_{\alpha'}^{\alpha}C_{\beta'}^{\beta}\Gamma_{\alpha\beta,\gamma}$ deuxième terme : $\Gamma \mathbf{2}_{\gamma'\beta',\alpha'} = C_{\gamma'}^{\gamma}C_{\alpha'}^{\alpha}g_{\gamma\beta}\frac{\partial C_{\beta'}^{\beta}}{x^{\alpha}}$

D'abord déclaration de $\Gamma_{\alpha'\beta',\gamma'}$; $\Gamma 1_{\alpha'\beta',\gamma'}$; $\Gamma 2_{\gamma'\beta',\alpha'}$:

```
    (% array(Ga1b1g1, 5, 5,5)$ array(G1a1b1g1, 5, 5,5)$
    i20) array(G2g1b1a1,5, 5,5)$
```

Nous calculons le premier terme : multiplication contractée des indices α,β et γ : $\Gamma 1_{\alpha'\beta',\gamma'} = C^{\alpha}_{\alpha'}C^{\beta}_{\beta'}C^{\gamma}_{\gamma'}\Gamma_{\alpha\beta,\gamma}$

(% for alpha1 : 1 step 1 thru 5 do
i21) for beta1 : 1 step 1 thru 5 do
 for gamma1 : 1 step 1 thru 5 do
 (
 a :0.0,
 for alpha : 1 step 1 thru 5 do
 for beta : 1 step 1 thru 5 do
 for gamma : 1 step 1 thru 5 do
 for gamma : 1 step 1 thru 5 do
 a : a + trigreduce(G[alpha,beta,gamma] *
 C[alpha,alpha1]*C[beta,beta1] * C[gamma,gamma1]),
 G1a1b1g1[alpha1,beta1,gamma1] :ratsimp(a)
)\$

Puis nous visualisons les résultats non nuls :

déclarons d'abord $C^{\beta}_{\beta',\alpha}$:

nous calculons ensuite la dérivée $C^\beta_{\beta',\alpha}=\frac{\partial C^\beta_{\beta'}}{x^\alpha}$:

(% for beta :1 step 1 thru 5 do i24) for beta1 : 1 step 1 thru 5 do for alpha :1 step 1 thru 5 do Cbb1a[beta,beta1,alpha] :diff(C[beta,beta1],x[alpha])\$

Comme précédemment, nous visualisons les résultats non nuls :

 $\begin{array}{ll} Cbb1a_{3,3,5} = -\sin{(x5)} & Cbb1a_{3,4,5} = \cos{(x5)} \\ Cbb1a_{4,3,5} = -\cos{(x5)} & Cbb1a_{4,4,5} = -\sin{(x5)} \end{array}$

Calcule du deuxième terme : multiplication contractée des indices α , β et γ : $\Gamma 2_{\gamma'\beta',\alpha'} = C^{\gamma}_{\gamma'}C^{\alpha}_{\alpha'}g_{\gamma\beta}C^{\beta}_{\beta',\alpha}$

(% for alpha1 : 1 step 1 thru 5 do i26) for beta1 : 1 step 1 thru 5 do for gamma1 : 1 step 1 thru 5 do (a :0.0, for alpha : 1 step 1 thru 5 do for beta : 1 step 1 thru 5 do for gamma : 1 step 1 thru 5 do a :a+trigreduce(C[alpha,alpha1]*C[gamma,gamma1]*g[gamma,beta]* Cbb1a[beta,beta1,alpha]), G2g1b1a1[gamma1,beta1,alpha1] :ratsimp(a))\$

visualisation de résultat non nul :

(% for k : 1 step 1 thru 5 do i27) for i : 1 step 1 thru 5 do for j : 1 step 1 thru 5 do if G2g1b1a1[i,j,k] # 0 then display (G2g1b1a1[i,j,k])\$

 $\begin{array}{lll} G2g1b1a1_{1,4,5} = Lm & G2g1b1a1_{2,3,5} = -Lm \\ G2g1b1a1_{3,4,5} = Lr & G2g1b1a1_{4,3,5} = -Lr \end{array}$

Le calcul définitif des symboles de Christoffel dans un nouveau système des coordonnées est obtenu par : $\Gamma_{\gamma'\beta',\alpha'} = \Gamma \mathbf{1}_{\alpha'\beta',\gamma'} + \Gamma \mathbf{2}_{\gamma'\beta',\alpha'}$:

(% for gamma : 1 step 1 thru 5 do i28) for beta : 1 step 1 thru 5 do for alpha : 1 step 1 thru 5 do Ga1b1g1[alpha,beta,gamma] : G1a1b1g1[alpha,beta,gamma] + G2g1b1a1[gamma,beta,alpha]\$

et nous pouvons visualer les symboles de Christoffel dans un nouveau système de coordonnées :

(% for k : 1 step 1 thru 5 do i29) for j : 1 step 1 thru 5 do for i : 1 step 1 thru 5 do if Ga1b1g1[i,j,k] # 0 then display (Ga1b1g1[i,j,k])\$ $\begin{array}{ll} Ga1b1g1_{5,4,1} = \frac{Lm}{2} & Ga1b1g1_{4,5,1} = -\frac{Lm}{2} & Ga1b1g1_{5,3,2} = -\frac{Lm}{2} \\ Ga1b1g1_{3,5,2} = \frac{Lm}{2} & Ga1b1g1_{5,2,3} = \frac{Lm}{2} & Ga1b1g1_{5,4,3} = Lr \\ Ga1b1g1_{2,5,3} = \frac{Lm}{2} & Ga1b1g1_{5,1,4} = -\frac{Lm}{2} & Ga1b1g1_{5,3,4} = -Lr \\ Ga1b1g1_{1,5,4} = -\frac{Lm}{2} & Ga1b1g1_{4,1,5} = \frac{Lm}{2} & Ga1b1g1_{3,2,5} = -\frac{Lm}{2} \\ Ga1b1g1_{2,3,5} = -\frac{Lm}{2} & Ga1b1g1_{1,4,5} = \frac{Lm}{2} \end{array}$

Références

- G.Kron. Non-Riemannian Dynamics of Rotating Electrical Machinery. Journ. Math. Phys. v.13, 103, 1934
- [2] G.Kron. Tensors for circuits (Short Course in Tensor Analysis for Electrical Engineers). With an Introduction by B. Hoffman, Sec. ed., New York, Dover, 1959, 250p.
- [3] B.Hoffman. Kron's Non-Riemannian Electrodinamics. Rewiev of Modern Physics. v.21.N3, july, 1949
- [4] F.Vernet. Approche géométrique de la modélisation des machines électriques en vue de l'observation et de la commande. Sciences de l'ingénieur [physics]. Institut National Polytechnique de Grenoble -INPG, 2004. Français. <tel-00408380>
- [5] O.Maurice. Pistes pour l'application de la notion de variété aux espaces de Kron, et la justification de la pertinence d'emploi du concept de tenseurs par Kron. Document rapport de réflexions en cours sur le sujet menées par l'auteur. 2014. <hal-01077631>
- [6] Doubrovine, B., Fomenko, A., & Novikov, S. (1982). Géométrie contemporaine : méthodes et applications. Edition MIR, Moscou.
- [7] Cours sur le calcul tensoriel. Symboles de Christoffel. http ://mathematique.coursgratuits.net/calcul-tensoriel/symboles-dechristoffel.php