
HAL Id: hal-01626034
https://hal.science/hal-01626034

Submitted on 30 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Numerical approximation of general Lipschitz BSDEs
with branching processes

Bruno Bouchard, Xiaolu Tan, Xavier Warin

To cite this version:
Bruno Bouchard, Xiaolu Tan, Xavier Warin. Numerical approximation of general Lipschitz BSDEs
with branching processes. ESAIM: Proceedings and Surveys, 2019, 65, pp.309-329. �hal-01626034�

https://hal.science/hal-01626034
https://hal.archives-ouvertes.fr

Numerical approximation of general Lipschitz
BSDEs with branching processes

Bruno Bouchard∗† Xiaolu Tan∗‡ Xavier Warin§¶

October 30, 2017

Abstract

We extend the branching process based numerical algorithm of
Bouchard et al. [3], that is dedicated to semilinear PDEs (or BSDEs)
with Lipschitz nonlinearity, to the case where the nonlinearity involves
the gradient of the solution. As in [3], this requires a localization proce-
dure that uses a priori estimates on the true solution, so as to ensure
the well-posedness of the involved Picard iteration scheme, and the
global convergence of the algorithm. When, the nonlinearity depends
on the gradient, the later needs to be controlled as well. This is done by
using a face-lifting procedure. Convergence of our algorithm is proved
without any limitation on the time horizon. We also provide numerical
simulations to illustrate the performance of the algorithm.

Keywords: BSDE, Monte-Carlo methods, branching process.

MSC2010: Primary 65C05, 60J60; Secondary 60J85, 60H35.
∗Université Paris-Dauphine, PSL Research University, CNRS, UMR [7534], CERE-

MADE, 75016 PARIS, FRANCE.
†bouchard@ceremade.dauphine.fr
‡tan@ceremade.dauphine.fr
§EDF R&D & FiME, Laboratoire de Finance des Marchés de l’Energie
¶warin@edf.fr

1

1 Introduction

The aim of this paper is to extend the branching process based numerical
algorithm proposed in Bouchard et al. [3] to general BSDEs in form:

Y· = g(XT) +

∫ T

·
f(Xs, Ys, Zs) ds−

∫ T

·
Z>s dWs, (1.1)

whereW is a standard d-dimensional Brownian motion, f : Rd×R×Rd → R
is the driver function, g : Rd → R is the terminal condition, and X is the
solution of

X = X0 +

∫ ·
0

µ(Xs) ds+

∫ ·
0

σ(Xs) dWs, (1.2)

with constant initial condition X0 ∈ Rd and coefficients (µ, σ) : Rd 7→ Rd ×
Rd×d, that are assumed to be Lipschitz1. From the PDE point of view, this
amounts to solving the parabolic equation

∂tu+ µ ·Du+
1

2
Tr[σσ>D2u] + f

(
·, u,Duσ

)
= 0, u(T, ·) = g.

The main idea of [3] was to approximate the driver function by local poly-
nomials and use a Picard iteration argument so as to reduce the problem to
solving BSDE’s with (stochastic) global polynomial drivers, see Section 2,
to which the branching process based pure forward Monte-Carlo algorithm
of [12, 13, 14] can be applied. See for instance [16, 17, 18] for the related
Feynman-Kac representation of the KPP (Kolmogorov-Petrovskii-Piskunov)
equation.
This algorithm seems to be very adapted to situations where the original
driver can be well approximated by polynomials with rather small coefficients
on quite large domains. The reason is that, in such a situation, it is basically
a pure forward Monte-Carlo method, see in particular [3, Remark 2.10(ii)],
which can be expected to be less costly than the classical schemes, see e.g. [1,
4, 5, 11, 21] and the references therein. However, the numerical scheme of [3]
only works when the driver function (x, y, z) 7→ f(x, y, z) is independent of
z, i.e. the nonlinearity in the above equation does not depend on the gradient
of the solution.

1As usual, we could add a time dependency in the coefficients f , µ and σ without any
additional difficulty.

2

Importantly, the algorithm proposed in [3] requires the truncation of the
approximation of the Y -component at some given time steps. The reason is
that BSDEs with polynomial drivers may only be defined up to an explosion
time. This truncation is based on a priori estimates of the true solution. It
ensures the well-posedness of the algorithm on an arbitrary time horizon, its
stability, and global convergence.
In the case where the driver also depends on the Z component of the BSDE, a
similar truncation has to be performed on the gradient itself. It can however
not be done by simply projecting Z on a suitable compact set at certain time
steps, since Z only maters up to an equivalent class of ([0, T]× Ω, dt× dP).
Alternatively, we propose to use a face-lift procedure at certain time steps,
see (2.10). Again this time steps depend on the explosion times of the corre-
sponding BSDEs with polynomial drivers. Note that a similar face-lift pro-
cedure is used in Chassagneux, Elie and Kharroubi [6]2 in the context of the
discrete time approximation of BSDEs with contraint on the Z-component.

We prove the convergence of the scheme. The very good performance of this
approach is illustrated in Section 4 by a numerical test case.

Notations: All over this paper, we view elements of Rd, d ≥ 1, as col-
umn vectors. Transposition is denoted by the superscript >. We consider
a complete filtered probability space (Ω,F ,F = (Ft)t≤T ,P) supporting a d-
dimensional Brownian motion W . We simply write Et[·] for E[·|Ft], t ≤ T .
We use the standard notations S2 (resp. L2) for the class of progressively
measurable processes ξ such that ‖ξ‖S2 := E[sup[0,T] ‖ξ‖2]

1
2 (resp. ‖ξ‖L2 :=

E[
∫ T

0
‖ξs‖2ds]

1
2) is finite. The dimension of the process ξ is given by the con-

text. For a map (t, x) 7→ ψ(t, x), we denote by ∂tψ is derivative with respect
to its first variable and by Dψ and D2ψ its Jacobian and Hessian matrix
with respect to its second component.

2 Approximation of BSDE using local polyno-
mial drivers and the Picard iteration

For the rest of this paper, let us consider the (decoupled) forward-backward
system (1.1)-(1.2) in which f and g are both bounded and Lipschitz contin-

2We are grateful to the authors for several discussions on this subject.

3

uous, and σ is non-degenerate such that there is a constant a0 > 0 satisfying

σσ>(x) ≥ |a0|2Id, ∀x ∈ Rd. (2.1)

We also assume that µ, σ, Dµ and Dσ are all bounded and continuous. In
particular, (1.1)-(1.2) has a unique solution (X, Y, Z) ∈ S2 × S2 × L2. The
above conditions indeed imply that |Y |+‖σ(X)−1Z‖ ≤M on [0, T], for some
M > 0.

Remark 2.1. The above assumptions can be relaxed by using standard lo-
calization or mollification arguments. For instance, one could simply assume
that g has polynomial growth and is locally Lipschitz. In this case, it can
be truncated outside a compacted set so as to reduce to the above. Then,
standard estimates and stability results for SDEs and BSDEs can be used to
estimate the additional error in a very standard way. See e.g. [7].

2.1 Local polynomial approximation of the generator

As in [3], our first step is to approximate the driver f by a driver f◦ that has
a local polynomial structure. The difference is that it now depends on both
components of the solution of the BSDE. Namely, let

f◦(x, y, z, y
′, z′) :=

j◦∑
j=1

∑
`∈L

cj,`(x)y`0
q◦∏
q=1

(bq(x)>z)`qϕj(y
′, z′), (2.2)

in which (x, y, z, y′, z′) ∈ R × R × Rd × R × Rd, L := {0, · · · , L◦}q◦+1 (with
L◦, q◦ ∈ N), the functions (bq)0≤q≤q◦ and (cj,`, ϕj)`∈L,1≤j≤j◦ (with j◦ ∈ N) are
continuous and satisfy

|cj,`| ≤ CL , ‖bq‖ ≤ 1, |ϕj| ≤ 1, and ‖Dϕj‖ ≤ Lϕ, (2.3)

for all 1 ≤ j ≤ j◦, 0 ≤ q ≤ q◦ and ` ∈ L, for some constants CL, Lϕ ≥ 0.
For a good choice of the local polynomial f◦, we can assume that

(x, y, z) 7→ f̄◦
(
x, y, z

)
:= f◦

(
x, y, z, y, z

)
is globally bounded and Lipschitz. Then, the BSDE

Ȳ· = g(XT) +

∫ T

·
f̄◦(Xs, Ȳs, Z̄s) ds−

∫ T

·
Z̄>s dWs, (2.4)

4

has a unique solution (Ȳ , Z̄) ∈ S2 × L2, and standard estimates imply that
(Ȳ , Z̄) provides a good approximation of (Y, Z) whenever f̄◦ is a good ap-
proximation of f :

‖Y − Ȳ ‖S2 + ‖Z − Z̄‖L2 ≤ C◦ ‖(f − f̄◦)(X, Y, Z)‖L2 , (2.5)

for some C◦ > 0 that depends on the global Lipschitz constant of f̄◦ (but not
on the precise expression of f̄◦), see e.g. [7].
One can think at the (cj,`)`∈L as the coefficients of a polynomial approxima-
tion of f in terms of (y, (bq(x)>z))q≤q◦ on a subset Aj, the Aj’s forming a
partition of [−M,M]1+d. Then, the ϕj’s have to be considered as smooth-
ing kernels that allow one to pass in a Lipschitz way from one part of the
partition to another one.
The choice of the basis functions (bq)q≤q◦ as well as (ϕj)1≤j≤j◦ will obviously
depend on the application, but it should in practice typically be constructed
such that the sets

Aj := {(y, z) ∈ R× Rd : ϕj(y, z) = 1} (2.6)

are large and the intersection between the supports of the ϕj’s are small. See
[3, Remark 2.10(ii)] and below. Finally, since the function f̄◦ is chosen to be
globally bounded and Lipschitz, by possibly adjusting the constant M , we
can assume without loss of generality that

|Ȳ |+ ‖Z̄>σ(X)−1‖ ≤ M. (2.7)

For later use, let us recall that Ȳ is related to the unique bounded and
continuous viscosity solution ū of

∂tū+ µ ·Dū+
1

2
Tr[σσ>D2ū] + f̄◦

(
·, ū, Dūσ

)
= 0, ū(T, ·) = g,

though

Ȳ = ū(·, X). (2.8)

Moreover,

ū is bounded by M and M -Lipschitz.

5

2.2 Picard iteration with truncation and face-lifting

Our next step is to introduce a Picard iteration scheme to approximate the so-
lution Ȳ of (2.4) so as to be able to apply the branching process based forward
Monte-Carlo approach of [12, 13, 14] to each iteration: given (Ȳ m−1, Z̄m−1),
use the representation of the BSDE with driver f◦(X, ·, ·, Ȳ m−1, Z̄m−1).
However, although the map (y, z) 7→ f̄◦(x, y, z) = f◦(x, y, z, y, z) is glob-
ally Lipschitz, the map (y, z) 7→ f◦(x, y, z, y

′, z′) is a polynomial, given fixed
(x, y′, z′), and hence only locally Lipschitz in general. In order to reduce to a
Lipschitz driver, we need to truncate the solution at certain time steps, that
are smaller than the natural explosion time of the corresponding BSDE with
(stochastic) polynomial driver. As in [3], it can be performed by a simple
truncation at the level of the first component of the solution. As for the
second component, that should be interpreted as a gradient, a simple trun-
cation does not make sense, the gradient needs to be modified by modifying
the function itself. Moreover, from the BSDE viewpoint, Z is only defined
up to an equivalent class on ([0, T]× Ω, dt× dP), so that changing its value
at a finite number of given times does not change the corresponding BSDE.
We instead use a face-lifting procedure, as in [6].

More precisely, let us define the operatorR on the space of bounded functions
ψ : Rd 7→ R by

R[ψ] := (−M) ∨

[
sup
p∈Rd

(
ψ(·+ p)− δ(p)

)]
∧M,

where

δ(p) := sup
q∈[−M,M]d

(p>q) = M
d∑
i=1

|pi|.

The operation ψ 7→ supp∈Rd
(
ψ(· + p) − δ(p)

)
maps ψ into the smallest M -

Lipschitz function above ψ. This is the so-called face-lifting procedure, which
has to be understood as a (form of) projection on the family of M -Lipschitz
functions, see e.g. [2, Exercise 5.2], see also Remark 2.2 below. The outer
operations in the definition of R are just a natural projection on [−M,M].

Let now (h◦,Mh◦) be such that (A.3) and (A.4) in the Appendix hold. The
constant h◦ is a lower bound for the explosion time of the BSDE with driver
(y, z) 7→ f◦(x, y, z, y

′, z′) for any fixed (x, y′, z′). Let us then fix h ∈ (0, h◦)

6

such that Nh := T/h ∈ N, and define

ti = ih and T := {ti, i = 0, · · · , Nh}.

Our algorithm consists in using a Picard iteration scheme to solve (2.4),
which re-localize the solution at each time step of the grid T by applying
operator R.
Namely, using the notation X t,x to denote the solution of (1.2) on [t, T] such
that X t,x

t = x ∈ Rd, we initialize our Picard scheme by setting

Y x,0
T = Ȳ x,0

T = g(x)

(Y x,0, Zx,0) = (Ȳ x,0, Z̄x,0) = (y, Dy)(·, X ti,x) on [ti, ti+1), i ≤ Nh − 1,

in which y is a continuous function, M -Lipschitz in space, continuously dif-
ferentiable in space on [0, T) × Rd and such that |y| ≤ M and y(T, ·) = g.
Then, given (Ȳ x,m−1, Z̄x,m−1), for m ≥ 1, we define (Ȳ x,m, Z̄x,m) as follows:

1. For i = Nh, set ūmti = ūmT := g

2. For i < Nh, given (Ȳ x,m−1, Z̄x,m−1):

(a) Let (Y x,m
· , Zx,m

·) be the unique solution on [ti, ti+1) of

Y x,m
· = ūmti+1

(X ti,x
ti+1

)

+

∫ ti+1

·
f◦
(
X ti,x
s , Y x,m

s , Zx,m
s , Ȳ x,m−1

s , Z̄x,m−1
s

)
ds

−
∫ ti+1

·
(Zx,m

s)>dWs. (2.9)

(b) Let umti : x ∈ Rd 7→ Y x,m
ti , and set

ūmti := R[umti]. (2.10)

(c) Set Ȳ x,m := Y x,m on (ti, ti+1], Ȳ x,m
ti := ūmti (x), and Z̄x,m := Zx,m

on [ti, ti+1), for x ∈ Rd.

3. We finally define Ȳ m
T = g(XT) and

(Ȳ m, Z̄m) := (Ȳ Xti ,m, Z̄Xti ,m) on [ti, ti+1), i ≤ Nh. (2.11)

7

In above, the existence and uniqueness of the solution (Y x,m, Zx,m) to (2.9) is
ensured by Proposition A.1. The projection operation in (2.10) is consistent
with the behavior of the solution of (2.4), recall (2.7), and it is crucial to
control the explosion of (Ȳ m, Z̄m) and therefore to ensure both the stability
and the convergence of the scheme. This procedure is non-expansive, as ex-
plained in the following Remark, and therefore can not alter the convergence
of the scheme.

Remark 2.2. Let ψ, ψ′ be two measurable and bounded maps on Rd. Then,
supp∈Rd |ψ(· + p) − δ(p) − ψ′(· + p) + δ(p)| = supx∈Rd |ψ(x) − ψ′(x)|, and
therefore ‖R[ψ] − R[ψ′]‖∞ ≤ ‖ψ − ψ′‖∞. In particular, since ū defined
through (2.8) is M-Lipschitz in its space variable and bounded by M , we
have ū(t, ·) = R[ū(t, ·)] for t ≤ T and therefore

‖R[ψ]− ū(t, ·)‖∞ ≤ ‖ψ − ū(t, ·)‖∞

for all t ≤ T and all measurable and bounded map ψ.

Also note that, if we had (Ȳ m−1
t , Z̄m−1

t) ∈ Aj if and only if (Ȳt, Z̄t) ∈ Aj, for
all j ≤ j◦, then we would have (Ȳ m−1, Z̄m−1) = (Ȳ , Z̄), recall (2.6) and the
definition of f̄◦ in terms of f◦. This means that we do not need to be very
precise on the original prior, whenever the sets Aj can be chosen to be large.

From the theoretical viewpoint, the error due to the above Picard iteration
scheme can be deduced from classical arguments. Recall that (h◦,Mh◦) is
such that (A.3) and (A.4) in the Appendix hold.

Theorem 2.1. For each m ≥ 0, the algorithm defined in 1.-2.-3. above
provides the unique solution (Ȳ m, Z̄m) ∈ S2 × L2. Moreover, it satisfies
|Ȳ m| ∨ ‖Z̄m>σ(X)−1‖ ≤ Mh◦, and there exists a measurable map (ūm, v̄m) :
[0, T] × Rd 7→ R1+d, that is continuous on ∪i<Nh(ti, ti+1) × Rd, such that
ūm(ti, ·) is continuous on Rd for all i ≤ Nh, and

Ȳ m = ūm(·, X) on [0, T] P-a.s. (2.12)
Z̄m = v̄m(·, X) dt× dP-a.e. on [0, T]× Ω.
v̄m> = Dūmσ on ∪i<Nh(ti, ti+1)× Rd.

Moreover, for any constant ρ ∈ (0, 1), there is some constant Cρ > 0 such
that

|Ȳ m
t − Ȳt|2 + Et[

∫ T

t

‖Z̄m
s − Z̄s‖2ds] ≤ Cρ ρ

m, for all t ≤ T .

8

Proof. i) Recall from Remark 2.2 that R maps bounded functions into
M -Lipschitz functions that are bounded by M . Then, by Proposition A.1 in
the Appendix, the solutions (Y x,m, Zx,m) as well as (Ȳ x,m, Z̄x,m) are uniquely
defined in and below (2.9). Moreover, one has |Ȳ x,m

t |∨‖(Z̄x,m
t)>σ(X ti,x

t)−1‖ ≤
Mh◦ , for all x ∈ Rd, i < Nh and t ∈ [ti, ti+1). As a consequence, (Ȳ m, Z̄m) is
also uniquely defined and satisfies |Ȳ m|∨‖Z̄m>σ(X)−1‖ ≤Mh◦ . Using again
Proposition A.1, one has the existence of (ūm, v̄m) satisfying the condition in
the statement.
ii) We next prove the convergence of the sequence (Ȳ m, Z̄m)m≥0 to (Ȳ , Z̄).
Since {(Ȳ x,m, Z̄x,m), x ∈ Rd} is uniformly bounded, the generator f◦(x, y,
z, y′, z′) in (2.9) can be considered to be uniformly Lipschitz in (y, z) and
(y′, z′). Assume that the corresponding Lipschitz constants are L1 and L2.
Let us set Θx,m := (Y x,m, Zx,m) and define (∆Y x,m,∆Zx,m) := (Y x,m −
Ȳ x, Zx,m − Z̄x) where Θ̄x := (Ȳ x, Z̄x) denotes the solution of

Ȳ x
· = ū(ti+1, X

ti,x
ti+1

) +

∫ ti+1

·
f̄◦
(
X ti,x
s , Ȳ x

s , Z̄
x
s

)
ds−

∫ ti+1

·
(Z̄x

s)>dWs,

on each [ti, ti+1], recall (2.8). In the following, we fix β > 0 and use the
notation

‖ξ‖β,t := Et[
∫ ti+1

t

eβs|ξs|2ds]
1
2 for ξ ∈ L2, t ∈ [ti, ti+1).

Fix t ∈ [ti, ti+1). By applying Itô’s formula to (eβs(∆Y x,m+1
s)2)s∈[t,ti+1] and

then taking expectation, we obtain

eβt|∆Y x,m+1
t |2 + β‖∆Y x,m+1‖2

β,t + 2‖∆Zx,m+1‖2
β,t

≤ Et
[
eβti+1(∆Y x,m+1

ti+1−)2
]

+ 2Et
[∫ ti+1

t

eβs∆Y x,m+1
s

(
f◦(X

ti,x
s ,Θx,m+1

s ,Θx,m
s)− f◦(X ti,x

s , Θ̄x
s , Θ̄

x
s)
)
ds
]
.

Using the Lipschitz property of f◦ and the inequality λ+ 1
λ
≥ 2 for all λ > 0,

it follows that, for all λ1, λ2 > 0,

eβt|∆Y x,m+1
t |2 + (β − (2L1 + λ1L1 + λ2L2))‖∆Y x,m+1‖2

β,t (2.13)

+ (2− L1

λ1

)‖∆Zx,m+1‖2
β,t

≤ Et
[
eβti+1 |∆Y x,m+1

ti+1− |
2
]

+
L2

λ2

‖∆Y x,m‖2
β,t +

L2

λ2

‖∆Zx,m‖2
β,t.

9

iii) Let us now choose 1 > ρ = ρ0 > ρ1 > · · · > ρNh > 0 such that

(m+ 1)eβh ≤
(ρk
ρk+1

)m+1 for all m ≥ 0. (2.14)

For i = Nh − 1, we have ∆Y x,m
ti+1− = 0 for all m ≥ 1. Choosing λ1, λ2 and

β > 0 in (2.13) such that

L2

λ2

1

β − (2L1 + λ1L1 + λ2L2)
≤ ρNh and

L2

λ2

1

2− L1/λ1

≤ ρNh ,

it follows from (2.13) that, for t ∈ [tNh−1, tNh), ‖∆Y x,m+1‖2
β,t+‖∆Zx,m+1‖2

β,t ≤
C(ρi)

m+1, for m ≥ 0, where

C := esssup sup
(s,x′)∈[0,T]×Rd

eβT
(
|∆Y x′,0

s |2 + ‖∆Zx′,0
s ‖2

)
<∞,

and then, by (2.13) again,

|∆Y x,m+1
t |2 ≤ C(ρi)

m+1, for t ∈ [ti, ti+1), i = Nh − 1, m ≥ 0.

Recalling Remark 2.2, this shows that

|Ȳ x,m+1
t − Ȳ x

t |2 ≤ Ci(ρi)
m+1, for t ∈ [ti, ti+1), i = Nh − 1, m ≥ 0, (2.15)

in which
CNh−1 := C.

Assume now that (2.15) holds true for i+ 1 ≤ Nh and some given Ci+1 > 0.
Recall that ρi ≥ ρNh . Applying (2.13) with the above choice of λ1, λ2 and β,
we obtain

‖∆Y x,m+1‖2
β,t + ‖∆Zx,m+1‖2

β,t ≤ eβhCi+1(ρi+1)m+1

+ ρi
(
‖∆Y x,m‖2

β,t + ‖∆Zx,m‖2
β,t

)
,

which, by (2.14) and the fact that ρi < 1, induces that

‖∆Y x,m+1‖2
β,t + ‖∆Zx,m+1‖2

β,t ≤ (m+ 1)eβhCi+1(ρi+1)m+1

+ (ρi)
m+1
(
‖∆Y x,0‖2

β,t + ‖∆Zx,0‖2
β,t

)
≤ C ′i (ρi)

m+1 (2.16)

10

where
C ′i := Ci+1 + C.

Let us further choose λ2 > 0 such that L2/λ2 ≤ ρNh , and recall that ρi ≥
ρNh . Then, using again (2.13), (2.14), (2.15) applied to i+ 1, we obtain, for
t ∈ [ti, ti+1),

|∆Y x,m+1
t |2 ≤ eβhCi+1(ρi+1)m+1 + C ′i(ρi)

m+1 ≤ Ci(ρi)
m+1,

so that it follows from Remark 2.2 that

|Ȳ x,m+1
t − Ȳ x

t |2 ≤ Ci(ρi)
m+1, (2.17)

where
Ci := eβhCi+1 + C ′i.

Since (Ȳ , Z̄) = (Ȳ Xti , Z̄Xti) and (Ȳ m, Z̄m) = (Ȳ Xti ,m, Z̄Xti ,m) on each [ti, ti+1),
this concludes the proof.

3 A branching diffusion representation for Ȳ m

We now explain how the solution of (2.9) on [ti, ti+1) can be represented by
means of a branching diffusion system. We slightly adapt the arguments of
[13].
Let us consider an element (p`)`∈L ⊂ R+ such that

∑
`∈L p` = 1, set Kn :=

{(1, k2, . . . , kn) : (k2, . . . , kn) ∈ {1, . . . , (q◦ + 1)L◦}n−1} for n ≥ 1, and K :=
∪n≥1Kn. Let (W k)k∈K be a sequence of independent d-dimensional Brownian
motions, (ξk = (ξk,q)0≤q≤q◦)k∈K and (δk)k∈K be two sequences of independent
random variables, such that

P[ξk = `] = p`, ` ∈ L, k ∈ K,

and

F̄ (t) := P[δk > t] =

∫ ∞
t

ρ(s)ds, t ≥ 0, k ∈ K,

for some continuous strictly positive map ρ : R+ → R+. We assume that

(W k)k∈K , (ξk)k∈K , (δk)k∈K and W are independent.

11

Given the above, we construct particles X(k) that have the dynamics (1.2)
up to a killing time Tk at which they split in ‖ξk‖1 := ξk,0 + · · · ξk,q◦ different
(conditionally) independent particles with dynamics (1.2) up to their own
killing time. The construction is done as follows. First, we set T(1) := δ1,
and, given k = (1, k2, . . . , kn) ∈ Kn with n ≥ 2, we let Tk := δk + Tk− in
which k− := (1, k2, . . . , kn−1) ∈ Kn−1. We can then define the Brownian
particles (W (k))k∈K by using the following induction: we first set

W ((1)) := W 11[0,T(1)] , K
1
t := {(1)}1[0,T(1)](t) + ∅1[0,T(1)]

c(t), t ≥ 0,

then, given n ≥ 2 and k ∈ K̄n−1
T := ∪t≤TKn−1

t , we let

W (k⊕j) :=
(
W

(k)
·∧Tk +W k⊕j

·∨Tk −W
k⊕j
Tk

)
1[0,Tk⊕j], 1 ≤ j ≤ ‖ξk‖1,

in which we use the notation

(1, k1, . . . , kn−1)⊕ j := (1, k1, . . . , kn−1, j),

and

K̄nt := {k ⊕ j : k ∈ K̄n−1
T , 1 ≤ j ≤ ‖ξk‖1 s.t. t ∈ (0, Tk⊕j]}, K̄t := ∪n≥1K̄nt ,

Knt := {k ⊕ j : k ∈ K̄n−1
T , 1 ≤ j ≤ ‖ξk‖1 s.t. t ∈ (Tk, Tk⊕j]}, Kt := ∪n≥1Knt .

Now observe that the solution Xx of (1.2) on [0, T] with initial condition
Xx

0 = x ∈ Rd can be identified in law on the canonical space as a process of
the form Φ[x](·,W) in which the deterministic map (x, s, ω) 7→ Φ[x](s, ω) is
B(Rd)⊗P-measurable, where P is the predictable σ-filed on [0, T]× Ω. We
then define the corresponding particles (Xx,(k))k∈K by Xx,(k) := Φ[x](·,W (k)).
Moreover, we define the d × d-dimensional matrix valued tangent process
∇Xx,(k) defined on [[Tk−, Tk]] by

∇Xx,(k)
Tk−

= Id (3.1)

d∇Xx,(k)
t = Dµ(X

x,(k)
t)∇Xx,(k)

t dt+
d∑
i=1

Dσi(X
x,(k)
t)∇Xx,(k)

t dW
(k),i
t ,

where Id denotes the d × d-dimensional identity matrix, and σi denotes the
i-th column of matrix σ.

12

Finally, we give a mark 0 to the initial particle (1), and, for every particle
k, knowing ξk = (ξk,0, · · · , ξk,q◦), we consider its offspring particles (k ⊕
j)j=1,··· ,‖ξk‖1 and give the first ξk,0 particles the mark 0, the next ξk,1 particles
the mark 1, the next ξk,2 particles the mark 2, etc. Thus, every particles k
carries a mark θk taking values in 0 to q◦.

Given the above construction, we can now provide the branching process
based representation of (Ȳ m)m≥0. We assume here that (ūm−1, v̄m−1) defined
in (2.12) are given for some m ≥ 1, recall that (ū0, v̄0) = (y, Dy) by construc-
tion. We set ũm(T, ·) = g. Then, for i = Nh − 1, · · · , 0, we define (ũm, ṽm)
on each interval [ti, ti+1) recursively by

ũm(t, x) := E
[
Um
t,x

]
1t6=ti +R[E

[
Um
t,·
]
](x)1t=ti

ṽm(t, x) := E
[
V m
t,x

]
σ(x), (3.2)

for (t, x) ∈ [ti, ti+1)× Rd, in which

Um
t,x :=

[∏
k∈Kti+1−t

Gm
t,x(k)Wt,x(k)

][∏
k∈K̄ti+1−t\Kti+1−t

Amt,x(k)Wt,x(k)
]

V m
t,x := Um

t,x

1

T(1)

∫ T(1)

0

[
σ−1(Xx,(1)

s)∇Xx,(1)
s

]>
dW (1)

r

where

Gm
t,x(k) :=

ũm
(
ti+1, X

x,(k)
ti+1−t

)
− ũm

(
ti+1, X

x,(k−)
Tk−

)
1{θ(k) 6=0}

F̄ (ti+1 − t− Tk−)
,

Amt,x(k) :=

∑j◦
j=1 cj,ξk

(
X
x,(k)
Tk

)
ϕj
(
(ūm−1, v̄m−1)(t+ Tk, X

x,(k)
Tk

)
)

pξk ρ(δk)
,

Wt,x(k) := 1{θk=0} +
1{θk 6=0}

Tk − Tk−
bθk(X

x,(k)
Tk

) ·
∫ Tk

Tk−

[
σ−1(Xx,(k)

s)∇Xx,(k)
s

]>
dW (k)

r .

Compare with [13, (3.4) and (3.10)].

The next proposition shows that (ũm, ṽm) actually coincides with (ūm, v̄m)
in (2.12), a result that follows essentially from [13]. Nevertheless, to be more
precise on the square integrability of Um

t,x and V m
t,x, one will fix a special

density function ρ as well as probability weights (p`)`∈L. Recall again that
(ūm, v̄m) are defined in Theorem 2.1 and satisfy (2.12), and that (h◦,M◦) are
chosen such that (A.3)-(A.4) in the Appendix hold.

13

Proposition 3.1. Let us choose ρ(t) = 1
3
t−2/31{t∈[0,1]} and p` = ‖c`‖∞

‖c‖1,∞ with
‖c‖1,∞ :=

∑
`∈L ‖c`‖∞. Let h′◦ and Mh′◦ be given by (A.8) and (A.9). Assume

that h ∈ (0, h◦ ∧ h′◦). Then,

E[|Um
t,x|2] ∨ E[‖V m

t,x‖2] ≤ (Mh′◦)
2, for all m ≥ 1 and (t, x) ∈ [0, T]× Rd.

Moreover, ũm = ūm on [0, T]× Rd and ṽm = v̄m on ∪i≤Nh−1(ti, ti+1)× Rd.

The proof of the above mimics the arguments of [13, Theorem 3.12] and is
postponed to the Appendix A.2.

Remark 3.1. The integrability and representation results in Proposition 3.1
hold true for a large class of parameters ρ, (p`)`∈L and (c`)`∈L (see e.g. [13,
Section 3.2] for more details). We restrict to a special choice of parame-
ters in Proposition 3.1 in order to compute explicitly the lower bound h′◦ for
the explosion time as well as the upper bound Mh′◦ for the variance of the
estimators.

Remark 3.2. a. The above scheme requires the computation of conditional
expectations that involve the all path (ũm, ṽm)(·, X ti,x) on each (ti, ti+1), for
all x ∈ Rd, and therefore the use of an additional time space grid on which
ũm and ṽm are estimated by Monte-Carlo. For ti < t < ti+1, the precision
does not need to be important because the corresponding values are only used
for the localization procedure, see the discussion just after Remark 2.2, and
the grid does not need to be fine. The space grid should be finer at the times
in T because each ũm(ti, ·) is used per se as a terminal condition on (ti, ti+1],
and not only for the localization of the polynomial. This corresponds to the
Method B in [3, Section 3]. One can also consider a very fine time grid T
and avoid the use of a sub-grid. This is Method A in [3, Section 3]. The
numerical tests performed in [3] suggest that Method A is more efficient.
b. From a numerical viewpoint, ṽm can also be estimated by using a finite
difference scheme based on the estimation of ũm. It seems to be indeed more
stable.
c. Obviously, one can also adapt the algorithm to make profit of the ghost
particle or of the normalization techniques described in [20], which seem to
reduce efficiently the variance of the estimations, even when ρ is the expo-
nential distribution.

14

4 Numerical example

This section is dedicated to a simple example in dimension one showing the
efficiency of the proposed methodology. We use the Method A of [3, Section
3] together with the normalization technique described in [20] and a finite
difference scheme to compute ṽm. In particular, this normalization technique
allows us to take ρ as an exponential density rather than that in Proposition
3.1. See Remark 3.2.

We consider the SDE with coefficients

µ(x) = −0.5(x+ 0.2) and σ(x) = 0.1 (1 + 0.5((x ∨ 0) ∧ 1)) .

The maturity is T = 1 and the non linearity in (1.1) is taken as

f(t, x, y, z) =f̂(y, z) +
1

2
e
t−T
2

(
cos(x)

σ(x)2

2
− 1

2
(1 + cos(x)) + µ(x) sin(x)

)
− 2

4 + | sin(x)(1 + cos(x))|et−T

where

f̂(y, z) =
1

2(1 + |yz|)
. (4.1)

It is complemented by the choice of the terminal condition g(x) = 1+cos(x)
2

,
so that an analytic solution is available :

u(t, x) =
1 + cos(x)

2
e
t−T
2 .

We use the algorithm to compute an estimation of u(0, ·) on X := [−1., 1.].
To construct our local polynomials approximation of f̂ , we use a linear spline
interpolation in each direction, obtained by tensorization, and leading to
a local approximation on the basis 1, y, z, yz on each mesh of a domain
[0, 1]× [−1, 1]. Figure 1 displays the function f̂ and the error obtained by a
discretization of 20× 20 meshes.

15

The driver f̂
Error on the driver due to the linear
spline representation.

Figure 1: The driver f̂ and its linear spline representation error for 20× 20
splines.

The parameters affecting the convergence of the algorithm are:

• The couple of meshes (ny, nz) used in the spline representation of (4.1),
where ny (resp. nz) is the number of linear spline meshes for the y
(resp. z) discretization.

• The number of time steps Nh.

• The grid and the interpolation used on X at t0 = 0 and for all dates
ti, i = 1, . . . , Nh. Note that the size of the grid has to be adapted to
the value of T , because of the diffusive feature of (1.2). All interpola-
tions are achieved with the StOpt library (see [9, 10]) using a modified
quadratic interpolator as in [19]. In the following, ∆x denotes the mesh
of the space discretization.

• The time step is set to 0.002 and we use an Euler scheme to approximate
(1.2).

• The accuracy of the estimation of the expectations appearing in our
algorithm. We compute the empirical standard deviation θ associated
to each Monte Carlo estimation of the expectation in (3.2). We try
to fix the number M̂ of samples such that θ/

√
M̂ does not exceed a

certain level, fixed at 0.000125, at each point of our grid. We cap this
number of simulations at 5105.

16

• The intensity, set to 0.4, of the exponential distribution used to define
the random variables (δk)k∈K .

Finally, we take M = 1 in the definition of R.
We only perform one Picard iteration with initial prior (ũ0, ṽ0) = (g,Dgσ).

On the different figures below, we plot the errors obtained on X for different
values of Nh, (ny, nz) and ∆x. We first use 20 time steps and an interpolation
step of 0.1 In figure 2, we display the error as a function of the number of
spline meshes. We provide two plots:

• On the left-hand side, ny varies above 5 and nz varies above 10,

• On the right-hand side, we add (ny, nz) = (5, 5). It leads to a max-
imal error of 0.11, showing that a quite good accuracy in the spline
representation in z is necessary.

Figure 2: Error plot depending on the couple (ny, nz) for 20 time steps, a
space discretization ∆x = 0.1.

In figure 3, we plot the error obtained with (ny, nz) = (20, 10) and a number
of time steps equal to Nh = 20, for different values of ∆x: the results are
remarkably stable with the interpolation space discretization.

17

Figure 3: Error plot depending on ∆x for (ny, nz) = (20, 10), Nh = 20.

In Figure 4, we finally let the number of time steps Nh vary. Once again we
give two plots:

• one with Nh above or equal to 20,

• one with small values of Nh.

The results clearly show that the algorithm produces bad results when Nh

is too small: the time steps are too large for the branching method. In this
case, it exhibits a large variance. When Nh is too large, then interpolation
errors propagate leading also to a deterioration of our estimations.

Figure 4: Error plot depending on Nh for (ny, nz) = (20, 10), a space dis-
cretization ∆x = 0.1

Numerically, it can be checked that the face-lifting procedure is in most of
the cases useless when only one Picard iteration is used:

18

• When the variance of the branching scheme is small, the face-lifting
and truncation procedure has no effect,

• When the variance becomes too large, the face-lifting procedure is reg-
ularizing the solution and this permits to reduce the error due to our
interpolations.

In figure 5, we provide the estimation with and without face-lifting, obtained
with Nh = 10, (ny, nz) = (20, 10) and a space discretization ∆x = 0.1.

Figure 5: Error plot for Nh = 10 for (ny, nz) = (20, 10), a space discretization
∆x = 0.1 with and without face-lifting.

For Nh = 20 the computational time is equal to 320 seconds on a 3 year old
laptop.

A Appendix

A.1 A priori estimates for the Picard iteration scheme

In this section, we let ∇X be the tangent process associated to X on [0, T]
by

∇X0 = Id , d∇Xt = Dµ(Xt)∇Xtdt+
d∑
i=1

Dσi(Xt)∇XtdW
i
t ,

and we define

N t
s :=

(∫ s

t

1

s− t
(σ(Xr)

−1∇Xr)
>dWr

)>
∇X−1

t

19

for t ≤ s ≤ T . Standard estimates lead to

Et[‖N t
s‖] ≤ Cµ,σ(s− t)−

1
2 for t ≤ s ≤ T, (A.1)

for some Cµ,σ > 0 that only depends on ‖µ‖∞, ‖σ‖∞, ‖Dµ‖∞, ‖Dσ‖∞, a0 in
(2.1) and T . In particular, it does not depend on ‖X0‖. Up to changing this
constant, we may assume that

Et[‖∇Xs∇X−1
t ‖] ≤ eCµ,σ(s−t) for t ≤ s ≤ T. (A.2)

Set
DMh◦

:= Rd × {(y, z) ∈ R× Rd : |y| ∨ ‖z>σ−1‖ ≤Mh◦}2.

and let Mh◦ ≥M and h◦ ∈ (0, T] be such that

Mh◦ ≥M + sup
DMh◦

|f◦| h◦. (A.3)

and

Mh◦ ≥MeCµ,σh◦ + Cµ,σ sup
DMh◦

|f◦| (h◦)
1
2 (A.4)

The existence of h◦ and Mh◦ follows from (2.2) and (2.3). Note that they do
not depend on X0.

Proposition A.1. Let g̃ : Rd 7→ R be bounded by M and M-Lipschitz. Fix
T ′ ∈ [0, h◦]. Let (Ũ , Ṽ) : [0, T ′] × Rd 7→ R × Rd be measurable such that
|Ũ | ∨ ‖Ṽ >σ−1‖ ≤ Mh◦. Then, there exists a unique bounded solution on
[0, T ′] to

Ỹ· = g̃(XT ′) +

∫ T ′

·
f◦(Xs, Ỹs, Z̃s, (Ũ , Ṽ)(s,Xs)) ds−

∫ T ′

·
Z̃>s dWs. (A.5)

It satisfies

|Ỹ | ∨ ‖Z̃>σ(X)−1‖ ≤Mh◦ on [0, T ′]. (A.6)

Moreover, there exists a bounded continuous map (ũ, ṽ) : [0, T ′]×Rd 7→ R×Rd

such that Ỹ = ũ(·, X) on [0, T ′] P-a.s. and Z̃ = ṽ(·, X) dt × dP-a.e. on
[0, T ′]× Ω. It satisfies ṽ> = Dũσ on [0, T ′).

20

Proof. We construct the required solution by using Picard iterations. We
set (Ỹ 0, Z̃0) = (y, Dy)(·, X), and define recursively on [0, T ′] the couple
(Ỹ n+1, Z̃n+1) as the unique solution of

Ỹ n+1
· = g̃(XT ′) +

∫ T ′

·
f◦(Xs, Ỹ

n
s , Z̃

n
s , (Ũ , Ṽ)(s,Xs)) ds−

∫ T ′

·
(Z̃n+1

s)> dWs,

whenever it is well-defined. It is the case for n = 0. We now assume that
(Ỹ n, Z̃n) is well-defined and such that |Ỹ n| ∨ ‖σ(X)−1Z̃n‖ ≤ Mh◦ on [0, T ′]
for some n ≥ 0. Then,

|Ỹ n+1
· | ≤ ‖g̃‖∞ + sup

DMh◦

|f◦| h◦ ≤Mh◦ ,

in which we used (A.3) for the second inequality. On the other hand, up to
using a mollifying argument, one can assume that g̃ is C1

b and that (U, V) is
Lipschitz. Then, it follows from the same arguments as in [15, Theorem 3.1,
Theorem 4.2] that Z̃n+1 admits the representation

(Z̃n+1
t)> =Et

[
Dg̃(XT ′)∇XT ′∇X−1

t

]
σ(Xt)

+ Et

[∫ T ′

t

f◦(Xs, Ỹ
n
s , Z̃

n
s , (U, V)(s,Xs))N

t
sds

]
σ(Xt).

By combining the above together with (A.1) and (A.2), we obtain that

‖(Z̃n+1
t)>σ(Xt)

−1‖ ≤MeCµ,σ(T ′−t) + Cµ,σ sup
DMh◦

|f◦| (h◦)
1
2 ≤Mh◦ ,

in which we used (A.4) for the second inequality. The above proves that
the sequence (Ỹ n, Z̃n)n≥0 is uniformly bounded on [0, T ′]. Therefore, we can
consider f◦ as a Lipschitz generator, and hence (Ỹ n, Z̃n)n≥0 is in fact a Picard
iteration that converges to a solution of (A.5) with the same bound.
The existence of the maps ũ and ṽ such that ṽ> = Dũσ follows from [15,
Theorem 3.1] applied to (A.5) when (g̃, f◦(·, y, z, (U, V)(t, ·))) is C1

b , uniformly
in (t, y, z) ∈ [0, T] × Rd+1. The representation result of [15, Theorem 4.2]
combined with a simple approximation argument, see e.g. [8, (ii) of the proof
of Proposition 3.2], then shows that the same holds on [0, T ′) under our
conditions. �

21

A.2 Proof of the representation formula

We adapt the proof of [13, Theorem 3.12] to our context. We proceed by
induction. In all this section, we fix

(t, x) ∈ [ti, ti+1)× Rd,

and assume that the result of Proposition 3.1 holds up to rank m− 1 ≥ 0 on
[0, T] (with the convention U0

· = y, V 0
· := Dy), and up to rank m on [ti+1, T].

In particular, we assume that ũm(ti+1, ·) = ūm(ti+1, ·).
We fix % = 4 and define

C1,% := M% ∨ sup
t≤s, x∈Rd, q=1,··· ,q◦, ‖ξ‖≤M

E
[∣∣∣(ξ · (X t,x

s − x)
)(
bq(x) · W t,x,s

)∣∣∣%],
C2,% := sup

t≤s≤ti+1, x∈Rd, q=1,··· ,q◦
E
[∣∣√s− t bq(x) · W t,x,s

∣∣%]
where

W t,x,s :=
1

s− t

∫ s

t

[
σ−1(X t,x

r)∇X t,x
r

]>
dWr

in which ∇X t,x is the tangent process of X t,x with initial condition Id at t.
We then set

Ĉ1,% :=
C1,%

F̄ (T)%−1
, Ĉ2,% := C2,% j◦ sup

j≤j◦,`∈L,t∈(0,h◦]

(‖cj,`‖∞
p`

t−%/(2(%−1))

ρ(t)

)%−1

.

Since F̄ is non-increasing and ũm(ti+1, ·) = ūm(ti+1, ·) is bounded by M and
M -Lipschitz, direct computations imply that

E[|Um
t,x|%] ∨ E‖V m

t,x‖%] ≤ E
[(∏

k∈Kt

Ĉ1,%

F̄ (t− Tk−)

)(∏
k∈K̄t\Kt

Ĉ2,%

pξkρ(δk)

)]
. (A.7)

We first estimate the right-hand side, see (A.10) below.
Let us denote by Cbdg the constant in the Burkholder-Davis-Gundy inequality
such that E

[
sup0≤t≤T |Mt|%] ≤ CbdgE[(〈M〉T)

%
2] for any continuous martin-

gale M with M0 = 0. Denote further

C0 := (3× 3)%−1
(
1 + (%/(%− 1))%

)(
1 + (1 + |λ̄DµT |%eCQT)

)
,

where λ̄Dµ the largest eigenvalue of the matrixDµ, λ̄Dσ the largest eigenvalue
of the matrix Dσi, i ≤ d, and CQ := %λ̄Dµ + d%(% − 1)λ̄Dσ/2. Define also
λ̄(σσ>)−1 as the largest eigenvalue of matrix (σσ>)−1.

22

Lemma A.1. Under the Assumptions of Proposition 3.1,

Ĉ1,% ≤ Ĉ1 := 2
(

1 ∨M ∨ 2%−1(M
√
d)%
(
C0 + ‖µ‖%T

%
2CBDGC0

(
λ̄(σσ>)−1

) %
2

))
,

and
Ĉ2,% ≤ Ĉ2 := Cbdg C0

(
λ̄(σσ>)−1

) %
2 .

Proof. Let b̃ ∈ Rd be a fixed vector. Set Qt,x := ∇X t,xb̃. Then, it follows
from direct computations that

E
[

max
[t,ti+1]

‖Qt,x‖%
]
≤ C0‖b̃‖%.

Further, remember that each bq is assumed to be bounded by 1, so that
‖bqσ−1‖2 is uniformly bounded by λ̄(σσ>)−1 . Then, direct computations lead
to

C1,% ≤ 1 ∨M% ∨ 2%−1
(
C0 + ‖µ‖qT

%
2CbdgC0

(
λ̄(σσ>)−1

) %
2

)
,

and
C2,% ≤ Cbdg C0

(
λ̄(σσ>)−1

) %
2 .

It remains to use our specific choice of ρ and (p`)`∈L in Proposition 3.1 to
conclude.

Let us now choose h′◦ and Mh′◦ such that

h′◦ < 1 ∧ Ĉ
−(|L|−1)
1

(|L|+ 1)(|L| − 1)Ĉ2

, (A.8)

and
(Mh′◦)

4 :=
(
Ĉ

1−|L|
1 − h′◦(|L|+ 1)(|L| − 1)Ĉ2

)(1−|L|)−1

. (A.9)

Lemma A.2. Let the conditions of Proposition 3.1 hold. Then, the or-
dinary differential equation η′(t) =

∑
`∈L Ĉ2η(t)‖`‖1 with initial condition

η(0) = Ĉ1 ≥ 1 has a unique solution on [0, h′◦], and it is bounded by (Mh′◦)
2.

Moreover,

E
[(∏

k∈Kt

Ĉ1

F̄ (t− Tk−)

)(∏
k∈K̄t\Kt

Ĉ2

pξkρ(δk)

)]
≤ η(t) ≤ (Mh′◦)

4, (A.10)

for all t ∈ [0, h′◦].

23

Proof. The result follows from exactly the same arguments as in [3, Lemma
A.1].

We can now conclude the proof of Proposition 3.1.

Proof of Proposition 3.1. In view of (A.7), Lemma A.2 implies that
{|Um

t,x|2 +‖V m
t,x‖2, (t, x) ∈ [ti, ti+1)×Rd} is uniformly integrable (with a bound

that does not depend on i < Nh for 0 < h ≤ h′◦). Then, arguing exactly
as in [3, Proposition A.2] leads to ũm = ūm on [ti, ti+1). Combined with [13,
Proposition 3.7], the uniform integrability also implies that Dũm = ṽmσ on
(ti, ti+1) × Rd, and one can conclude from Theorem 2.1 that ṽm = ũm on
(ti, ti+1)× Rd. By the induction hypothesis of the beginning of this section,
this proves that the statements of Proposition 3.1 hold.

Remark A.1. The constants Ĉ1 and Ĉ2 (and hence h′◦ and Mh′◦) are clearly
not optimal for applications. For instance, if σ ≡ σ◦, for some non-degenerate
constant matrix, the constants C1,% and C2,% can be significantly simplified as
shown in [13, Remark 3.9].

Acknowledgements

This work has benefited from the financial support of the Initiative de Recherche
“Méthodes non-linéaires pour la gestion des risques financiers” sponsored by
AXA Research Fund.
Bruno Bouchard and Xavier Warin acknowledge the financial support of ANR
project CAESARS (ANR-15-CE05-0024)..
Xiaolu Tan acknowledges the financial support of the ERC 321111 Rofirm,
the ANR Isotace (ANR-12-MONU-0013), and the Chairs Financial Risks
(Risk Foundation, sponsored by Société Générale) and Finance and Sustain-
able Development (IEF sponsored by EDF and CA).

References

[1] V. Bally and P. Pages, Error analysis of the quantization algorithm for
obstacle problems, Stochastic Processes & Their Applications, 106(1), 1-
40, 2003.

24

[2] B. Bouchard, J.F. Chassagneux. Fundamentals and advanced techniques
in derivatives hedging. Springer Universitext, 2016.

[3] B. Bouchard, X. Tan , X. Warin and Y. Zou, Numerical approximation
of BSDEs using local polynomial drivers and branching processes, Monte
Carlo Methods and Applications, to appear.

[4] B. Bouchard and N. Touzi, Discrete-time approximation and Monte-Carlo
simulation of backward stochastic differential equations, Stochastic Pro-
cess. Appl., 111(2), 175-206, 2004.

[5] B. Bouchard, X. Warin, Monte-Carlo valuation of American options:
facts and new algorithms to improve existing methods. In Numerical meth-
ods in finance (pp. 215-255). Springer Berlin Heidelberg, 2012.

[6] J.F. Chassagneux, R. Elie and I. Kharroubi, A numerical probabilistic
scheme for super-replication with Delta constraints, arXiv, forthcoming.

[7] N. El Karoui, S. Peng, M.C. Quenez, Backward stochastic differential
equations in finance, Mathematical finance 7(1), 1-71, 1997.

[8] E. Fournié, J.M. Lasry, , J. Lebuchoux, P.L. Lions, N. Touzi, Applications
of Malliavin calculus to Monte Carlo methods in finance. Finance and
Stochastics, 3(4), 391–412, 1999.

[9] H. Gevret, J. Lelong, X. Warin , The StOpt library, https://gitlab.
com/stochastic-control/StOpt

[10] H. Gevret, J. Lelong, X. Warin , STochastic OPTimization library in
C++, EDF Lab, 2016.

[11] E. Gobet, J.P. Lemor, X. Warin, A regression-based Monte Carlo method
to solve backward stochastic differential equations. The Annals of Applied
Probability, 15(3), 2172-202, 2005.

[12] P. Henry-Labordère, Cutting CVA’s Complexity, Risk, 25(7), 67, 2012.

[13] P. Henry-Labordere, N. Oudjane, X. Tan, N. Touzi, X. Warin, Branching
diffusion representation of semilinear PDEs and Monte Carlo approxima-
tion. arXiv preprint, 2016.

25

https://gitlab.com/stochastic-control/StOpt
https://gitlab.com/stochastic-control/StOpt

[14] P. Henry-Labordere, X. Tan, N. Touzi, A numerical algorithm for a
class of BSDEs via the branching process. Stochastic Processes and their
Applications, 28, 124(2), 1112-1140, 2014.

[15] J. Ma and J. Zhang, Representation theorems for backward stochastic
differential equations. The annals of applied probability, 12(4), 1390–1418,
2002.

[16] H.P. McKean, Application of Brownian motion to the equation of
Kolmogorov-Petrovskii-Piskunov, Comm. Pure Appl. Math., 28, 323-331,
1975.

[17] A.V. Skorokhod Branching diffusion processes, Theory of Probability &
Its Applications, 9(3), 445-449, 1964.

[18] S. Watanabe, On the branching process for Brownian particles with an
absorbing boundary, J. Math. Kyoto Univ. 4(2), 385-398, 1964.

[19] X. Warin, Some Non-monotone Schemes for Time Dependent Hamilton-
Jacobi-Bellman Equations in Stochastic Control, Journal of Scientific
Computing, 66(3), 1122-1147, 2016.

[20] X. Warin, Variations on branching methods for non linear PDEs, arXiv
preprint arXiv:1701.07660, 2017

[21] J. Zhang, A numerical scheme for backward stochastic differential equa-
tions, Annals of Applied Probability, 14(1), 459-488, 2004.

26

	Introduction
	Approximation of BSDE using local polynomial drivers and the Picard iteration
	Local polynomial approximation of the generator
	Picard iteration with truncation and face-lifting

	A branching diffusion representation for m
	Numerical example
	Appendix
	A priori estimates for the Picard iteration scheme
	Proof of the representation formula

