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Abstract. Even if a lot of work has been done on Optical Coherence
Tomography (OCT) and color images in order to detect and quantify
diseases such as diabetic retinopathy, exudates or neovascularizations,
none of them is able to evaluate the diffusion of the neovascularizations
in retinas. Our work has been to develop a tool able to quantify a neo-
vascularization and the fluorescein leakage during an angiography. The
proposed method has been developed following a clinical trial protocol,
images are taken by a Spectralis (Heidelberg Engineering). Detections
are done using a supervised classification using specific features. Images
and their detected neovascularizations are then spatially matched by an
image registration.We compute the expansion speed of the liquid that
we call diffusion index. This last one specifies the state of the disease
and permits to indicate the activity of neovascularizations and allows a
follow-up of patients. The method proposed in this paper has been built
to be robust, even with laser impacts, to compute a diffusion index.

Keywords: Diabetic retinopathy, neovascularization, classification,
anti-VEGEF, diabetes.
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1 Introduction

The detection and follow-up of diabetic retinopathy, an in-
creasingly important cause of blindness, is a public health
issue. Indeed, loss of vision can be prevented by early de-
tection of diabetic retinopathy and increased monitoring
by regular examination. There are now many algorithms
for the automatic detection of common anomalies of the
retina (microaneurysms, haemorrhages, exudates, tasks,
...). However, very few researches have been done on the
detection of a major pathology, which is neovasculariza-
tion, corresponding to the growth of new blood vessels
due to a large lack of oxygen in the retinal capillaries.

Our work has not been to substitute manual detections
of experts but to help them doing it by suggesting what
areas of the retina could or not be considered as having
neovascularizations (NVs) and by providing quantitative
and qualitative proliferative diabetic retinopathy such as
the area of NV, the location to the optical nerve, the ac-
tivity of NV (diffusion index). The main goal has been to
provide a diffusion index of the injected fluorescent lig-
uid, which indicates the severity of the pathology, to fol-
low the patient over the years.

Diabetic retinopathies is one of the first cause of visual
impairment worldwide, due to the increasing incidence
of diabetes. Proliferative diabetic retinopathy (PDR) is
define by the outgrowth of preretinal vessels leading to
retinal complication i.e. intravitreous hemorrhages and
retinal detachments. Today the laser photocoagulation
is the standard of care treatment of proliferative diabetic
retinopathy, leading to a decrease of growth factors secre-
tion in photoagulated areas of the retina.

Vascular endothelial growth factor (VEGF) is responsi-
ble of the growth of healthy vessels, but also of the NVs
due to diabetes. Research is active on finding a specific
type of anti-VEGF that could stop the growth of the NVs
specifically. A clinical trial (ClinicalTrials.gov Identifier:
NCTO02151695), called ”Safety and Efficacy of Afliber-
cept in Proliferative Diabetic Retinopathy” is in progress
at the CHU of Poitiers, testing the effects of a specific
anti-VEGF : Aflibercept. This drug has been approved by
the European Medicines Agency (EMA) and the United
States Food and Drug Administration (FDA) for treat-
ment of exudative age-related macular degeneration, an-
other retinal disease characterized by choroidal new ves-
sels. The aim of this pilot study is to evaluate the effi-
cacy and the safety of Aflibercept intravitreal injections
compared to panretinal photocoagulation for proliferative
diabetic retinopathy.

In ophthalmology, the majority of the works on the reti-
nal diseases is about the detection of the exudates,>™ the
healthy vessels segmentation,®~'? the detection of the neu-
ral disk'!*'2 but none of them is about the detection of the
proliferative diabetic retinopathy within angiograms.

Some works have also been done on the image regis-
tration for retinal images. Can'? er al have proposed the
registration of a pair of retinal images by using branching
points and cross-over points in the vasculature. Zheng et
al have developped in'* a registration algorithm by using
salient feature region description. Legg et al have illus-
trated in'> the efficiency of mutual information for reg-
istration of fundus colour photographes and colour scan-
ning laser ophthalmoscope images.

Few steps are needed to compute that diffusion index.
It is a growth in time which means that we have to de-
tect and quantify the pathology on both injection times
and compare their area. As it is nearly impossible to
have exactly the same conditions during the acquisition
(eye movements, focus of the camera, angle), we need
an image registration to have an estimation of deforma-
tions and to correctly spatially correlate NVs. For the seg-
mentation, we used a supervised classification by Random
Forests'® using intensity, textural and contextual features,
and a database of trained images from the clinical trials.
These steps are shown in Fig. 1.

The paper is organized as follows. In section 2 we
present the microscope and the acquisition protocol. The



Fig 1: Example of a full detection by our method.

image registration on both injection times is proposed in
section 3. We then propose a novel neovascularization
detection method in section 4 and an automatic diffusion
index computation in section 5.

2 Materials

Our database is made of images taken by the (©)Spectralis
Heidelberg Engineering microscope with an ultra-
widefield lens covering a 102° field of view. It deliv-
ers undistorted images of a great part of the retina, mak-
ing the detection easier and monitor abnormal peripheral
changes.

Fig 2 Iag of an angiogram taken with the Heidelberg
Spectralis. Laser impacts are present all over the image,
some examples are highlighted in red.

Images are in gray levels, the areas that are bright are
mainly 1/ those leaking during fluorescein angiography
due to NV, 2/ normal retinal vessels or 3/ laser impacts.
Some images we have taken from patients who have been
treated by laser photocoagulation, visible on Fig. 2. These

impacts are annoying because they are also very bright for
some parts. The blood still spread through some impacts,
and can be big enough to be wrongly assimilated to a N'V.
To qualify the PDR by the index leakage, different
times of acquisition during fluorescein angiography were
used. The protocol presented below is the clinical trial’s
protocol which is composed of two image acquisitions:

1. fluorescein injection into the patient’s arm;
2. acquisition of the early time injection (¢y);
3. acquisition of the late time injection (¢ ).

The few minutes left between different acquisitions
times allow visualization of the fluorescein lackage de-
fined as a progressive increase of the NV area with blur-
ring edges of the NV. No leakage is observed on normal
retinal vessels. On Fig. 3 we can see pictures of the same
eye with acquisitions at ¢y and ¢y, where we can see the
fluorescein spreading first into arteries and then bleeds in
neovascularizations.

As images are taken by three minutes, some spatial dif-
ferences occur and we need to spatially correlate both im-
ages with an image registration which is presented in the
next part.

15 diabetic patients were included in the analysis and
ophthalmologists have identified 60 different NV from
fluorescein angiographies on wide field imaging.

3 Image registration

The image registration does not aim to be perfect but to al-
low spatial comparison between NV taken in both images
to compute quantitative data. The best registration model
should be a local method, but for that reason just ex-
plained, a global method is widely enough for the compar-
ison. Some of them are very popular and have been tested
by many experts like Scale Invariant Feature Transform
(SIFT),'7 Maximally Stable Extremal Regions (MSER)'8
or Speeded Up Robust Features (SURF).!> We found that



(a) Image of a retina at (b) Zoom on a NV at time
time to. to.

(c) Image of a retina at
time ty.
Fig 3: Retina acquired at initial time ¢y and final time ¢ .

(d) Zoom on a NV at time
ty.

SIFT was robust and fast enough for the deformations we
have on images.

3.1 Constraints

Images are taken with a manually movable camera with
no spacial landmarks to help. Moreover the eye of the
patient slightly moves between each capture, even when
focusing a specific direction, which means that the images
for the two injection times can be geometrically different,
with translations (x and y), scaling (z) and some small
rotations (6).

Futhermore, tissues on the retina can slightly be differ-
ent over the time, depending on several biological factors,
like the heat, the light or the blood flood. We then have
global and local geometrical deformations. The bright-
ness of the images mainly depends on the diffusion of
the fluorescent liquid injected in the patient.Some tissues
will appear more or less bright between both images and
sometimes will simply be or not present onto them. For
example, healthy arteries will appear darker on the late
time injection because the liquid first flood into them (¢()
and then spread into different tissues like neovessels (£ 7).
That is why NVs appear brighter and are easier to detect
on ty. We finally have global colorimetry changes, which
impact on the general contrast of the image, and very local
changes.

3.2 Deformation computation

First steps are the extraction and the description of key-
points on the image. These keypoints need to be invari-

ant to image scaling and rotation, and mostly invariant to
change in illumination, they also need to be highly dis-
tinctive by their description to be matched further.

To match the extracted keypoints, we use the brute
force method. For each keypoint we take the two nearest
points in terms of Euclidean distance and we only keep
those who the first nearest point is inferior to 0.8 times
the second nearest neighbor (as proposed in'7).

The deformation matrix is finally computed by the
RANSAC algorithm (Random Sample Consensus).?’

3.3 Results and discussion

We know that deformations we have between both images
are relatively small. Even with small movements from
the eye or the camera, the lens used takes wide images
enough to avoid big deformations because it makes the
margin of movement very small, so we removed matching
points that obviously are too far from each other. Within
the accordance of the experts and the visualization of the
different images, we set the distance threshold to a ratio
(r) of the diagonal of the image, where r is the constant
set which can be adjusted depending on the strength of
the deformations. For example, you can set r to 0.5 if
you want to set the threshold at half the length of the di-
agonal. We can see on Fig. 4 that the registration process
works well. It is still a global image registration that could
be more precise with a specific local non rigid algorithm,
but the aim is to pair NVs and be spatially correct when
comparing the leakage areas, so we do not need to have a
perfect registration.

Once the image registration is done, we can process
both images. The segmentation method we used is ex-
plained in the next part.

4 Neovascularizations detection
4.1 Principle

The aim of a supervised classification is to set the rules
that will let the algorithm classify objects into classes
from features describing these objects. The algorithm is
first trained with a portion of the available data to learn
the classification rules (see Fig. 5).

As supervised classification tends to give better results
when it is possible to have a good trained database we
choose to use the Random Forests of decision trees'¢
(RF), which is a supervised classification algorithm that
gives good results even with a small database.

The noise is very high in most images, notably the laser
impacts that some patients can have (see Fig. 2). They
have some close properties like the brightness that is very
high and sometimes have the same shape and size. Some
noise is also due to the acquisition itself : eyelashes can
blur a part of the images and the automated settings of the
camera can lead to more or less blur just as examples.



(a) Detected NVs
onty.

(b) NVs from t; after image
registration on to.

(c) Example of NVs with their bounding boxes. Yellow box is the

original box, the green box is the deformed box.
Fig 4: Registration of the NVs from a t; image to a %
image.

Classifier
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Fig 5: Supervised classification process.

4.2 Classification Algorithm
4.2.1 Features

Supervised classification can be used with as many fea-
tures as we want but can be poor if too many bad features
are used. To prune the features, it is possible to use mul-
tiple features and try to see which are the best by some
tests. Once you have found the most important features,
you can decide if you want to get rid of the other features
or not, depending of your needs in terms of accuracy and
time computation. Note that images being only in gray
level.

We choose to take enough features to prune our selec-
tion because our database is not big enough to take on
many features and still be a good predicate. NVs being

very bright, we choose to have several features based on
the intensity, we also add textural and one contextual fea-
tures as listed below.

Intensity Because leakages are bright, we put a lot of
weight onto the features based on the intensity : mean,
maximum and minimum intensity in the neighborhood.
We also take in account the single value of the classified
pixel. The values are normalized.Mean, maximum and
minimum values are computed ina 5 x 5 and a 9 x 9
neighborhood, which leads to six features.

Texture Texture can be a discriminator between laser
impacts and NVs because laser impacts are more likely
heterogeneous than the second one. For that, we calculate
the variance on a 5 X 5 and a 9 x 9 neighborhood. We
compute an isotropic gradient with a 3 x 3 and 5 x 5 Sobel
operator.We add some Haralick’s texture features: angular
second moment, contrast and correlation.?!

Contextual Contextual features are very important be-
cause the intensity is often not enough and is very sen-
sitive to the noise. We add a vessel segmentation in our
process, which we translate into a feature. Healthy vessels
could sometimes be classified as NVs if we only take into
account the intensity features because they are very simi-
lar. We base our method on the method proposed in.'? It
is a morphological segmentation based on the width and
the homogeneity of the vessels and weighted by the lumi-
nance. See figure 6.

(b) Image of the seg-
(a) Non computed image mented vessels

Fig 6: Detection of the healthy vessels.

With our dataset, the importance of the proposed fea-
tures are listed on Fig. 7 (values have been rounded for
visibility). The most important features are the minimum
intensity and the mean intensity in the 9 x 9 neighbor-
hood. As expected the intensity of the classified pixel is
poor because several noise is also bright (e.g laser impacts
and healthy vessels).

Fig. 8 is an example of a classification with the Ran-
dom Forests algorithm. Compared to the ground truth,
the true positives are in green, false positives in red, false
negatives in blue and true negatives in white.
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Fig 7: List of the feature importance.

(a) Original image

(b) Result of the supervised classification
Fig 8: Result of the RF classification on an image. Green
regions represent the true positives, red regions the false
positives and blue the false negatives.

4.3 Post processing

Because it is a pixel-wise classification, it is not sufficient
enough by itself to have compact and fulfilled regions, so

we added few post-treatments.

As the leakage is almost isotropic in the vitreous, it is
correct to compare the leakage with a cloud that is more
or less dense but mostly filled (i.e without holes). Classi-
fication sometimes gives regions with little holes that can
easily be filled with a closing operation by mathematical
morphology. Moreover some thin line detections can hap-
pen onto laser impacts edges or healthy vessels for exam-
ple, we can remove them with an opening operation.

Thus, after the classification, a morphological closing
and a morphological closing are directly applied to re-
move thin false detections and they fill the holes of the
detected NVs.

4.4 Results and discussion

Random forests algorithm gives a probability for each
pixel to belong to the class "NV” or to the class “other”.
Because the results may vary due to the probabilities, we
tried the algorithm with different thresholds (\) of prob-
ability. Results are obtained using a cross validation pro-
cess on our database. For each image, the training set is
composed of all the data except those extracted from the
current image. In this way the data of the image are not
taken into account for the training and the statistical model
is not wrongly influenced.

As results, we compare expert manual and automated
segmentation to classify the resulting pixels into four
classes : true positive (TP), false positive (FP), true nega-
tive (TN) and false negative (FN).

Given these classes, we can calculate the sensibility (S),
the specificity (Sp) and the pixel prediction value (PPV)
as following:

TP

5= TP+ FN M
TN

= FPLTN @
TP

PPV = TP+ FP ©)

However, NVs are mainly small compared to the size
of the image and results in a big disparity between the
number of positive and negative pixels. The specificity
is then always very close to 1 because the pixel number
belonging to the background is too much compared to the
positives, so we neglecte this feature from our results.

4.4.1 Detection at t ¢

Results of the detection for the ¢y images are given in the
figure 9. We can see that the pixel prediction value is
very influenced by probability threshold A compared to
the sensibility which is less influenced. A X under 0.8
gives a good detection of the NVs (high .S, but very poor
PPV). When the ) is above 0.8, the S decreases a bit but



stays very high, whereas the PPV becomes more reliable
around a A of 0.8 and becomes > 90% for a A superior to
0.9.

0.6 |- 1

0.4+ .

Percentage %

ey

0.8

Fig 9: Sensibility (blue dots) and Pixel Prediction Value
(red squares) results for the classification on ¢ ¢ depending
on A used for the probabilities.

4.4.2 Detection at to

Results of the detection for the ¢y images are given in the
figure 10. They are not as high as for the T images, as
expected, because it is not easy to distinguish them from
healthy vessels before the big part of the spread. As for
the t; images, PPV is very poor below a A of 0.8 and
becomes very high above. The problem is that above this
threshold, the .S decreases more than expected, until 60%
fora0.99 A\

1 |
0.8 B
S
% 0.6 B
5 0.4 B
[ow
0.2 |
0 [ |
| | | | |
0.2 0.4 0.6 0.8 1
A

Fig 10: Sensibility (blue dots) and Pixel Prediction Value
(red squares) results for the classification on ¢y depending
on \ used for the probabilities.

5 Diffusion index
5.1 Methodology and Results

The diffusion index has to give an indication about the
severity of the diabetic retinopathy, which means that it
has to compare two liquid spread volumes. As we only
work with two dimension images, we can only guess that
the spreading is isotropic and that an index computed only
with the surface is enough to tell the strength of the leak-
age.

Figure 11 recalls the processing: we detect the NV sur-
faces at time ty and inside these surfaces, we detect NV
surfaces at time ¢y. The diffusion index is then computed
by the differentiation of NV areas at ¢ and at ¢ 5.

Surface
computa-
tion tf

Surface
compu-
tation g

Differentiation

Diffusion index
Fig 11: Methodology of diffusion index computation.

5.2 Results ans discussion

The detection of NVs into the ¢y and t; images is quite
complex and really depends on many parameters. The
parameters are linked to the fact that the eyes of the patient
moves between each capture and the images between two
injections can be geometrically differents.

Computed diffusion indices are close to the ground
truth (cf Tab. 1), indeed the error is only 0.1 or 0.5%.

Ground Truth | Automated | Difference
Mean 2.09 2.10 0.01
o 0.33 0.54 0.52

Table 1: Diffusion index results.

Moreover the retina can slightly be different the time,
depending biological factors, and the healthy arteries ap-
pear darker according the time of the capture.

In our experience, for neovascularization of diabetic
retinopathy, the algorithm shows a sensibility and pixel
predictive values are effective to describe lesions.

The detection of N'Vs onto the ¢ images is quite com-
plex and really depends on many parameters. We obtain a
low Mean Square Error for probability A equal to 0.8.
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Fig 12: Mean Square Errors for each computed diffusion
index according to probability threshold A used for the
classification.

6 Conclusion

We propose to compute diffusion indices after detecting
neovascularizations in noisy angiogram images at initial
time ? and at final time ¢;. First we extract the NV areas
at time ¢y and we use the area to detect the NV areas at
time ¢ ;. We also need to register images between the two
acquisitions and we choose to detect interest points using
SIFT and we estimate the geometrical transformation for
each neovascularization.

To detect neovascularizations, we learn features which
characterize the NV. We so choose a random tree forest
and this approach gives good detection results and the
computed diffusion index is close to the ground truth.

A clinical study about this algorithm and manual
method is now necessary to comparate them, to permit
the evaluation of clinical effectiveness and to propose a
software solution for the ophthalmogists.
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