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a  b  s  t  r  a  c  t

Biomaterials  surface  design  is critical  for  the  control  of  materials  and  biological  system  interactions.
Being  regulated  by a layer  of molecular  dimensions,  bioadhesion  could  be effectively  tailored  by  polymer
surface  grafting.  Basically,  this  surface  modification  can  be controlled  by radical  polymerization,  which
is  a useful  tool  for  this  purpose.  The  aim  of this  review  is to provide  a comprehensive  overview  of the
role  of surface  characteristics  on bioadhesion  properties.  We  place  a particular  focus  on biomaterials
functionalized  with  a  brush  surface,  on  presentation  of grafting  techniques  for  “grafting  to”  and  “graft-
eywords:
urface functionalization
eversible addition fragmentation chain
ransfer polymerization
tom  transfer radical polymerization

ing  from”  strategies  and  on  brush  characterization  methods.  Since  atom  transfer  radical  polymerization
(ATRP)  and  reversible  addition-fragmentation  chain  transfer  (RAFT)  polymerization  are  the most  fre-
quently  used  grafting  techniques,  their  main  characteristics  will be  explained.  Through  the  example  of
poly(N-isopropylacrylamide)  (PNIPAM)  which  is  a  widely  used  polymer  allowing  tuneable  cell adhesion,
smart  surfaces  involving  PNIPAM  will  be presented  with  their  main  modern  applications.
oly(N-isopropylacrylamide)
ioadhesion
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. Introduction
Current developments in medicine have led to a need for
ew biomaterials in applications involving innovative strategies

∗ Corresponding author.
E-mail address: audrey.tourrette@univ-tlse3.fr (A. Tourrette).
for disease treatment. These biomaterials have to fulfil various
requirements depending on the application but in all cases bio-
compatibility is a crucial point that has to be considered in early
processing stages. Biocompatibility is defined as the ability to act
in a living system without any toxicity or rejection, whether phys-

iological or immunological. Although biocompatibility includes
“non-toxicity”, these two  concepts still remain differentiated. Sur-
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ace functionalization of a material is sometimes necessary to avoid
trong inflammatory responses and improve biocompatibility.

On  the other hand, surfaces not only act as passive interfaces
etween the body (immune system, blood, cells) and the bioma-
erial but also take an active part in cell spreading, proliferation,
ifferentiation and migration: all of these phenomena are inten-
ively linked to surface/cell interactions. Thus, surfaces play a
rucial role in the function of the biomaterial and can be used,
or example, as activators of cells for tissue reconstruction (tissue
ngineering) [1]. In this field, cell adhesion to the surface is a key
actor that must be carefully considered. Bioadhesion is defined as
he adhesion between a biological entity, e.g. cells or tissues, and a
urface. It is a complex phenomenon that involves many parame-
ers. For a long time, it was difficult for scientists to clearly identify
he mechanisms underlying cell adhesion, but they are becoming
ncreasingly well understood. The interest of scientists for bioad-
esion is not only theoretical but is also essential for the wide
pectrum of applications depending on cell/surface affinity.

In  cell sheet engineering, surface properties are used to control
ell adhesion, so the living sheets can be stripped off easily. It was
hown that cell sheets integrate well into tissues [2] and are promis-
ng tools for tissue reconstruction. Smart surfaces tunable between
on” (adhesive) and “off” (non-adhesive) states are then feasible.
aturally, the study of thermosensitive materials has been widely

eported in the literature. Poly(N-isopropylacrylamide) (PNIPAM)
s a promising polymer as a change of its hydrophilic interactions,
nd indirectly bioadhesivness, takes place between the room tem-
erature and body temperature. More precisely, its lower critical
olution temperature (LCST) occurs at 32 ◦C. While the monomer is
ytotoxic, the polymer shows no toxicity for the various cell types
3] and constitutes a good example to help understand bioadhesion

echanisms. Its characteristics make this polymer one of the most
ntensively studied in the literature whether grafted or coated onto

aterial surfaces.
Plasma  treatment is probably the most common process for

urface modification, both for the introduction of functional
roups or for coating the surface with polymer [4]. In the pres-
nce of air, oxygenated surfaces will be produced under the
lasma, leading to a change in hydrophilicity [5]. This modifi-
ation can involve an increase in cell adhesion, as is the case
or polystyrene (PS) [6]. In addition, the plasma can etch the
urface, enhancing its roughness. This modification of topogra-
hy, as observed in plasma-treated poly(methyl methacrylate)
PMMA), tends to increase the cell affinity to these surfaces [7].
he introduction of reactive groups also permits compounds or
hemical functions to be grafted onto the material surfaces. In
he presence of oxygen, surfaces activated via the introduction
f hydroxyl groups, can be grafted with monomers or polymers,
uch as NIPAM/PNIPAM though N-(3-dimethylaminopropyl)-
′-ethylcarbodiimide (EDC)/N-hydroxysuccinimide (NHS) amide
oupling [8]. Under argon plasma, radicals will be produced. These
adicals can be used directly or, after exposition to air, create per-
xides that can initiate polymerization [9].

While plasma treatment presents the advantage of being easy
o perform on materials, only a low level of surface structuring
s obtained. In addition, it was shown that plasma-deposited PNI-
AM shows greater cell adhesion than e-beam coated PNIPAM [10].
hese results emphasized the importance of the method used for
urface modification. Control of the surface structure also seems
o be a critical point. A brush structure, i.e. a self-assembled close-
acked monolayer of polymer chains, provides precise control of
he surface morphological properties. More specifically, it becomes

ossible to control the thickness and the density of the grafted layer.
s a result, these structures are now extensively used, especially for
iomedical applications, and display good performance in terms of
ioadhesion [11].
To obtain controlled brushes, a well-defined grafted polymer is
necessary. Controlled radical polymerization can be used to control
polymer grafting using various techniques. The most popular ones
are ring-opening polymerization, nitroxide-mediated polymeriza-
tion, reversible addition fragmentation chain transfer (RAFT) and
atom transfer radical polymerization (ATRP). A review of functional
polymer brushes produced by controlled radical polymerization
was published by Olivier et al. [12]. RAFT polymerization and ATRP
are widely used as they are versatile and reduce poly-dispersities.
They rely on the equilibrium between dormant and active species,
so are sometimes called “living” polymerizations.

It is necessary to understand cell adhesion mechanisms to
design a biomaterial with tunable bioadhesion properties. The aim
of this review is not to be exhaustive on surface modification pro-
cessing but to give a comprehensive multidisciplinary overview of
the cell/surface adhesion mechanisms as well as the chemical engi-
neering of surfaces. Hence, an introduction to cellular biology and
bioadhesion will be made. A second part will deal with brushes and
the chemical routes used to obtain such structures. More precisely,
ATRP and RAFT polymerization methods will be reviewed along
with the ways in which they have been characterized. Finally, engi-
neering of tunable surfaces using PNIPAM will be presented with
its main and most recent applications.

2. Bioadhesion

2.1. Bioadhesion mechanisms

With  a size from 1 to 100 �m,  cells are composed of various enti-
ties. Some are dedicated to its structure: a phospholipid bilayer,
the cell membrane, maintains the separation between the cyto-
sol (internal liquid phase) and the extra-cellular matrix (ECM) and
the cytoskeleton, composed mainly of microtubules and actin fil-
ament networks, control the rigidity of the structure [13]. The
ECM composition varies depending on the tissue concerned. It con-
tains a number of proteins: fibronectin, collagen, laminin, but also
growth factors and all the proteins needed for cell support and
inter-cell communication. Actin filaments assemble to constitute
the cytoskeleton. They are connected to integrins (transmembrane
glycoproteins) through vinculin and talin (Fig. 1) [14,15]. These
integrins specifically bind to ECM proteins such as fibronectin (or
vitronectin) through arginylglycylaspartic acid (contraction of L-
arginine, glycine, and L-aspartic acid, abbreviated RGD) coupling.
These integrin/ECM protein interactions are responsible for cell
adhesion to surfaces (intercellular cohesion is regulated by other
mechanisms, e.g. cadherin-mediated homotypic junctions). This
adhesion is commonly divided into the different phases described
in Fig. 2a [16]. The first seconds of contact are characterized
by the formation of non-specific interactions. Then, biological
interactions occur, including adhesion protein/fibronectin inter-
actions. This second step leads to a cascade of actions including
the reorganization of the cytoskeleton and clustering of integrin
receptors. Consequently, cells contract their cytoskeleton to main-
tain a mechanical state of tension, also called prestress. Later, cells
produce ECM to reinforce their integration and maintain a propi-
tious environment. It is thus obvious that the adsorption of adhesive
proteins is a key point for cell adhesion.

2.2. Surfaces and bioadhesion

Two  main parameters will determine the behavior of implanted

biomaterials: (1) their bulk properties, especially the rigidity, plays
a role in the quality of the implantation into tissues, and (2) their
surface properties control the immune system response (called
immunogenicity), the destruction of cell integrity, and the bioad-



Fig. 1. The adhesion structure of a cell in a matrix. The matrix is linked to the cytoskeleton through integrins and talins. Reproduced from Ref. [14] with the permission of
The  Royal Society of Chemistry.
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ig. 2. (a) Stages of cell adhesion: interactions and kinetics. (b) SEM picture of a m
2002), with the permission of Elsevier.

esion. As cell membranes are anionic, cationic surfaces have
o be carefully used since they can damage cells and tissues,
hereas negatively charged polymers will electrostatically repel

ells [18–21]. The importance of surface/cell interactions has been
nvestigated for many years, and an interesting discussion was pub-
ished in 2001 by Castner et al. [17]. In this aim, synthetic materials

nd bioadhesion have been studied and observed by scanning elec-
ron microscopy (SEM, Fig. 2b).

An important point is to realize that in a living system surfaces
re spontaneously covered by proteins. It is now better understood
ast cell on an artificial surface, 2001. Fig. 2b is reprinted from Ref. [17], Copyright

that  cell adhesion is both ruled by (i) specific (biological) interac-
tions (receptor/ligand) and (ii) the physico-chemical properties of
the material. Hydrophilicity, mechanical properties and morphol-
ogy are among the parameters involved in the bioadhesion process.

As mentioned above cell adhesion between tissues and ECM is
possible through the specific binding of integrin with fibronectin

(Fig. 1) [22]. In 2011, Pei et al. observed the importance of spe-
cific interactions (i.e. fibrinogen RGD coupling) in the process of
attachment between cells and their substrate [23]. They noted the
number of human foreskin fibroblast (hFF) cells and how they
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pread on poly(ethylene glycol) (PEG) brush surfaces (see Sec-
ion 3.1) grafted onto TiO2 and compared pre-treated hFF (blocked
ntegrin bonding-sites) and non-treated hFF (free integrin bonding
ites).

The number of attached cells strongly decreased when the inte-
rin bonding sites were blocked. Nevertheless, weak non-specific
nteractions occurred when there was a high level of affinity
etween the cells and the biomaterial. This study also provides pre-
ious information on the influence of the PEG brush density. PEG
s an anti-fouling polymer. At high grafting density, PEG chains are
ollapsed in a “brush regime” (L < 2Rg, with L the distance between
wo neighboring chains and Rg the radius of gyration of polymer
hains), whereas a “mushroom regime” is observed at lower val-
es (L > 2Rg). A gradient of PEG was used to observe its effect on
rotein adsorption and cell adhesion. For short experiments, as
he density of PEG increased, a strong decrease of the number of
dhered cells occurred when the brush regime was reached and a
orrelation established with the protein adsorption profile. Fibro-
last saturation occurs in the “brush regime”, meaning that even a

ow amount of fibrinogen (2.2 ± 3.4 ng/cm2) is sufficient to activate
dhesion. Here the importance of protein/cell specific interactions
s obviously crucial.

A  model involving a protein layer between biomaterials and
ells was established in the early 2000’s [1,17,24]. According to this
odel, cell/matrix adhesion depends on the ability of the surface to

dsorb proteins without modifying their native structure. Denatu-
ation is brought about by the water structure near the surface, i.e.
he hydrophilicity of the superficial layer on the material. A review,
ublished in 2011 dealt with the concept of native immune sys-
em response (cascade system) [25]. The article emphasized the
mportance of the non-denaturation of protein structure at the

aterial/body interface to avoid activation of the primary immune
ystem. In 1998 Volger et al. already underlined the importance
f surface chemistry in terms of hydrophobic/hydrophilic proper-
ies [26]. This group showed that water/surface interactions are
f interest. As criteria of hydrophilicity/hydrophobicity they used
ontact angle measurements. A strongly bound water to a surface
i.e. hydrophilic surface) cannot be removed. This will avoid inter-
ctions directly between a biological entity (e.g. a protein), and
he surface, leading to low or absence of adsorption [27]. More-
ver, it is widely accepted that moderately hydrophilic materials
re suitable for cell adhesion, with a contact angle around 70–80◦

28,29]. For example, endothelial cells show good attachment
o polycaprolactone-grafted-poly(methyl methacrylate) (PCL-g-
MMA) surface with a contact angle around 70◦. Additionally, it
s now accepted that surfaces which are too hydrophobic lead to
he denaturation of proteins [1,28]. More precisely, hydrophobic
nd hydrophilic amino acids, constitutive of proteins, rearrange
heir organization depending on the surrounding media and thus
ydrophobic surfaces can favor the externalisation of hydrophobic
oieties, leading to unfolded proteins [30]. Regarding this assess-
ent, post-treatments (e.g. plasma treatments) are sometimes

sed to increase surface hydrophilicity through the introduction
f polar functional groups. In contrast, it is known that the interac-
ions of highly hydrophilic surfaces with ECM adhesion proteins are
eak [6]. Keselowsky et al. characterized various functional groups

n the criteria of fibronectin adsorption (in increasing order):
H < COOH < CH3 < NH2. On the other hand, adhesion of osteoblasts

ncreases as follows: CH3 < NH2 = COOH < OH [31]. This trend inver-
ion can be explained by the geometrical deformation of ECM
roteins, i.e. denaturation. On brush surfaces, the optimal contact
ngle depends not only on the nature of the matrix but also on the

ethod of surface modification. This can be due to the influence of

hain length and density of the grafted polymer on the conforma-
ion of the protein adsorbed on the surface. For instance, it has been
ointed out that when Fe2+ is used as initiator for the graft polymer-
ization  of PMMA  on poly(L-lactic acid) (PLLA) surfaces, maximum
chondrocyte attachment is obtained when the contact angle is 52◦,
whereas UV-initiated surfaces are optimal for a contact angle of 76◦

[28]. The authors suggest that the difference of biological proper-
ties between the two PLLA grafted PMMA  could be due not only to
surface wettability (contact angle) but also to the higher density,
uniformity and shorter chains of iron-initiated polymerized sur-
faces. The wettability criterion is obviously strongly limited as the
surface mechanical properties and structure, cell types and charge
density are ignored. For example, Bacakova et al. showed that soft
matrices are not favorable for cell adhesion [6]. They explained
that ECM deposited on such surfaces is not able to resist the forces
involved during cell focal point formation.

Indeed, specific interactions are not enough to described adhe-
sive phenomena entirely and physico-chemical properties have to
be added to the equation. Hence, the internal organization of cells is
remodelled throughout their life and is strongly influenced by the
surrounding medium not only via chemical stimulation but also
by mechanosensing, until a morphological equilibrium is reached
[13,32]. Thereby, the shape of cells, as well as their rigidity and
motility depend on their support. For example, many cells have the
ability to sense the stiffness, by applying a stress, of their exter-
nal environment. These cells include brain, muscle, neurons and
many other cell types [33]. Cells probe the surface through myosin
and actin filament cross-bridging and a stiffness control loop is
set up: cytoskeleton and adhesion will adapt depending on the
feedback. As a consequence, stiffer matrices lead to an increase in
the elasticity of the cells, and can be measured by atomic force
microscopy (AFM) [34] or, more gently, by indentation with opti-
cal tweezers [35]. However, rigidity scanning of the cell substrate
is a time-consuming process, taking from minutes to hours [13],
thus viscosity can be considered, in the case of a gel for example.
Sometimes, cross-linking can improve cell activity on a gel [36]. In
addition, mechanosensing can be an initiator of cell displacement
on surfaces (mechanotaxis, discovered by Lo et al. [37]), from the
soft to the stiff [38] and motility were shown to be linked to focal
contacts and thus indirectly to cellular adhesion [39,40].

Moreover, depending on their type, cells will not behave in
the same way  depending on the elasticity of the biomaterial.
For instance, on soft matrices, fibroblasts adhere in a labile way
whereas on stiffer materials they make stable focal points (adhe-
sion) and rigidify their cytoskeletons. Consequently, the motility of
fibroblasts on stiff materials is reduced [38]. The mobility of the
chains that constitute the brushes could also lead to superficial
mechanical instability and thus to lower adhesion [41].

Despite  the adhesion of cells, the biomaterial can also disturb
cell activity. A perturbation in the exocytosis response of cells is
revelatory of this perturbation in ways that can, for instance, be
measured by histological studies or carbon-fibre microelectrode
amperometry (CFMA), as observed by Reed et al. [10]. In this study,
the introduction of PNIPAM (through plasma deposition or spin
coating) on surfaces have shown to slow down the cell exchange
between vesicles and extracellular space. Additionally, spin-coated
PNIPAM were shown to hyper-activate the exocytosis activity of
cells, whereas plasma deposited PNIPAM only affected kinetics. If
this hyper-activation by the surface can present harmful effects,
some studies seek for accelerating tissue regeneration by modify-
ing the surface, such as observed by the introduction of free amino
group on PLLA surfaces [42]. The surface architecture is also a key
point. 3D architectures are commonly modulated in the field of
tissue engineering, as they reproduce a more realistic natural bio-
logical environment. A nice review of this topic was published by

Abbott and Kaplan in 2015 [43].

In conclusion, the surface hydrophilicity (presence of functional
groups), the surface structure and stiffness are characteristics that
must be considered for efficient bioadhesion. However, in the
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resent review, we only consider surface modification that does
ot involve any bulk modification, in particular in term of bioma-
erial stiffness, and the effect of brush structures on mechanical
urface properties will not be discussed. Below, we focus on a key
tep, i.e. the choice of surface modification method used to obtain
rush structures on material surfaces that enable good control of
he surface state and properties.

.  Surface modification

.1.  Brush structure

As  discussed above, the control of biomaterial surfaces is a chal-
enge for scientists involved in the development of medical devices.
rush structures in particular are interesting in terms of protein
enetration and calibration studies [44]. Thanks to recent devel-
pments in chemistry, various techniques are available to graft or
oat biomaterials with polymers. For biological applications, cova-
ent grafting seems to be the best choice compared to physically
rafted systems, due to risks of desorption with this latter method.
olymer brushes, which consist on a thin film of self-assembled
olymers, are of interest [10,45]. Wettability, but also the variety of
ossible end-group functions, the substrate and the chemistry are
he main points that make these systems attractive. The modular-
ty of the polymer brush synthesis is illustrated by the broad range
f systems that have been developed in recent years: uniformed,
atterned, or gradient (in terms of density or chemical composi-
ion) brush layers have been prepared with one or several polymers
12,45].

Two different approaches can be considered, namely “grafting
o” (i.e. to the surface) and “grafting from”, as shown in Fig. 3 [45,46].

The “grafting to” method consists in coupling an end-

unctionalized polymer and a reactive surface. This approach yields
ell-defined grafted polymer. However, the deposited layers have

ow densities and their thickness is limited (100 nm [47]) due to the
teric hindrance during grafting and diffusion processes [48–51].
Fig. 4. Advanced ATRP mechanisms catalyzed by Cu(I)/Cu(II) complexes. Reprinted
from  Ref. [54], Copyright(2014), with permission of Elsevier.

The “grafting from” method consists in polymerization directly
from the surface. Several techniques are based on this process.
Surface-initiated polymerization (SIP) based on radical chemistry is
commonly used [47,51,52]. “Grafting from” techniques yield higher
grafted layer densities and overcome thickness limitations. These
advantages made this strategy the most widely adopted. However,
the characterization of grafted chains is more difficult and, apart
from model surfaces, still remains a great challenge.

Various techniques are commonly used for grafting polymers
to surfaces, both for “grafting to” or “grafting from” strategies
[47,53,54]. Among these techniques, the most used, i.e. ATRP and
RAFT, will be developed in the next sections.

3.2. Grafting techniques

3.2.1.  Atom transfer radical polymerization (ATRP)

As is generally the case in controlled radical polymerization,

ATRP chemistry relies on the equilibrium between active and dor-
mant chains [46,47,55,56]. The mechanism is illustrated in Fig. 4.
Surface initiated ATRP (SI-ATRP) is a “grafting from” technique that



c
l
c
[
a
r
e
a
s
o
c
a
r
h
A
t
e
a
t
o
“
q
u
c
a
b
e
T
g
i
(
n
(
o
o
A
d
d
a
(
d
m
a
c
O
t

t
(

r
[
F
c

t
o
d
m
a
s
s
A
t
t
o

onsists in immobilizing a halogenated initiator on the surface, fol-
owed by ATRP. The main advantages of the ATRP are the close
ontrol of film thickness and chain length with low polydispersity
47]. It is also possible to control thickness and graft density sep-
rately, by modulating the reaction time and stoichiometric ratio,
espectively [57,58]. In addition, ATRP is known to be versatile and
asy to perform (mild conditions) [51,58,59]. While high temper-
tures make the reaction time shorter, some studies also show a
light reduction of the polydispersity [60]. Nevertheless, the need
f metal catalysts is a limitation for biomedical applications. Basi-
ally, the metal is oxidized/reduced, and thus generates or absorbs

 radical, leading to the activation/deactivation of polymer chains,
espectively as shown in Fig. 4. At the present time, due to its
igh catalytic activity copper is used most [61,62]. Iron catalyzed-
TRP can be performed using low amounts of catalyst, reducing

he toxicological risks as iron is considered less toxic and more
nvironmentally friendly than copper [63–65]. Iron is also the most
bundant metal on earth making it relatively cheap; these charac-
eristics have initiated a lot of research and interest in Fe catalyzed
rganic chemistry, including ATRP, in line with the perspectives of
green chemistry” [66,67]. The choice of the ligand is a complex
uestion; it depends on the nature of the polymer and the catalyst
sed [68]: for example, pentamethyldiethylenetriamine (PMDETA)
an be used in combination with Cu [69], and tris(3,6-dioxaheptyl)
mine (TDA) with Fe [70]. Furthermore, the activators regenerated
y electron transfer (ARGET) ATRP, developed by Matyjaszewski
t al. diminish the amount of catalyst needed (< 50 ppm) [71,72].
his advanced ATRP, derived from the AGET-ATRP (for activators
enerated by electron transfer ATRP) involving a reducing agent to
nitiate the reaction, consists in using an excess of reducing agent
e.g. environmentally friendly ascorbic acid [73]). This initiator does
ot only generate but also maintains a sufficient amount of Cu(I)
in the case of copper catalyzed ATRP) without the use of a radical
rganic compound which could lead to side reactions, cross-linking
r the formation of new chains [55]. Another advantage of ARGET-
TRP is that the oxidized catalyst, e.g. Cu(II) or Fe(III), can be used
irectly without the need for early-stage reduction and careful han-
ling. Finally, this technique increases the air tolerance and can
void the need of a controlled atmosphere [74,75]. Ascorbic acid
also called vitamin C) is preferable to classic Sn reducing agents
ue to its non-toxicity towards human beings and the environ-
ent. However, ascorbic acid presents the disadvantage of being

 strong reducing agent, so its use in water can lead to an extensive
onversion of Cu(II) to Cu(I) and can diminish the control of ATRP.
ne solution would be to use a less efficient solvent, such as anisole,

o decrease the reducing activity of the ascorbic acid [73,75].
Initiators  for continuous activator regeneration (ICAR) ATRP use

he addition of a free radical initiator such as azobisisobutyronitrile
AIBN) to (re)generate the active metal [63,71].

In supplemental activator and reducing agent (SARA) ATRP the
educing agent is M(0), e.g. Cu(0) for a copper catalyzed ATRP
67,76]. Using iron powder, the polymerization can be catalyzed by
e(0) [60], with or without the use of Fe(III) salts but in this latter
ase a less controlled polymerization over time can occur [63].

Many  ATRP elaborations are involved for surface modifica-
ion, nonetheless we would like to mention biomedical uses
f this chemical route: biofouling surfaces or membranes [77],
ouble responsive cellulose membranes [78,79], cell attach-
ent/detachment (through PNIPAM grafting) [69,80]. To perform

 “grafting from”, the idea is to chemically graft the initiator on the
urface so the growth will be directly initiated on the material. This
tep is facilitated by the fact that ATRP initiators are acyl bromides.
 self-assembled monolayer (SAM) is generally also grafted before
he initiator. ATRP can be achieved in combination with plasma
reatments to help initiator immobilization [81]. A few examples
f SI-ATRP are given in Table 1.
ATRP  commonly exhibits a pseudo-first-order kinetics, at least
below high rates of conversion. The direct characterization of
grafted polymer through the “grafting from” method is diffi-
cult. Generally, a sacrificial initiator is used, assuming that the
polymer growth is similar on the surface and in the medium
[51,52,58,59,82–85]. Another method is to use reversible or break-
able surface bonds in order to detach and study the grafted polymer
[86]. A more detailed discussion on brush characterization is given
in Section 3.3.

3.2.2.  Reversible addition-fragmentation chain transfer (RAFT)
radical  polymerization

Similarly to ATRP, RAFT polymerization is a living polymeriza-
tion based on the equilibrium between active (i.e. bearing radicals)
and dormant chains, and also shows pseudo-first-order kinet-
ics. Initiation is performed in traditional ways, e.g. using thermal
initiators such as azobisisobutyronitrile (AIBN) or 4,4′-azobis(4-
cyanovaleric acid), which has the advantage of being carboxylic
acid end-functionalized. A chain transfer agent (CTA) (also called
RAFT agent) ensures this equilibrium during the propagation steps,
as shown in Fig. 5 [87,88]. The reduction of active chain concen-
tration results in a narrow distribution of the chain length, with a
polydispersity index (PDI), for PNIPAM, able to reach values around
1.20, but PDI below 1.10 can be obtained in optimal conditions
[89–91]. Additionally, RAFT polymerization can be achieved with
a broad range of temperatures, from room temperature to 140 ◦C
[92]. A higher temperature allows a shorter reaction time; lower
polydispersities can sometimes be expected.

One of the main advantages of RAFT polymerization compared
to ATRP is that it is a metal-free chemical route. In contrast, it can
require the synthesis of the RAFT agent. In modern RAFT polymer-
ization, this agent classically contains a thiocarbonylthio moiety,
as for the commonly used trithio-carbonate and dithio-carboxylate
type. As the RAFT polymerization process relies on the kinetics of
addition and fragmentation of this agent, the choice of its sub-
stitute, classically called Z and R, is crucial. Z is dedicated to the
activation of the double bond by stabilizing the adduct radical,
R is a leaving group. A complete discussion about the choice of
the RAFT agent is available in the literature [92]. The surface initi-
ated RAFT (SI-RAFT) polymerization of PNIPAM can allow to obtain
polydispersities below 1.3 [93]. Thanks to the sulfuryl groups of
the CTA, elemental analysis can, in some cases, be used to deter-
mine the quantity of grafted RAFT agent. The theoretical molecular
mass of the polymer, Mnth

, can be estimated through the following
equation:

Mnth
= [Mono]0

[CTA]0
× MMono × conv. + MCTA

where MMono corresponds to the molecular weight of the monomer,
[Mono]0 to its initial concentration, conv. is the conversion rate of
the monomer, MCTA is the molecular weight of the CTA and [CTA]0
its initial concentration [91,93].

In order to perform SI-RAFT polymerization, the initiator [90]
or the CTA [93] have to be previously grafted to the surface. In the
first case the homolytic cleavage of the initiator will lead to growth
either on the surface or in the medium, both with the free CTA. In
the case of CTA grafted surfaces, the initiator and another amount
of the RAFT agent are introduced to permit the polymerization of
free chains and their characterization. Few examples of SI-RAFT
polymerization are given Table 1.

3.3. Characterization of brushes
Characterization of the “grafted from” polymer brush is a chal-
lenging task. In specific cases, the grafted chains can be removed
from their substrate [86]. In other cases, free chains are generally



Table  1
Examples of surface functionalization with PNIPAM brushes using ATRP or RAFT polymerization process.

Radical polymerization Technic Substrate Solvent Refs.

ATRP grafting from polyethylene terephthalate (PET) water [94]
Au  water/methanol [95]
graphene water [96]
poly(�-caprolactone) (PCL) water/methanol [69]
parylene C DMF/water [80]
Si  water/methanol [97]
cellulose various solvents [98,99]
mesoporous Si films water [100]

RAFT  polymerization grafting to Au nanoparticles water [89]
grafting from mesoporous Si nanoparticle DMF  [101]

aminated polyHIPE (high internal phase emulsions) DMF  [93]
cellulose various solvents [98,102]
glass  dioxane [90]
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ig. 5. Mechanism of a RAFT polymerization. The CTA plays the role of activator/dea
ons.

roduced (see Sections 3.2.1 and 3.2.2). If free polymer is generated,
he molecular weight can be easily determined by size-exclusion
hromatography (SEC) or viscosimetry. From optical waveguide
ightmode spectroscopy (OWLS) the mass of a deposited polymer
an also be obtained [23].

Moreover,  the morphology, graft density and thickness have
o be determined directly on the surface. AFM is a powerful tool
o study morphology [103,104] (Fig. 6). For example, in the case
f PNIPAM, a change in conformation accompanying a change in
emperature can be observed by AFM [103].

Surface plasmon resonance (SPR) gives the wet  thickness of the
ayer, i.e. its thickness in a liquid environment, taking into account
welling phenomena. The dry thickness, i.e. in the absence of water,
f the grafted layer can be measured by ellipsometry [103]. AFM
an also be used to determine the dry thickness, but systematic
rrors were reported due to AFM tips being attracted by the PNIPAM
ayer [105]. PNIPAM grafting density can be deduced from the dry
hickness value, through the following equation:
 = h�NA

Mn
or. Reproduced from Ref. [86], Copyright(2002), with permission of John Wiley and

with � the graft density, h the dry thickness, NA Avogadro’s num-
ber and Mn the molecular weight. The density of dry PNIPAM, �, is
sometimes arbitrarily taken equal to 0.95 g/cm3 by certain authors
[106], but the actual density can be measured by U-tube oscillation
[107] or by X-ray reflectometry [108]. Fourier transform infrared
(FTIR) spectroscopy can also be used, in some cases, to determine
the graft density, as reported by Mizutani et al. [109].

Chemical analysis can be performed through classic surface
analysis: X-ray photoelectron spectrometry (XPS), attenuated total
reflection FTIR spectroscopy (ATR-FTIR), Raman spectroscopy. For
nanolayer studies, XPS is preferable to ATR-FTIR spectroscopy due
to its lower penetration depth (a few nm for XPS against up to 1 �m
for ATR-FTIR spectroscopy) [28]. Secondary ion mass spectroscopy
(SIMS) techniques can be even more surface localized. In this tech-
nique, the surface is etched by an ion beam and sputtered material
is collected by a detector. Elements and chemical structure can be
determined.

Quartz microbalance (QCM) is an interesting tool for the eval-
uation of the amount of a deposited layer. The determination of

the quantity of proteins adsorbed on a biomaterial surface can be
obtained by measuring, in situ, the frequency shift of the quartz
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ushroom structure (left, low grafting density), to a heterogeneous patchy structu

resumably more extended, structure is obtained. Reprinted from Ref. [102]. Copyr

24]. Quartz microbalance with dissipation monitoring (QCM-D) is
seful to obtain the swelling behavior of polymer brushes [97].

Finally,  carbon fibre microelectrode amperometry (CMFA) can
ive information about biochemical exocytosis of cells (kinetics and
mount of release) and thus evaluate how the substrate impacts the
xcretion activity of cells [10].

Most of these techniques are not applicable to “brush grafted on
olymer” systems due to the relatively high roughness of this type
f surface, which explains the lack of reliable brush characterization
echniques in the literature.

.  Smart bio-surfaces: example of
oly(N-isopropylacrylamide) thermosensitive surfaces

Poly(N-isopropylacrylamide) is a thermo-responsive polymer.
ts structure is shown in Fig. 3. Indeed, PNIPAM changes its

ater affinity according to the temperature of the surrounding
edium, turning from hydrophilic to hydrophobic. This change

ccurs at around 32 ◦C, whose temperature is called the lower
ritical solution temperature (LCST), and leads to a change in its
onformation. Above this temperature, PNIPAM collapses in solu-
ion. This coil to globule transition is endothermic and is related
o water/polymer and polymer inter and intra-molecule hydro-
en bonding. In other words, below the LCST PNIPAM is bound
o water through amide/water (C O· · ·H O) hydrogen bonding. As
he temperature increases above LCST, the polymer becomes dehy-
rated and amide/amine (C O· · ·H N) hydrogen bonding appears
110,111]. In the case of surfaces grafted with PNIPAM, it means
hat a “brush” system can be turned into a “mushroom” conforma-
ion above the LCST. The LCST of PNIPAM was reported to depend on

he chain length and the grafting density while remaining between
oom and physiological temperature making this polymer interest-
ng for various biomedical applications [105]. Additionally, the use
f PNIPAM in a copolymer system [112], as well as the presence of
rough the initiator density. The grafting density increases, from a discontinuous
iddle, intermediate grafting density). At high grafting density (right), a smoother,
006), American Chemical Society.

salts can strongly influence this LCST [113,114]. Cl− and CH3COO−

have a particularly strong influence as predicted by the Holfmeis-
ter series. Moreover, ion concentrations are generally low (below
0.15 M)  in both culture media and body fluids, its influence thus
has to be relativized. It is noteworthy to mention that proteins, if
concentrated, can also affect the LCST of PNIPAM from a decrease
of 2.6 ◦C to an increase of 1.5 ◦C, depending on the protein involved
[111].

Surface interactions can be modulated by the temperature of
the PNIPAM. This variation of the interactions is clearly observed by
AFM measurements [105,115]. Bovine serum albumin (BSA) bound
to AFM tips was  used to study the variation of protein/PNIPAM
surface interactions. It appeared that interactions are tempera-
ture dependent, with a protein adsorption phenomenon occurring
above LCST [116]. This phenomenon was also observed using a
QCM. The mechanism is related to PNIPAM hydration but is not
well understood at the present time. Various studies were per-
formed to evaluate the ability of PNIPAM to trigger cell attachment.
In addition to their slight control of LCST, it appears that the grafting
density and the chain length also play an important role on bioad-
hesion. Thus, the material seems to be resistant to the adsorption
of either proteins or cells when chain density and chain length are
both high [117]. This is explained by the difficulty for proteins to
enter the PNIPAM layer due to steric hindrance when chain grafting
is dense. Halperin et al. proposed a theoretical approach of mech-
anisms for harvesting cells cultured on thermoresponsive PNIPAM
polymer brushes [118].

First,  two  interaction modes have to be examined when we
consider particles (e.g. proteins) and a brush structure. The com-
pressive mode, where the brushes are compressed by a particle,
occurs when its size is greater than the space available between

chains, taking into account the ability of chains to rearrange them-
selves around the particle. This is typically the case for cells. The
other mode, the insertive mode, occurs for small particles, e.g.
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ig. 7. The three different modes of protein adsorption through brushes: (A) primary
dsorption, (B) ternary adsorption and (C) secondary adsorption. Adapted from Ref.
117], Copyright(2012), with permission of Elsevier.

xtra cellular proteins such as fibronectin. Here, we  see the impor-
ance of the grafting density: high density limits protein insertion.
hen, the depth of the inserted protein can also vary, forming three
odes: primary, secondary and ternary adsorption (Fig. 7). High

ffinity between ECM proteins and substrate promotes primary
dsorption, whereas a high grafting density tends to suppress pri-
ary and maybe ternary adsorption [117,118]. Primary and ternary

dsorption favor bioadhesion, whereas a theoretical model predicts
hat secondary adsorption preferably occurs for large cylindri-
al proteins [44,119]. Nonetheless, if ternary adsorption mediated
ioadhesion was shown to be possible, its effect on protein denatu-
ation is still to be demonstrated [118]. Finally, a thin layer (i.e. low
olecular weight) facilitates primary and ternary adsorbed pro-

eins/cells interactions, leading to an increase of cell adhesion. In
ddition, protein adsorption is also concentration dependent and,
t high concentrations, the adsorption rate below and above LCST
an become close [120]. Then, the graft density was shown to influ-
nce the brush structure. A high graft density can cause phase
eparation [121], and more generally the density will modulate the
rotein adsorption rate within the brushes, as for BSA [44]. Malham
t al. showed that chain rearrangements over time could slightly
ncrease inter-chain adhesion and related this to −NH and C O
ydrogen bonding [121]. It is obvious that inter-chain attractive

nteractions would play a role on protein inclusion.
Various cells adhere to heated PNIPAM surfaces and are released

uring cooling [122]. Typically, cell detachment is achieved at
 = 20 ◦C [118]. This property allows cells to be seeded and gen-
ly detached them, without a need of trypsin: it is used in the field
f cell sheet engineering [123].

Mono or multilayer cell sheets are thus produced and used for
issue regeneration [2]. These biological layers demonstrate good
ntegration in tissues. In vivo studies were performed to treat vari-
us diseases: cartilage degeneration [124], damaged corneal tissues
125] or cardiac tissues [126]. Interestingly, it appeared that after
ell lift-off, a layer of ECM remains attached to the surface. Research
as tried to determine the composition of this remnant protein

ayer [127] and it was shown that most of the fibronectin leaves
he surface with the cells. Nonetheless, this remnant layer promotes
ew cell growth, showing its viability.

A lot of systems have already been developed using PNIPAM
rush surfaces. PNIPAM brushes were successfully grafted through
TRP [69,128] and RAFT polymerization [90,93]. By introducing
eactive groups through plasma treatments, PNIPAM can be grafted
ia “grafting to” amide binding [8] or surface initiated ATRP [81].
TRP produced Si-PNIPAM brush hybrids which were shown to be
fficient in the thermo-triggered adhesion/de-adhesion of fibro-
last cells [128]. In this case the thicker the PNIPAM layer is, the
ore profitable the surface is for cell proliferation after 2 days. In

ll cases, no adhesion is observed for temperatures below LCST
ndependently of the thickness (3 nm,  11 nm or 31 nm). It also

ppeared that the antifouling properties of the poly(ethylene gly-
ol) monomethacrylate (PEGMA) in combination with PNIPAM
ncreases the cell release abilities of PNIPAM. For bovine endothe-
ial cells, a thickness of PNIPAM brush on tissue culture polystyrene
around 15 nm showed optimal adhesion/de-adhesion properties
[129]. They also reported no adhesion above 30 nm, whereas Mitzu-
tani et al. observed that endothelial cell adhesion on polystyrene
ATRP grafted PNIPAM surfaces is suppressed for thickness greater
than 60 nm [109]. Moreover, the best adhesion was  obtained for
thinner PNIPAM layers (1.8 nm). Takahashi et al. developed surface-
initiated RAFT polymerization brushes on glass coverslips and
studied both graft density and molecular weight of PNIPAM on
reversible bioadhesion [90]. The study showed that the amount of
cells also increased on lowering the graft density. In addition, bet-
ter bioadhesion is observed for shorter brushes but de-adhesion
needs a thick enough layer. The explanation is related to the neces-
sity to push cells from the surface, as the PNIPAM brushes become
extended on reducing the temperature. This can be the general con-
clusion, if possible, of thickness considerations: a balance between
the ability for cells to attach (thin brush layer) and detach (thick
brush layer) as to be found. Consequently, a thick PNIPAM layer
can be useful to produce protein resistant surfaces.

Zhao et al. studied the anti-fouling properties of PNIPAM
grafted polyurethane surfaces against fibrinogen and human serum
albumin (HAS) proteins at 37 ◦C [131]. It appeared that the
thermosensitivity of the hydrophilicity was not significant on
low PNIPAM thickness, and that the protein adsorption strongly
decreased as this thickness increased. This effect can be due to
higher hydrophilicity of thicker layers. As a consequence, cells do
not adhere to thick brushes and thus anti-adhesion surfaces can be
produced by the use of PNIPAM. Yu et al. showed thickness depen-
dent thermo-sensitivity of PNIPAM grafted Si (surface initiated
ATRP) surfaces and managed to produce HSA repellent, even with
thin PNIPAM layers (< 15 nm)  [132]. The variation of contact angle
and HSA adsorption between 27 and 37 ◦C is not so notable at low
PNIPAM thickness. However, greater temperature sensitivity was
observed at higher graft thickness both on contact angle and HSA
protein adsorption. More interestingly, at 37 ◦C HSA adsorption is
not linearly dependent with PNIPAM thickness and, as the thick-
ness increases, a decrease of sensitivity follows. This observation
was attributed to possible adsorption on the Si-initiator surface at
low graft thickness. As contact angle showed hydrophobic surfaces
(higher than traditional anti-fouling polymer), the authors deduced
that the anti-fouling properties of low PNIPAM thickness were not
due to the hydrophilicity of the PNIPAM surface, but to the inter-
actions between PNIPAM and the substrate. Indeed, short PNIPAM
brush end chains can also interact with the substrate and reduce the
freedom of conformation changes, reducing the temperature effect
[132]. This study also showed the importance of the protein size on
adsorption. Indeed, the size of the protein molecule is of importance
as the penetration will be dependent on steric hindrance phenom-
ena. In addition, it can be noted that the three proteins studied, HSA,
fibrinogen protein and lysozyme also have different charge char-
acteristics. The smallest protein, the lysozymes, adsorbed whether
or not the PNIPAM was in collapsed or extended regime. An expla-
nation can be the ability of this small protein to pass through the
PNIPAM brushes and then to interact with the substrate (primary
adsorption). As the protein size increased, the proteins were no
longer able to efficiently go through PNIPAM chains below the LCST
(extended regime), but are able, above the LCST, to interact with the
outermost region of PNIPAM when hydrophobic and maybe with
the substrate (collapsed regime).

Comparing these two  last results, it appears that in the case of
polyurethane substrate the hydrophilicity tends to increase with
the thickness, leading to a decrease of protein adsorption [131],
whereas the Si substrate graft led to an increase of protein adsorp-

tion, as the hydrophobicity increased [132]. Thus, we  see the
importance of the substrate, and the resulting surface properties
will depend on the ability of its substrate to allow primary binding
and on the hydrophilicity/hydrophobicity balance of the resulting
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urface. In fact, adsorption of HSA was of the same order of magni-
ude whatever the substrate, for thicker PNIPAM layers, the latter
aving also the same hydrophilicity.

Nanostructured  or patterned surfaces were also investigated.
ilicon nanowires were thus used as a substrate for SI-ATRP
133]. The addition of PNIPAM strongly reduced platelet activa-
ion and adhesion, both above and below the LCST. As expected,
he nanostructuration of PNIPAM surfaces (i.e. the increase of sur-
ace area) involves an exacerbation of the hydrophilic/hydrophobic
urface state. In fact, Chen et al. highlighted that these nanostruc-
ures, which present a high aspect ratio, tend to trap water. This
ntrapped water led to a reduction of the platelet protein/surface
nteractions, whatever the coil or globule state of PNIPAM brushes.
hese results open new fields of application as platelet activation
nd adhesion can lead to blood coagulation and thrombosis. More
ecently, silicon nanopillars were shown to be able to reversibly
ttach/detach to/from breast cancer cells, through specific and
elective interactions [134]. Compared to flat Si-PNIPAM surfaces,
he introduction of nanopillar architecture widened the overall
otential contact surface but limited the available space for inter-
ctions between cells and surfaces when adhered. As a result,
he 3D architecture of these surfaces enhanced cell capture, but
iminished the tendency of cells to spread, making release easier.
anopatterned PNIPAM surfaces were also used to trap, kill and
eliver bacteria [135]. In this work, biocides were grafted between
atterned SI-ATRP PNIPAM brushes. Additionally, nanopatterning

s a potential solution to overcome thickness limitations: even thick
rushes allows cells to attach, so the necessity to have thick enough
rushes in order to detach cells can be more easily fulfilled [136].
wing to the fact that thick PNIPAM brushes do not support cell
ttachment but become bioadhesive when nanopatterned, con-
rolled spatialization of cell culture is possible [136].

In  the field of body implants and surgical biomaterials, Chen et
l. grafted (“grafting to”) PNIPAM-COOH onto chitosan through an
mide bond resulting in a comb-like polymer structure (branched
NIPAM on a chitosan backbone) which forms a gel [137]. The sur-
ace functionalization was followed by a study of chondrocytes and

eniscus cells bioadhesion. The thermosensitive behavior of PNI-
AM (brush to mushroom thermo triggered conformation change)
as shown to provoke a phase transition, liquid to solid-like hydro-

el. The gelification would occur inside the body after injection.
ibronectin adsorption was observed by fluorescence using rho-
amine labelled fibronectin. Polypropylene-g-chitosan-g-PNIPAM
as  performed through a “grafting to” process with a view to eas-

ly stripping off of the skin wound dressing [138]. Non-toxicity and
emperature-responsiveness behavior were fulfilled.

While brushes do present some interesting properties, other
on-brush systems have been used to develop the same kind of

unctionalities. Ignacio et al. made a wound dressing using UV
rafted PNIPAM polyurethane membranes [139]. New subcuta-
eous connective tissue grew but no toxicity was  observed. The
etachment on mice skin wounds was triggered by the reduction
f temperature below the LCST. We  can also mention the easy
emoval of retinal implants achieved with PNIPAM surfaces [140].
n this study, bioadhesion, measured by a pull-off test, appeared one

inute after passing through the LCST. The correlation between the
ell culture behavior and thermo-sensitive tissue adhesion clearly
ndicates that bioadhesion on tissues is related to the ability of
NIPAM to adsorb proteins and thus catch cells.

. Conclusion
Bioadhesion is a characteristic of interactions between materi-
ls and cells. This phenomenon is now better understood and gives
ise to interesting fields in biomedical science such as cell sheet
engineering.  Brush structures have been shown to be efficient for
cell adhesion, and to offer the advantage of a well-controlled prepa-
ration process. The “grafting from” approach enables dense brush
layers to be made without steric hindrance limitations and thus
leads to homogeneous layers, especially for rough surfaces. Living
polymerization provides a way  to control the growth of these lay-
ers. Various techniques exist, such as Fe-catalyzed ARGET-ATRP or
RAFT polymerizations. It is known that the grafting method can
lead to different properties (e.g. cross-linking), and impact the sur-
face interaction with cells. PNIPAM, as a thermo-sensitive polymer,
is widely studied and is a promising polymer in the cell sheet
generation area, but its applications can be wider, including, for
example, implants. Thus, several parameters such as graft density,
layer thickness and grafting method have to be studied, character-
ized and compared in terms of cytotoxicity and bioadhesion. As yet,
no solutions have been found to thoroughly characterize and study
brushes directly on polymer substrates, this challenge will have
to be overcome in the future. This limitation puts a brake on the
control of the surface state, which is a key point for the prospec-
tive work in bioadhesion and can allow the investigation of new
insights in the bioadhesion field, both theoretically and in terms
of applications. In some cases, (i.e. biomedical implants) antifoul-
ing surfaces are sought in order to limit the biological colonization
or any immunological response. On the contrary, tissue engineer-
ing needs good integration, and thus bioadhesion, of cells within
biomaterials. Strong efforts are needed to further investigate the
effects of the physio-chemical parameters of surfaces: hydrophilic-
ity, roughness, mechanical properties, patterns. The development
of innovative biomaterials will be dependant of these advances.
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