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OpenPHRI is a C++/Python general purpose soft-
ware with several built-in safety measures, designed
to ease robot programming for physical human-robot
interaction (pHRI) and collaboration (pHRC). Aside
from providing common functionalities, the library
can be easily customized and enhanced, thanks to
the project’s open source nature. The OpenPHRI
framework consists in a two-layer damping controller
depicted in figure 1. This allows the user to provide
compliance and other safety features at both the
joint and task levels, depending on the application.

1 Physical Human-Robot In-
teraction

Physical human-robot interaction refers to situations
where a direct contact occurs between the two agents.
From the human perspective, such contact can be
either intentional or undesired. Undesired contacts
may happen if the human enters the robot workspace
and no presence detection system (e.g. light barrier,
floor mat, laser scanner) is active. These contacts
may of course lead to severe injuries. Voluntary phys-
ical interactions, on the contrary, are needed when-
ever the person makes contact with the robot to stop

it, guide it, or teach it a behavior.

This type of interaction is more and more de-
manded in factories, to make robots and workers
operate closely or jointly. Other scenarios include
health care centers for physiotherapy and domestic
assistance of elderly or disabled people. In all these
situations, measures must be taken to ensure the
safety of persons present in the robot’s vicinity.

Such measures can be implemented at the hard-
ware level, using passively compliant actuators, or at
the control/software level. While mechanically com-
pliant devices allow fast impact force absorption, they
are only available on a restricted set of robots, and
add a non negligible cost to the platform. On the con-
trary, control level solutions can be applied to virtu-
ally any robot. Moreover, they can provide preven-
tive actions (e.g. collision avoidance, deceleration)
that reduce the risk of undesired impact with the op-
erator. Ideally, both solutions should be combined to
provide the best level of safety.

Although pHRI has been extensively investigated
by the research community, to the best of our knowl-
edge, no general open-source software solution exists
to date. Thus, each research team or industrial is
forced to develop its own software, limiting the adop-
tion, benchmarking and growth of pHRI in the com-
munity.
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Table 1: Detailed project hierarchy.

Hierarchy Content
src Source files for the libraries
• OpenPHRI C++ implementation of the controller and of the robot data structure
- constraints Constraints implementation
- force generators Task space force inputs
- velocity generators Task space velocity inputs
- torque generators Joint space force inputs
- joint velocity generators Joint space velocity inputs
- utilities Various utilities such as clock, data logger, intergrator/derivator
• pyOpenPHRI Python bindings for OpenPHRI, developed with Boost.Pythona

• vrep remote api APIb for external V-REP control
• vrep driver OpenPHRI to V-REP interface

include Header files for the libraries, that follow the same structure as src
tests Unit tests for various parts of the OpenPHRI library
apps Example and demonstrations, to help getting started with OpenPHRI
share Robot models and scenes for V-REP
build Build directory

ahttp://www.boost.org/doc/libs/1_64_0/libs/python/doc/html/index.html
bCourtesy of Coppelia robotics.

This is the main motivation behind OpenPHRI: to
provide a full-featured open source software library,
that can also be easily extended, to develop pHRI
applications.

2 Overview of the library

The controller, constraints and inputs described in
this paper are all available in the OpenPHRI soft-
ware library, distributed online1 free of charge under
the GNU LGPL license2. The library is written in
C++ to maximize efficiency in terms of computa-
tion and memory footprint and to easily embed it in
existing projects. Python bindings are also provided,
since this language is largely used in the robotics com-
munity and since it allows quick prototyping, while
keeping low computational times, as most computa-
tions are performed in machine language. An inter-

1https://github.com/BenjaminNavarro/OpenPHRI
2https://www.gnu.org/licenses/lgpl-3.0.en.html

face with the robotics simulator V-REP3 is provided
and interfaces to other simulators and robots can be
easily added. The detailed hierarchy of the project is
given in Table 1.

2.1 Example

Listing 1 presents a short but meaningful example of
OpenPHRI usage. In less than 35 lines of code (com-
ments excluded) one can set up a V-REP scenario
where a serial manipulator robot Kuka LWR4+ is
moved with an external force applied, while limiting
its velocity, reading sensory input, and sending joint
commands to the simulator. It can be seen (at lines
10 and 18) that smart pointers4 are used instead of
raw pointers to pass data through the library. This
has the advantage of releasing automatically the asso-
ciated memory when it is no longer referenced in the
program, avoiding memory leaks. Also, using point-
ers instead of values allows the user to change some

3http://www.coppeliarobotics.com
4Shared pointers from the standard C++ library.
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Figure 1: Overview of the OpenPHRI framework.

parameters (e.g. maximum velocity) online very eas-
ily.

Since the example is self-explanatory thanks to the
comments, we only highlight few key elements of the
library. First, a Robot object is required. This is a
data structure containing all the information regard-
ing its current state (e.g., joint positions, external
force, kinematics) and control parameters (e.g., ve-
locity bounds, damping factor). Next, the controller
itself, called SafetyController , is created and paired
to the robot to control. A generic add method can
be used to add constraints, velocity and force inputs
to the controller. The name given as first parameter
to the add method can be used to retrieve or remove
the associated constraint or input from the controller.
Then, to run the controller, the call operator (line 36)
is used.

3 The OpenPHRI framework

The OpenPHRI control framework (outlined in
Fig. 1), is based on damping control, a particular
case of impedance control [1]. Impedance control re-
lies on a mass-spring-damper system, that relates the
external forces fext applied on the robot control point
to its displacement from the reference pose xr. Here,
we consider only damping, and extend the paradigm
to both task and joint spaces, using:

ẋ∗ = B−1
t fext + ẋr (1)

q̇∗ = B−1
j τext + q̇r, (2)

with Bt,j diagonal positive matrices of damping pa-
rameters, and fext (respectively, τext) forces at the
control point (joints). For simplicity, the general
term force will be used when dealing with both forces
and torques at either the control point or joints. Also,
throughout this paper, subscripts t and j indicate
variables related respectively to task and joint space.

Although (1) and (2) were proven useful for com-
plying with interaction forces while following a pre-
defined trajectory, they can be extended to fit many
more scenarios. We design a more generic controller
that includes sets of force inputs F and Γ and of ve-
locity inputs V and Ω:

ẋ∗ = B−1
t

∑
fi∈F

fi +
∑
ẋi∈V

ẋi (3)

q̇∗ = B−1
j

∑
τi∈Γ

τi +
∑
q̇i∈Ω

q̇i. (4)

Typically, real forces can be combined with virtual
ones, and it is possible to add virtual velocity sources
in V and Ω to the reference – real – joint or task space
velocities. In this work, the focus has been on :
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1 #inc lude <OpenPHRI/OpenPHRI . h>
2 #inc lude <v r e p d r i v e r / v r e p d r i v e r . h>
3

4 // Use namespaces to shorten the types
5 us ing namespace phr i ;
6 us ing namespace std ;
7

8 i n t main ( i n t argc , char ∗ argv [ ] ) {
9 // Create a robot with a name ( used by

the V−REP d r i v e r ) and a j o i n t count
10 auto robot = make shared<Robot>(”LBR4p” ,

7) ;
11 // Set task space damping va lues to 100
12 ∗ robot−>controlPointDampingMatrix ( ) ∗=

1 0 0 . ;
13

14 // Create a c o n t r o l l e r f o r the robot
15 auto s a f e t y c o n t r o l l e r =

S a f e t y C o n t r o l l e r ( robot ) ;
16

17 // Create a po in t e r to s t o r e the maximum
v e l o c i t y , here 0 .1m/ s

18 auto max vel = make shared<double >(0 .1) ;

19 // Add t h i s to the c o n t r o l l e r
20 s a f e t y c o n t r o l l e r . add ( ” v e l o c i t y

c o n s t r a i n t ” , Ve loc i tyCons t ra in t (
max vel ) ) ;

21

22 // Feed the e x t e r n a l f o r c e to the
c o n t r o l l e r

23 s a f e t y c o n t r o l l e r . add ( ” e x t e r n a l f o r c e ” ,
ExternalForce ( robot ) ) ;

24

25 // Create a V−REP d r i v e r f o r sending
j o i n t p o s i t i o n s with 5ms sample time

26 vrep : : VREPDriver d r i v e r ( robot ,
Contro lLeve l : : Joint , 0 . 005 ) ;

27 // Use V−REP synchronous mode .
28 d r i v e r . enableSynchronous ( t rue ) ;
29 // Star t the s imua l t i on
30 d r i v e r . s t a r tS imu l a t i on ( ) ;
31

32 whi le (1 ) {
33 // Update the robot with the cur rent

s imu la t i on data
34 d r i v e r . getSimulat ionData ( ) ;
35 // Run the c o n t r o l l e r
36 s a f e t y c o n t r o l l e r ( ) ;
37 // Send the c o n t r o l output
38 d r i v e r . sendSimulationData ( ) ;
39 // Tr igger a s imu la t i on step
40 d r i v e r . nextStep ( ) ;
41 }
42 }

Listing 1: Example of a short OpenPHRI
application.

• real interaction forces exchanged with the human
or environment,

• virtual mass and stiffness forces (generating in-
ertial and elastic effects),

• virtual forces repelling away from obstacles,

• velocities generated by a pre-designed trajectory
generator,

• velocities output by a force controller.

This is of course not restrictive and other inputs can
be considered to fit more scenarios.

When considering safety of human-robot interac-
tion, most solutions can be expressed in some form of
velocity reduction. This includes: stopping the robot
upon contact, reducing its velocity when nearby op-
erators are approaching, and imposing constraints on
velocity, kinetic energy or transferred power. To as-
sess the danger, we must monitor the velocities in
both task and joint space, since either one can lead to
undesired behaviors. The total task and joint space
velocities can be derived from (3) and (4):

ẋtot = ẋ∗ + Jq̇∗ (5)

q̇tot = J†ẋ∗ + q̇∗, (6)

with J the task Jacobian. Note that (5) and (6) are
related by: ẋtot = Jq̇tot, and as such represent the
same motion expressed in two different spaces. Vec-
tors ẋ∗ and q̇∗ are needed in both equations so that,
for example, one can design a trajectory at the joint
level in Ω and add some compliance to the control
point by including the external force in F .

Equations (5) and (6) must be both solved, to
derive the set of constraints C that slow down the
robot motion if needed (see Fig. 1). The constraints
are scalar values Ci ∈ R≥0 that become active when
smaller than 1. In fact, they determine the value of
velocity scaling factor α ∈ [0, 1]:

α = min(1,min(C)). (7)

This is finally used to reduce (if needed) the joint
velocity that is sent to the robot actuators:

q̇con = α q̇tot. (8)
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Equations (3) - (8) make up the OpenPHRI frame-
work.

Note that, since multiple inputs can be enabled at
the same time, they may not be all realizable. This
can occur, for instance, if the robot is deviated from
its task (or joint) space trajectory by the presence of
an obstacle. In this case, the control velocity vector
will be composed of both inputs. In general, conflict-
ing inputs can arise whenever the controller has been
misconfigured. Nevertheless, the OpenPHRI frame-
work is designed to guarantee the safety constraints
C at its lower layer. Hence, these will always be sat-
isfied, rendering the robot motion safe.

In the next sections, we detail the various force and
velocity control inputs, as well as the constraints that
have been considered in this work.

4 Force inputs

This section presents joint or task space force inputs
that, when included respectively in sets F in (3) and
Γ in (4), make the robot comply with real world forces
or react to virtual ones. An illustrative example is
given in Fig. 2.

Figure 2: Examples of interaction, stiffness and re-
pulsive forces.

4.1 Interaction forces

In many cases, it is necessary to adapt the robot mo-
tion in the presence of external forces, e.g for kines-
thetic guidance (teaching by demonstration). In such
scenarios, the external force fext can be included in
F . If this is the only force input in F , the controller
is a classic damping controller. The same can be done
in the joint space by including τext in Γ.

4.2 Virtual mass and stiffness

Using a full admittance model, including stiffness and
mass effects in (1) or (2) has been intensively inves-
tigated in the literature and has been proven useful
in many cases [2–4]. This can be easily done, in our
framework, by adding a virtual spring and/or a vir-
tual mass that generate forces along any motion di-
rection. In the task space, for instance, these virtual
forces will be respectively ft,stiff = −Kt (x− xr) and
ft,mass = −Mt (ẍ− ẍr), with Kt and Mt diagonal
positive semi-definite matrices of stiffness and mass
parameters, respectively.

4.3 Virtual repulsive forces

To prevent the robot from hitting operators, or to
control its motion in a cluttered environment, a
collision avoidance algorithm should be used. De-
spite providing local solutions, the potential fields
approach [5] is well adapted to dynamic scenarios,
where a complete knowledge of the environment is
unavailable, because of moving and unpredictable ob-
stacles, and of limited field of view sensors. The po-
tential fields approach consists in modeling obstacles
(respectively, targets) as sources of repulsive (attrac-
tive) forces. Summing up these forces results in a mo-
tion in the most promising direction. Hence, poten-
tial fields can be trivially integrated within our frame-
work, by adding the required virtual forces (e.g., re-
pulsive forces frep) to sets F or Γ.

5 Velocity inputs

In this section, we describe possible joint and task
space velocity inputs, to be included respectively in
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Ω and V. These velocities can be the result of a
trajectory generator (Sect. 5.1) or of a force control
law (Sect. 5.2).

5.1 Velocity reference trajectory

Since trajectory generation and tracking is present
in most robotics applications, it is crucial to have it
in OpenPHRI. To this end, a trajectory generator,
based on fifth-order polynomials, has been developed
within the library. This outputs smooth velocity tra-
jectories (q̇r(t) or ẋr(t)) with the following features.

• Each trajectory can have arbitrary initial and
final: value, first, and second derivative (for a
total of 6 degrees of freedom).

• Each trajectory can be composed of multiple seg-
ments (fifth-order polynomials) joined by inter-
mediate waypoints, and that the waypoint the
trajectory is C3.

• Multiple trajectories, each composed of several
segments, can be synchronized (see Fig. 3).

• Arbitrary first and second derivative constraints
can be applied to each segment, and the trajec-
tory duration is determined accordingly.

• Instead of first and second derivative limits, a
minimum duration can be specified (e.g., in-
creased for synchronization purposes).

Similar existing solutions, such as the Reflexxes Mo-
tion Library [6], do not provide bounded continuous
accelerations, nor waypoints for complex trajectory
design.

5.2 Velocities for force control

Force control is required for various applications, such
as grinding, polishing, assembling, echographic moni-
toring, needle insertion or minimally invasive surgery.
To include force control in our framework, we map it
to a velocity command. Let us first define the target
force fr and its associated error vector:

∆f = S(fr − fext). (9)

−1

0
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No synchronization P0 waypoints

P1 waypoints

−1

0

1
Waypoint synchronization P0 waypoints

P1 waypoints

0 2 4 6 8
Time (s)

−1

0

1
Trajectory synchronization P0 waypoints

P1 waypoints

Figure 3: Trajectory synchronization. Given two tra-
jectories, each composed of two segments (one inter-
mediate waypoint), one can apply no synchronisation
(top), waypoint synchronization (middle) and whole
trajectory synchronization (bottom).

Here, S is a diagonal binary selection matrix with ele-
ments S(i, i) = {0, 1} used to set the task space com-
ponents to be driven by the force controller. Then,
PD control can be applied to compute the control
point velocity ẋfc that regulates ∆f to 0. A similar
technique can be applied in the joint space.

6 Constraints

In this section, we detail the design of the various
constraints that reduce the robot velocity, through
(7).

6.1 Emergency stop

A simple way to provide some level of safety, as
demonstrated in [7, 8] and imposed by the ISO/TS
15066 safety standard [9], is to stop the robot mo-
tion when strong contact with a nearby operator oc-
curs. We assume that the robot relies only on pro-
prioception (external force measurement) and that
physical contact with humans or with the environ-
ment should have limited magnitude. Then, to stop
the robot, we set constraint Cstop to 0 as soon as |fext|
(or |τext|) passes some pre-tuned thresholds. Deacti-
vation thresholds are also needed to specify when to
increase Cstop to 1, using hysteresis. Fig. 4 gives the
evolution of Cstop, with activation and deactivation
thresholds of 5 N and 1 N respectively.
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Figure 4: Characteristic of the emergency stop con-
straint. Activation threshold = 5 N, deactivation
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6.2 Velocity limitation

Another very common safety criterion is velocity lim-
itation. This is often present in robotics safety stan-
dards, as ISO 10218:2011 [10] and ISO/TS 15066.
Note that even when the trajectory has been pre-
planned to fulfill the velocity bounds, other control
inputs (e.g., kinesthetic forces applied by the opera-
tor, force control, repulsive force) can lead to accel-
erations that break the constraint. To respect the
limitation at all times, we design constraint Cvel to
be inversely proportional to the norm of the total ve-
locity (either ẋtot or q̇tot), and unitary when this is
greater than the limit Vmax. An illustration on this
velocity limitation is given in Fig. 5, where the norm
of the total velocity ẋtot and the output velocity ẋ as
well as the value of Cvel are displayed.
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Figure 5: Evolution of the velocity with Vmax = 0.25
m/s.

6.3 Acceleration limitation

To avoid abrupt robot motions, the acceleration can
also be limited to Amax. Since (7) offers velocity
reduction only, we use Amax > 0. To limit the accel-
eration, we express Cacc as Cvel, by replacing, in the
formulation, the current velocity with the predicted
one, if the acceleration was at its maximum allowed
value Amax during the next time step. The acceler-
ation limitation mechanism is depicted in Fig. 6. It
can be seen that the velocity increases linearly during
the first 3s, due to the acceleration limit.
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Figure 6: Evolution of the velocity and acceleration
with Amax =0.13 m/s2.

6.4 Power limitation

The ISO 10218:2011 and ISO/TS 15066 standards
also impose a limitation on the power exchanged be-
tween human and robot. Power can be limited at
hardware level, e.g. electric power as with the Kuka
LWR4+, or at control level, as we do here. The
advantage of operating at the control level is that
the limitation can be tuned online (e.g., deactivated
to allow high dynamic motions when no operator is
present). To define constraint Cpow, we consider me-
chanical power, i.e., the scalar product between force
and velocity. The limitation is effective only when
this is negative, i.e. when energy is absorbed by the
human, and the robot represents a potential threat
for him/her (see Fig. 7). In this case, Cpow is in-
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versely proportional to the power, and unitary if the
absolute value of the power is greater than the al-
lowed limit Pmax > 0. An example of force limita-
tion is depicted in Fig. 8. It can be seen that the
transmitted power is effectively limited only when it
is negative and passes the limit.

Safe Potentially unsafe

Figure 7: Safe and unsafe situations depend on the
sign of the transferred power.
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Figure 8: Evolution of the velocity, external force and
transmitted power with Pmax = 5 W.

6.5 Force limitation

Force limitation is the third and last constraint im-
posed by the ISO 10218:2011 and ISO/TS 15066.
Actual force limitation is a very challenging prob-
lem, since it requires a complete knowledge of the

environment, including present humans. While for
the environment a complete map (position, materi-
als, etc.) can be obtained, it is nearly impossible
to have the same knowledge about humans, as this
would require estimation of their motion and body
impedance parameters, which change over time (e.g.
fatigue or muscular co-contraction may stiffen a joint)
and from a person to the other. Hence, we decided
to adopt a reactive approach that does not rely on
an environment model. By doing so, if the exter-
nal force instantaneously passes the limit Fmax > 0,
the robot reacts to quickly move away from the im-
pact and reach a safe state. Our approach has two
steps. The first step consists in generating a veloc-
ity in the direction opposite to the external force, to
move away from the collision. This velocity, noted
ẋFlim

, is added to set V. The second step consists in
including one or more constraints in C, to slow down
the robot, according to (7) and guarantee that it be-
haves safely while executing ẋFlim

. For example, to
respect the ISO 10218:2011, both velocity and power
limitations must be applied:

Cforce = min(Cvel, Cpow). (10)

6.6 Kinetic energy limitation

When robot and human collide, the level of injury
endured by the latter can be related to the robot
kinetic energy [11, 12]. Hence, kinetic energy is a
major concern when it comes to safety, and as such
it should be limited. For a rigid body of mass m, the
kinetic energy is defined as: Ek = m‖v‖2/2. For rigid
manipulators, an equivalent mass, perceived at any
collision point on the robot structure can be derived
using the joints dynamic model [11,13]. Therefore, in
both cases, limiting the kinetic energy can be seen as
a form of velocity limitation, with the mass (real or
equivalent) acting as scale factor. As such, constraint
Ckin is equivalent to Cvel, with Vmax =

√
2Ekmax/m.

6.7 Separation distance

When the separation distance between the robot and
near operators is monitored, it can be used to adapt
the aforementioned limits (e.g., on velocity, power).
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It is also required to fullfil the Speed and separation
monitor mode of the ISO/TS 15066. For instance,
a low level of security may be required if no one is
present in the surroundings, whereas very strict lim-
itations may be imposed when working near or in
collaboration with humans. A simple example is de-
picted in Fig. 9. To comply with this, we use fifth-
order polynomials, implemented in OpenPHRI5, to
allow a smooth adaptation of the limits, depending
on the distance to the closest operator or to any other
object to be avoided. Then, any limit (for instance,
Vmax) will vary from a low value at a fixed minimal
distance, to a large value at a higher distance, and
vary smoothly in between.

Limited velocity

Full velocity

Figure 9: The velocity limitation varies smoothly in
function of the separation distance.

7 Benchmark tests

In physical human-robot interaction, in order for the
robot to react quickly in the case of an impact or to
be as transparent as possible when physically collab-
orating with a human, its control loop should run at

5OpenPHRI/utilities/fith order polynomials.{h,cpp}

minimum 1kHz. It is therefore crucial that the im-
plementation of our controller in OpenPHRI is fast
enough to comply with this timing constraint. To
assess the performance of our library, we have run
some benchmark tests on a computer equipped with
an Intel i7-6700HQ @ 2.6GHz running Linux 4.11.

In Fig. 10, we present the results of the benchmark
tests for the controller associated with different con-
straints, force and velocity inputs, and running on
a 7 degrees of freedom manipulator. At each itera-
tion, the controller is run 10000 times to get mean-
ingful results, and the average computation time is
logged. In Figures 10a-10e, we give the average com-
putation time t̄ and the standard deviation σ over
1000 iterations. The computation of the forward and
inverse kinematics is not included in these results, in
order to focus on the control computation time over-
head. Also, the current controller implementation
is single-threaded but, given the very low computa-
tional time (t̄ < 4µs in the most complex scenario
presented in 10e), a multi-threaded version does not
seem necessary. Figure 10f shows that the memory
usage6 stays very low, with a peak at 186 KiB (here,
the abscissa indicates snapshots taken regularly dur-
ing execution).

8 Experiments

Let us now present the results of a full-featured exper-
iment using the framework described in this chapter.

The experiment is split in two phases, a teaching-
by-demonstration phase, and a replay phase, where
the robot operates autonomously, in the presence of
an obstacle and near the human operator. Figure 11
shows the setup, consisting in a Kuka LWR4+ arm,
with external force fext estimated through the FRI in-
terface7. All the code was written in C++ using the
OpenPHRI library and integrated inside the Know-
botics Framework, currently under development at
LIRMM, to interface with the hardware. The FRI li-
brary was used to communicate with the Kuka arm.
The controller sample time was T=1 ms. To manage

6Measured using the Massif tool from the Valgrind software.
7http://cs.stanford.edu/people/tkr/fri/html/
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(a) Controller with no constraints and no inputs.
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(b) Controller with a velocity constraint (C = {Cvel}).
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(c) Controller with velocity and power constraints (C =
{Cvel, Cpow}).
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(d) Controller with velocity, power and kinetic energy
constraints (C = {Cvel, Cpow, Ckin}).
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(e) Controller with velocity, power and kinetic energy con-
straints and with a potential field, a virtual stiffness and
a force controller in the task space (C = {Cvel, Cpow, Ckin},
F = {ft,stiff , frep}), V = {ẋfc}.
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(f) Memory usage while executing the controller bench-
marks ((a)-(e)) sequentially.

Figure 10: Benchmarks of the controller running on a 7 degrees of freedom manipulator.

the robot behavior, we designed in OpenPHRI the
finite state machine shown in Fig. 12.

It is important to note that our framework is used
continuously throughout both the teaching and re-
play phases. An equivalent application using the V-
REP simulator is available in the OpenPHRI reposi-
tory under “apps/demo”8. The whole application has
less than 600 lines of code: 125 for the main file and
440 for the finite state machine (header + source).

8https://github.com/BenjaminNavarro/OpenPHRI/tree/

master/apps/demo

The teaching phase consists in manually guiding
the robot, by applying fext ∈ F , to teach it the way-
points where it should later realize a force control
task (apply fr = 30N for 2 s perpendicularly to the
end-effector). The number of waypoints is not known
a priori. A waypoint is recorded when no motion is
detected for 3 s and the teaching phase ends if the
robot remains still for 3 more seconds.

Once the operator has specified all the desired
points, the replay phase is triggered. The trajec-
tory generator is used to output the control point
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Figure 11: Setup for the experiment.

(end effector) reference velocity (ẋr ∈ V) for reaching
each waypoint. When a waypoint is reached, the task
space force controller is activated (ẋfc ∈ V). After
the force has been correctly applied, the robot moves
to the next waypoint. Once all the force control tasks
have been performed, the robot returns to its origi-
nal position using the trajectory generator. During
the replay phase, while moving between waypoints,
the external force at the control point is monitored
to trigger an emergency stop if its norm exceeds 10
N, as explained in Sect. 6.1. Motion is resumed only
when the external force is lower than 1 N. Addition-
ally, potential fields (frep ∈ F) are used to avoid a
known object (here, an apple) in the environment.

Throughout the experiment, the joint velocities
sent to the robot are output by (8), with scal-
ing factor α computed with the constraints in (7).
The task space damping matrix is set to Bt =
diag(250, . . . , 250), while joint space damping Bj is
not used. During force control tasks execution, an
acceleration limit (Cacc ∈ C) of Amax = 0.5 m/s

2
is

applied, to avoid abrupt motions. During the replay
phase, a virtual stiffness Kt = diag(1000, . . . , 1000),
described in Sect. 4.2, is added to compensate devi-
ations from the trajectory. The potential fields for
obstacle avoidance are activated when the distance
from the obstacle is below 0.2 m. Throughout the
experiment the velocity is limited, to Vmax = 0.1 m/s
during teaching, and to Vmax = 0.15 m/s during re-
playing.

Snapshots of the experiment are displayed in

Teach 
initialization

+ Velocity limit (0.1 m/s)
+ External force

Wait for motion

Move

Record waypoint

No motion for 3 seconds

Replay 
initialization

-  Velocity limit (0.1 m/s)
-  External force
+ Velocity limit (0.15 m/s)
+ Virtual sti�ness
+ Potential �eld

Compute trajectory

Force task execution
-  Emergency stop 
-  Virtual sti�ness (z axis)
+ Force control (z axis)
+ Velocity limit (0.1 m/s)
+ Acceleration limit (0.5m/s²)

Go to next

waypoint
+ Emergency stop

Force task termination
-  Force control (z axis)
-  Velocity limit (0.1 m/s)
-  Acceleration limit (0.5m/s²)
+ Virtual sti�ness (z axis)

Remaining waypoints > 0

Waypoint reached

Force applied for 2 seconds

Go to initial position

End

Initial position reached

No remaining waypoints

No motion
for 3 seconds

Figure 12: Finite state machine used for the experi-
ment. A + sign indicates an addition to the controller
(new constraint or new input) while a - indicates a
removal.

Fig. 13 while the results are shown in Fig. 14. A
video of the experiment is attached to this paper9.
The teaching phase takes place during the first 36 s.
Then, the replay phase starts. It can be seen from
Fig. 14c that the scaling factor is decreased multi-
ple times to comply with the constraints. For ex-
ample, during manual guidance, the applied external
forces, visible in Fig. 14a, would have led to veloc-
ities above the limit if Cvel was not present. The
same occurs when the obstacle is being avoided be-
tween seconds 73 and 74. At 70 s, as Fig. 14a and
snapshot 13g show, an unexpected external force is
applied by the operator, leading to a complete stop of
the robot (normal operation is resumed at t = 72 s).
Control point velocities before and after scaling are
presented respectively in Fig. 14b and 14d. Finally,
Fig. 14e shows how scaling from the total (vtot) to the
applied (vcon) translational velocity norms, complies
with the imposed limit Vmax.

9And also available at: http://bit.do/openphrivideo
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(a) The robot is waiting
in its initial position.

(b) The operator teaches
the first waypoint.

(c) The operator teaches
the second waypoint.

(d) The robots goes to
the first waypoint.

(e) Force control is
performed at the first

waypoint.

(f) The robot avoids the
obstacle by using repulsive

potential fields.

(g) The operator stops the
robot to access the

workspace.

(h) The robot returns
to the

initial pose.

Figure 13: Snapshots of the experiment: teaching (a-c) and replay (d-h) phases.

9 Conclusions

This article introduces OpenPHRI, a new software li-
brary intended for physical human-robot interaction
and collaboration. We present its structure, includ-
ing its core and components (force inputs, velocity
inputs, and constraints), as well as a short but mean-
ingful example. It should be noted that in some cases,
tasks (i.e., inputs) can conflict, hence not be fully
realized. This behavior can be sometimes desirable
(e.g., collision avoidance while following a trajectory)
or unwanted, and caused by controller misconfigu-
ration. Nevertheless, the constraints applied at the
lower layer of OpenPHRI, guarantee safe robot be-
havior at all times. Aside safety, a real life experi-
ment also demonstrates the advantages of OpenPHRI
in terms of ease of use, both when the human is active
(teaching by demonstration) and passive (the smooth
generated trajectories are intuitive and predictable).
Besides, OpenPHRI controllers can be executed at
very high rates (>1kHz) or on low end machines,
while still achieving excellent performances. Finally,
the OpenPHRI library is easy to use, and programs
can be written in a very concise way, while retain-
ing high readability. The open source nature of the
project allows its users to add new features and share

them with the community, avoiding it to become out-
dated on the long term.
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