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Abstract

In computer vision and more particularly in vision
processing, the impressive evolution of algorithms and the
emergence of new techniques dramatically increase algo-
rithm complexity. In this paper, a novel FPGA-based ar-
chitecture dedicated to active vision (and more precisely
early vision) is proposed. Active vision appears as an al-
ternative approach to deal with artificial vision problems.
The central idea is to take into account the perceptual
aspects of visual tasks, inspired by biological vision sys-
tems. For this reason, we propose an original approach
based on a System On Programmable Chip implemented
in an FPGA connected to a CMOS imager and an inertial
set. With such a structure based on reprogrammable de-
vices, this system admits a high degree of versatility and
allows the implementation of parallel image processing
algorithms.

1 Introduction

FPDs and in particular FPGAs have achieved rapid ac-
ceptance and growth over the past decade because they
can be applied to a very wide range of applications[15].
One of the most interesting applications of FPGAs is
the prototyping of designs to be implemented as gate
arrays. Another is the emulation of entire large hard-
ware systems. Apart from prototyping, an emerging topic
for FPGA applications is their use in custom computing
machines. This involves using the programmable parts
to ”execute” software, rather than compiling the soft-
ware for execution on a regular CPU. For the latter, the
notion of such Soft-core CPU or hardware overload of
the instruction set becomes crucial. Such approaches of-
fer a good trade-off between the performance of fixed-
functionality hardware and the flexibility of software-
programmable substrates. These different aspects are a
great advantage in the design of an embedded sensing sys-
tem, in particular when there are several data flows. Like
ASICs, the main benefit of these systems is their ability
to implement specialized circuitry directly in hardware.
However, fast prototyping is easier for FPGAs. Conse-

quently, in the design of a versatile embedded system
dedicated to image processing, the FPGA solution proves
to be the better way.

In computer vision and especially in vision processing, the
impressive evolution of algorithms and the emergence of
new techniques drastically increase the complexity of al-
gorithms. This computational aspect is crucial for the
majority of real-time applications and in most cases pro-
grammable devices are the best option. For example, FP-
GAs have already been used to accelerate real-time point
tracking [9], stereo-vision computing [27], color-based ob-
ject detection [10], and video and image compression [11].

In this paper, an architecture dedicated to computer vi-
sion is proposed. Our approach towards a smart camera
consists in performing most of the early vision processing
at the sensor level, before transmitting the information
to the main processing unit. This behavior is inspired by
the human vision system, where eyes are responsible for
attention and fixation tasks, sending to the brain only
pertinent information about the observed scene. As a
matter of fact, the amount of visual data to be transmit-
ted and analyzed is strongly reduced and communication
bottlenecks can be avoided. The adaptation of percep-
tual aspects from biological vision to artificial systems,
which is known as active vision and active perception,
is briefly explained in section 2 as the principal motiva-
tion of this work. Consequently, the main originality of
this work is to use the concepts developed in active vi-
sion and more generally in bio-inspired computer vision
in order to design suitable hardware. In the third section,
the hardware of the smart camera is described. The tech-
nological choices are argued according to the objectives
given in the previous section. The different modules are
fully described and the different data flows are explained.
The fourth section presents the core of the FPGA de-
sign, in particular the specific modules like the address
generation unit or the Fixed Pattern Noise (FPN) cor-
rection unit. Finally, we present the results of two image
processing algorithms (motion detection and high-speed
template tracking implementation).
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2 Active vision systems

One of the numerous objectives in artificial vision re-
search is to build computer systems that analyze images
automatically, determining what the computer ”sees” or
”recognizes” and ”understands” from the environment.

In what follows, the problem is to perform the process of
interpretation of sensorial data within an environmental
model. The first ways of treating the ”vision problem”
used passive vision and dynamic vision approaches. Pas-
sive vision comprises the classical analysis of images. The
approach that David Marr explicitly advocated [20] and
to which many others subscribe, it has led to a thriv-
ing research field that has been dominant in visual sci-
ence in recent years. From David Marr, ”Vision is a
process that produces from images of the external world
a description that is useful to the viewer and not clut-
tered with irrelevant information”. David Marr proposes
a model of visual processing that begins by identifying
the ”zero-crossings” (edges) in the image, uses this edge
information to provide a crude segmentation of surfaces
called the 2-D sketch, and finally extracts from this sketch
the three-dimensional spatial information. That spatial
interpretation is expressed in terms of geometrical prim-
itives such as generalized cylinders or cones, so that the
only data which must be explicitly stored are the x, y,
z locations, alpha, beta, gamma orientations, and aspect
ratios of each of the cylinders and a symbolic code of
the relations between them. In this way the complex
scene is reduced to a highly compressed set of meaningful
numbers. The problem with this model is that nobody
has ever been able to define how such spatial informa-
tion can be reliably extracted from the scene. Moreover,
the visual world contains far too many ambiguities to be
handled successfully. Dynamic vision is a complementary
approach which corresponds to the study of visual infor-
mation, but in an unbounded sequence of views. This ap-
proach introduces time into the image processing, while
movement (measured by optical flow) is used in the per-
ception process. Some classical approaches using these
strategies revolve around recovering structure from mo-
tion.

In contrast to these two approaches, [4], [6] and [7] have
proposed the active vision approach. Active vision tech-
niques are derived from attempts to simulate the human
visual system. In human vision, head motion, saccadic
eye movement, and the eye’s adaptation to lighting vari-
ations are important in the perception process. Active
vision therefore aims to simulate the power of this adap-
tation. In other words, active vision is an alternative
approach to dealing with artificial vision problems. The
central idea, also known as the task-driven paradigm, is
to take into account the perceptual aspect of visual tasks.
Therefore, instead of a full 3D representation of the ob-
served scene, the system is supposed to extract only the
information useful for solving a given problem, through a

task-driven observation strategy (Figure 1).

Figure 1: Saccadic eye movements and task-driven strat-
egy: Examples of eye-scanning records obtained
by Yarbus [1]. Observers were given different in-
structions while viewing the picture ”They did
not expect him” by Ilya Repin. Each of the traces
shows a three minute record of eye scanning with
the following instructions: a- Free examination,
b- Following request to give the ages of the peo-
ple, c- Remember the position of the people and
objects in the room.

An artificial active vision system uses observer-controlled
input sensors. Its main goal must be actively to extract
the requested information in order to solve a given task.
A wide literature proposes many systems built around
the active vision paradigm. The majority of these systems
have been driven by the ”robotic” approach and are based
on a robotic head. A large survey up to 1996 can be found
in [5] and in [26].

Another trend considers algorithmic aspects and focuses
on gaze control using foveated sensors with a log-polar
mapping. This method can be applied at the sensor
level (imager), at the image processing level or both.
At the sensor level, some dedicated imagers based on
logarithmic-structured space-variant pixel geometry have
been implemented. The main advantage of these methods
is the ability to cover wide work-spaces with high acuity
and a small number of pixels. Several descriptions of
the advantages of using space-variant, or logmap, archi-
tectures for video sensors have been proposed [3][2][24].
Another logmap device consists of an emulated sensor
based on a conventional CCD and an image warp algo-
rithm embedded on a microcontroller [8]. More recently,
a new trend towards smaller active vision systems com-
parable in size to the human head is pushing the limit of
motor, gearbox and camera design [19, 23, 25].

However, as mentioned above, most work dedicated to
active vision systems is concentrated in the robotic field.
In contrast, the main motivation for the work presented
here, is to propose a system truly resulting from the hu-
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man visual system. Consequently, our approach needs a
dedicated architecture for which the FPGA proves to be
essential. This architecture is presented and discussed in
the next section.

3 Architectural features

The main purpose of our architecture is to allow the im-
plementation of early vision processes as in the human or
primate visual system. In these systems it is well known
that the first neural layers (in the retina) pre-filter the
visual data flow in order to select only the conspicuous
information. From this pre-filtered information, an at-
tentional processing allows focusing on the selected tar-
get. In the literature, several computational models of
visual attention can be found. The first representative
model was proposed by Koch and Ullman in [18] and has
been recently revised by Itti [17]. In these models, the
purpose of the saliency map is to combine the ”salient”
or ”conspicuous” location information from each of the
lower feature maps into a global measure to determine
how different a given location is from its surroundings.
This technique is used to guide selective attention. The
design of our active vision system is based on this kind
of approach where we assume that the strategy of visual
processes can be divided into three successive tasks:

Attention: This is the initializing step of the
process. Whole images are grabbed while waiting
for the building of the saliency maps. These maps
are built in parallel and represent/code conspicuity
within the visual field along particular dimensions
(e.g. color, orientation, or motion). The result of
this step is a set of ROIs (Regions Of Interest).

Focusing: This step allows the generation of the
geometry of an ROI (rectangular, tilted, foveal, cir-
cular, . . . ) and the optimization of the Signal/Noise
Ratio: Contrast optimization in an ROI[21], Track-
ing of an ROI in motion, . . .

High-level processing: This last step comprises
different kinds of tasks such as identification and
classification.

The attention stage needs strong parallelization, on the
one hand to respect real-time constraints, and on the
other hand because of the intrinsic characteristics of the
algorithms. As examples, some classical algorithms in
an attention task used to build an efficient saliency map
are motion detection, Gabor filters, and color segmen-
tation. However, the characteristics of particular visual
tasks may require dedicated image processing and only
an FPGA approach allows such flexibility. For architec-
tures such as these, a Stratix EP1S60 from Altera has
been chosen. This choice is detailed below. The need for

strong parallelization was what led us to connect 5×2MB
SRAM synchronous memory blocks. Each 2MB memory
has private data and address buses. Consequently, in the
FPGA, 5 attention processes (using 2MB each) can ad-
dress all the memory at the same time and an SDRAM
module socket provides an extension of the memory to 64
MB (Figure 2).

The focusing stage must control the imaging devices in
order to address only the ROI and to optimize the ana-
log signal conversion. That is the reason why the sensing
board has been designed around a CMOS imager and a
set of 4 Digital/Analog Converters. A set of inertial sen-
sors has been added in order to estimate the movements
of the camera and improve the perception (stabilization
and depth estimation [22]).

In our approach, the high-level processing has to be per-
formed on a host computer rather than on the embedded
system. In order to send the data, the smart camera is
connected via a high speed communication (USB2.0 or
FireWire).

Figure 2: Architecture of the sensor

The embedded system is integrated into a modular ar-
chitecture consisting of three boards: the sensing board,
the processing board and the communication board. An
overview of the smart camera is shown in Figure 3 and a
structural description presents the stacked structure with
3 boards.

3.1 System On Programmable Chip Features
As described in the previous section, the sensor was de-
signed around a Stratix EP1S60 manufactured by Altera.
This component enables a high density of integration
(57120 Logic Elements). It also has three further main
advantages which guided our choice.

Firstly, the Stratix is optimized to maximize the perfor-
mance benefits of SOPC integration based on a NIOS
embedded processor. A NIOS processor is a user-
configurable soft core processor, allowing many imple-
mentation and optimization options. The NIOS CPU is
a pipelined general-purpose RISC microprocessor which
supports both 32-bit and 16-bit architectural variants.
Both 16 and 32-bit variants use 16-bit instructions. For
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Figure 3: a - Front-view of the camera, b- Back-view of the
camera, c - Structural description

our sensor, the main advantage of this soft core processor
is its extensibility and adaptability. Indeed, users can in-
corporate custom logic directly into the NIOS arithmetic
logic unit (ALU). Furthermore, thanks to a dedicated bus
(Avalon Bus), users can also connect into the SOPC on-
chip processor and custom peripherals. They can thus
define their own instructions and processor peripherals
to optimize the system for a specific application.

Secondly, the Stratix integrates DSP Blocks. These em-
bedded DSP Blocks have been optimized to implement
several DSP functions with maximum performance and
minimum logic resource utilization. Each DSP block of-
fers multipliers, adders, subtractors, accumulators and a
summation unit, functions that are frequently required in
typical DSP algorithms. Each DSP block can also sup-
port a variety of multiplier bit sizes (9×9, 18×18, 36×36)
and operation modes (multiplication, complex multiplica-
tion, multiply-accumulation and multiply-addition) and
can offer a DSP throughput of 2.8 GMACS per DSP
block. The EP1S160 device has 18 DSP Blocks that
can support up to 144 9×9 multipliers. These embed-
ded DSP Blocks can also be used to create DSP algo-
rithms and complex math routines in high-performance
hardware. These can then be accessed as regular soft-
ware routines or implemented as custom instructions on
the NIOS CPU. For example, a cumbersome algorithm
can be implemented in hardware and directly executed
in software using a custom instruction. This gives de-
signers the flexibility and portability of high-level soft-
ware design, while maintaining the performance benefits
of parallel hardware operations in FPGAs.

Lastly, the Stratix device incorporates a configurable in-
ternal memory called TriMatrix memory. The TriMatrix

memory is composed of three sizes of embedded RAM
blocks. The Stratix EP1S60 TriMatrix memory includes
574 M512 blocks (32×18 bits), 292 M4K blocks (128×36
bits), and 6 M-RAM blocks (4K×144 bits). Each of these
blocks can be configured to support a wide range of fea-
tures and to synthesize a wide variety of RAM (FIFO,
double ports). With up to 5 Mbits of fast RAM, the
TriMatrix memory structure is therefore appropriate for
handling the bottlenecks arising in sensor vision algo-
rithms.

3.2 Sensing device
This module consists of a CMOS imager manufactured by
Neuricam, two 2D-accelerometers from Analog Devices
and three 1D-gyrometers from Murata. The imager al-
lows full 2D addressing with a column bus and a row
bus. It has a resolution of 640×480 (VGA) and provides
a broad dynamic range (120db) due to the logarithmic re-
sponse of its pixel structure. Four digital-to-analog con-
verters allow modification of the four analog voltages of
the imager: analog signal offset, digital conversion range,
voltage reference and a pixel precharge voltage. These
four converters are used to optimize the conversion range.
In effect, the CMOS imager has a logarithmic curve that
enables the broad dynamic range (120dB).

Figure 4: Sensing board (a) Front view (b) back view- The
white circles show the 4 Digital-Analog Convert-
ers. (c) Orthogonal board. (d) Global synoptic of
the sensing boards.

The inertial set is composed of two 2D linear accelerome-
ters ADXL311 designed by Analog Devices and three gy-
rometers ENC03−M designed by Murata. These sensors
are soldered onto the imager PCB and aligned with the
imager axis. A single 8-input analog-to-digital converter
allows conversion of the different axis measurements. It is
important to notice that a temperature sensor is included
in this board to regulate the inertial sensors’ deviations.
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4 Architectural Design

The major difference between biological and artificial vi-
sion systems most probably lies in their flexibility. In or-
der to develop adaptive capacities, the hardware architec-
ture previously described is designed to implement some
specific low-level processing dedicated to early vision.
This low-level processing attempts to establish an effi-
cient interface between sensitive elements and high-level
perception systems. As explained in section 3, our strat-
egy for efficient visual perception is based on three lay-
ers: attention, focusing and high-level processing. This
approach adopts a pyramidal method which reduces the
amount of data flow. Typically, we can consider a simple
system built around an attentional module based only on
color segmentation and a focusing module based on tem-
plate tracking (Figure 5) In the following, a detailed de-

Figure 5: Example of perception strategy

scription of the FPGA organization is presented. All the
”standard modules” (FPN correction, Addressing mod-
ule) are described and designs for focusing and attentional
modules are proposed.

4.1 Implementation approach
The implementation of such an approach requires the
management, sequentially and concurrently, of the exe-
cution of the routines previously described. Indeed, all
task-oriented execution (attention, focusing and identifi-
cation) is controlled by supplied results and these three
layers possibly have to share areas of interest. Moreover,
the information bottleneck located in the imager level
should be continuously optimized to ensure high perfor-
mance. In our hardware architecture, these functions are
carried out by what we term a “Sequencer” (6-M0) and
are performed on the NIOS soft core processor. This
solution has two main advantages. Firstly, we benefit
from software flexibility to define the routines’ interac-
tions, and secondly, the soft core processor allows an ef-
ficient architectural matching with the other parts of the
supervision unit.

An internal RAM (Figure 6-R0) is used to store the in-
struction sequences which define the sequencer behavior
according to the task under consideration. The host com-
puter which uses our embedded system communicates
with it through a standard communication bus (USB 2.0
protocol) and sends requests in order to indicate to the
sequencer the relevant behavior to adopt. More precisely,
according to the controls (and potentially a set of para-
meters) are passed in a dedicated stack, the sequencer
chooses pre-established interactions between the modules
(Figure 6-P4) which constitute a dedicated processing
chain. This architectural module implements the pre-
viously described routines of environmental adaptation,
attention, focusing and low-level identification (Figure 6-
P6). A number of these modules, due to environmen-
tal adaptation (Processing No. 1 to i), modify the pixel
flow which is going to be used by the attention, focus-
ing and identification modules (Processing No. j to j+1).
The different data flows (corrected windows of interest
and inertial measurements) can be used by these mod-
ules to perform computing. The set of results that are
provided by these processing modules are collected in a
buffer. This is how the sequencer selects results to send
to the host computer. The sequencer is going to use a
part of these results to perform visual feedback on sens-
ing devices (Figure 6-S0) using dedicated control modules
(Figure 6-P0, P1 and P3). We note in Figure 6 the mod-
ule P2 which works the external RAM R1. This module
performs the Fixed Pattern Noise Correction which is ab-
solutely essential with the image sensor technology we use
(described in section 4.3). Lastly, the dedicated commu-
nication module P5 is a multiplexer that synchronizes the
corrected pixels flows and the sequencer results flows for
sending to the host computer.
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Figure 6: Block diagram of architecture adopted

The sequencer constitutes an active interface between the
sensing device, processing chain and the host computer.
The modular processing chain is synchronized with raw
pixel flow control provided by the CMOS imager. Finally,
this control allows dynamic control of the global sensor
state according to global visual data coherence.

4.2 Addressing module (Figure 6-P0)
The goal of the address generator device is to com-
pute line and column addresses of the current window of
interest. The shape of the window is actually rectangular
and is set by 5 parameters: position (X,Y), size (H,W)
and orientation (α).

The address generation is based on the well-known ”Bre-
senham” graphical algorithm [13]. For the computation
of the tilted rectangular window addresses, we have im-
plemented an architecture based on a recent method for
drawing straight lines suitable for raster-scan displays
and plotters developed by C. Bond[12].

The approach proposed by Bond is based on signal
processing concepts related to resampling, multirate
processing and sample rate conversion. The x-coordinates
of each pixel can be viewed as a uniform sample set,
and the y-coordinates represent another sample set. As-
suming the slope of the line is within the first octant,
the y-coordinate is generated by resampling the set of

x-coordinates. To control this resampling, the fractional
part of the y-coordinate is stored in a control variable as
an integer. The algorithm can be summarized by these
few lines of code:

• Initialization step

Incr=((Y2-Y1)/(X2-X1))*2^n
X=X1
Y=Y1
Cvar=1/2*2^n

• Loop:

repeat{
Cvar+= Incr
Y+= Carry
X++

}
until {X = X2}

(X1, Y 1) and (X2, Y 2) are the coordinates of the
segment represented in Figure 7. n is the number of
bits which are used to store the fractional part of the
y-coordinates. Cvar is the fractional part of the y-
coordinate. Incr is an integer variable used to store slope
value. Carry is an overflow indicator for the operation
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Figure 7: Sampled tilted Line and Octants encoding

Cvar + = Incr;, and (X,Y) are the iterative coordinates
of the line represented in Figure 7.

The extension of the algorithm to other octants is
performed by interchanging the roles of x and y, and
changing the signs of the coordinates x and y. The
internal architecture of the address generator device
is illustrated in Figure 8. The range of window tilt
is encoded in a natural binary-coded variable named
Angle. The first three MSB bits of this variable define
the octant (Figure 8). The other bits of Angle are
used by two functions, based on the Bond algorithm,
to generate the fixed-sample variable FixCoor and the
resampled variable ResCoord for each window of interest
dimension. According to the quadrant, a decoder defines
the sign of the FixCoor and ResCoord variables. When
the line is located in octants 2, 3, 6 or 7, the decoder
causes the use of the complementary angle and the
inversion of FixCoor and ResCoord. Finally, the sum
of the line coordinates, column coordinates and position
vector of the window on the imager give the iterative X
and Y address of each pixel. The implementation of this
module in the FPGA is characterized by the following
parameters:

Total logic elements 150 < 1%
Total memory bits 0 0%

DSP block 9-bit elements 0 0 %
System Clock Frequency 190 MHz

Figure 8: Synoptic diagram of Addressing module

4.3 Fixed Pattern Noise Correction module (P4)

Due to the technological limits, a classical CMOS imager
(without an embedded CDS correction) provides a raw
pixel flow with a high FPN. Indeed, the non-uniformity
of the electrical characteristics of each pixel involves an
additional stage of correction. In order to even out the
electrical response of each pixel, the module called FPN
correction module (Figure 6) subtracts the reference
values (of the FPN) from the pixel flow. These referent
values represent offset differences between each pixel
for the same illumination (Figure 9). The set of these
values constitutes a reference image. In order to carry
out this correction, the sensor integrates a module in
order to load it from an external RAM (Figure 6-R1).
The implementation of this module in the FPGA is
characterized by the following parameters:

Total logic elements 65 < 1%
Total memory bits 85 < 1%

DSP block 9-bit elements 0 0 %
System Clock Frequency 241 MHz

5 Example of attention module implementation:
Motion detection

Based on an image difference method (Figure 10), this al-
gorithm looks for moving objects in a scene. In the image
plan, motion is transduced to temporal and spatial gray-
level changes. This module detects temporal changes and
defines a rectangular window around the moving object.
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(a)

(b)

Figure 9: Images (a) without and (b) with the subtraction
of the image reference

In the first step, a difference image is obtained through
subtraction of images i and i-1. Then the difference im-
age is thresholded, and its vertical projection is calculated
(line by line pixel sum in each column). A peak detector
is applied to the vertical projection, giving the horizontal
position of the moving objects found in the scene. The
horizontal projection inside each vertical zone detected
previously is then calculated, and a second peak detec-
tion is applied to define the vertical position of the moving
objects. In this way, it is possible to define the position
of several moving objects in the image simultaneously.
This information can be used as a parameter for another
algorithm, such as a tracker.

6 Example of focusing module: Template
tracking

As explained in paragraph 2.2, we assume that an active
vision process can be split into three layers: attention, fo-
cusing and interpretation. The custom module proposed

Figure 10: Motion detection processus

as an example in this section is a solution to the focus-
ing layer. A design dedicated to an efficient template
tracking implementation is presented. The main idea of
template tracking is to estimate the displacement of a
focusing window called W between time t and t + ∂t.

Figure 11: Template tracking module

This module (Figure 11) comprises two parts: a mem-
ory to store the reference template denoted I∗ and a
dedicated architecture for the displacement estimation.
The architecture adopted is based on a derivation of the
Kanade-Lucas-Tomasi algorithm [14]. This algorithm is
an iterative method to estimate displacement between
two frames (I∗ and I). The proposed method is based
on the calculation of the dissimilarity between two im-
ages as follows:

ε =
∫ ∫

W

[
I(x +

d
2

)− I∗(x− d
2

)
]2

w(x)dx

where x = [x y]T , the displacement d = [dx dy]T =
∂x
∂t , and the weighting function w(x) is usually set to the
constant 1. To find the displacement d, we set ∂ε

∂d to
zero. If we consider the Taylor series expansion of I and
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I∗ respectively about x− d
2 and x + d

2 , we obtain:

∂ε

∂d
=

∫ ∫

W

[
I(x)− I∗(x) +

1
2
gT (x)d

]
g(x)w(x)dx = 0

where g =
[ ∂

∂x (I + I∗)
∂
∂y (I + I∗)

]
.

Finally, the displacement d can be estimated by solving
the equation:

Zd = e

where Z is the following 2x2 matrix

Z =
∫ ∫

W

g(x)gT (x)w(x)dx

and e is the following 2x1 vector:

e = 2
∫ ∫

W

[I∗(x)− I(x)]g(x)w(x)dx

Due to the Taylor expansion, this algorithm is not exact
and needs iterations to find the correct displacement. The
estimated displacement at each iteration i is denoted si =
(sx sy)T and is calculated by:

s = 2.Z−1.e

where
e =

( ∑
W D.Gx

∑
W D.Gy

)t

and

Z =
( ∑

W Gx.Gx
∑

W Gx.Gy∑
W Gx.Gy

∑
W Gy.Gy

)

.

where Gx = ∂(I+I∗)
∂x , Gy = ∂(I+I∗)

∂y and D = (I∗ − I) is
the interframe difference.

The displacement d = (dx dy)T is the result of the iter-
ative process such that

d =
i=N∑

i=1

si

where N is the maximum number of iterations allowed by
the processing. In our case, because of NIOS control, the
iterative process is limited to 80 MHz and the pixel flow
runs at 8 MHz (corresponding to N = 80

8 = 10 iterations
max).

The architecture developed to implement this algorithm
is presented in Figure 12. The first module called ”storage
device” allows the storage of the reference frame I∗ and
swapping of the current pixel flow between two double-
port memories. This module performs the two functions
simultaneously in order to ensure the pixel flow rate. The
displacement between the reference template I∗ and cur-
rent window I of interest is simultaneously computed dur-
ing the storage of the next window of interest.

Figure 12: Implemented architecture

In the first step, the difference (sub) between the two
images and the spatial derivatives of their sum (add) are
computed and synchronized. The computation of spatial
derivatives (Gx and Gy) is based on a set of FIFOs and
multiplier-accumulators which apply a (3×3) convolution
mask to the data flow. The convolution kernel mask is
the Gaussian derivative function.

In the second step, Gx, Gy and Subd are applied to a set
of multipliers in order to compute the coefficients GxGx,
GxGy, GyGy, GxD and GxD. The accumulation of each
allows computation of the elements of Z and e.

The solution is obtained by the evaluation of the following
three determinants:

Λ =
∑

W

Gx.Gx.
∑

W

Gy.Gy − (
∑

W

Gx.Gy)2

Λx =
∑

W

D.Gx.
∑

W

Gy.Gy −
∑

W

D.Gy.
∑

W

Gx.Gy

Λy =
∑

W

Gx.Gx
∑

W

D.Gy −
∑

W

Gx.Gy.
∑

W

D.Gx

According to the signs and the comparison of Λ, Λx and
Λy, the displacement counters CTx, CTy are updated as
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follows :

if ‖Λx‖ > ‖Λ‖
4

then
if sign(Λx)⊕ sign(Λ)

then CTx −−
else CTx + +

and

if ‖Λy‖ > ‖Λ‖
4

then
if sign(Λy)⊕ sign(Λ)

then CTy −−
else CTy + +

The updating of the reference template position is car-
ried out according to the counter values. This process
is iteratively repeated and allows detection of the correct
translation vector between the two frames. Lastly, the es-
timated translation vector is used to update the position
of the window of interest in the CMOS imager in order
to track the reference template.

The implementation of this architecture on a Stratix
EP1S60 leads to the following parameters:

Total logic elements 4238 7 %
Total memory bits 546 816 10%

DSP block 9-bit elements 94 65 %
System Clock Frequency of the design 140 MHz

To illustrate the algorithm, several images and simulation
results are presented. This simulation was performed us-
ing ModelSim software with the VHDL description of our
system.

Figure 13: Results of the template tracking architecture.
To evaluate the robustness of the approach, the
image is artificially moved with a given displace-
ment indicated under each image.

7 Conclusion

The computation of low-level vision tasks in real-time
is the first and fundamental step in building an interac-
tive vision system. This paper proposes an alternative
to classical architectures with a highly versatile architec-
ture dedicated to early image processing. The proposed
embedded system attempts to define a global coordina-
tion between sensitive elements, low-level processing and
visual tasks.

The approach, based on FPGA Technology and a CMOS
imager, reduces the classical bottleneck between sensor
and processing. The FPGA component ensures a high
interaction rate between the CMOS imager and low-
level processing. This interaction is used to select use-
ful information earlier in the acquisition chain than for
more traditional systems. It then focuses processing re-
sources. This capacity is used to control the sensor state
according to the visual task and the environment evo-
lution. Our implementation of the FPGA and CMOS
imager technologies results in high-speed vision, real-
environment vision and the efficient design of embedded
systems. Among prospective algorithm candidates, we
can cite the works performed on dynamically reconfig-
urable components such as the ARDOISE1 project [16].
This evolution of FPGA technology seems to be attractive
for performing dynamic control of the acquisition chain.
Rather than having a control system state, the system it-
self can be physically changed and giving a higher level of
suitability for many algorithms. We have also developed
a DSP board in order to improve the computation capa-
bilities of our system. With this device, our embedded
system will evolve into a heterogeneous architecture and
new research into co-design between the FPGA and the
DSP will be necessary.

Moreover, to test the validity of our approach, several
visual tasks will be implemented. Our objective is to
identify elementary functions in order to define a library
of architectural modules. Of course, this library will pro-
vide efficient solutions to attention resolution, focusing
and identification of sub-tasks according to specific ap-
plications. Finally, we plan to work on the development
of software tools to facilitate the implementation of com-
plex vision tasks
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