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Abstract—Navigation tasks are often subject to several con-
straints that can be related to the sensors (visibility) or come
from the environment (obstacles). In this paper, we propose a
framework for autonomous omnidirectional vehicles, that takes
into account both collision and occlusion risk, during sensor-
based navigation. The task consists in driving the vehicle towards
a visual target in the presence of static and moving obstacles.
The target is acquired by fixed —limited field of view— on-board
sensors, while the surrounding obstacles are detected by lidar
scanners. To perform the task, the vehicle has not only to keep
the target in view while avoiding the obstacles, but also to predict
its location in the case of occlusion. The effectiveness of our
approach is validated through several experiments.

Index Terms—Sensor-based navigation, omnidirectional vehi-
cles, obstacle avoidance, visibility constraints, occlusions.

I. INTRODUCTION

NAVIGATION strategies generally aim at endowing a
vehicle with capacities of perception, decision, and ac-

tion, that allow it to autonomously move in the environment.
These strategies are traditionally divided in two main classes,
depending on whether the problem is solved locally or glob-
ally. The global approach [1], [2], usually consists in motion
planning, hence relies on accurate knowledge of the vehicle
pose and on a global map of the environment. On the other
hand, local or reactive strategies are based on instantaneous
information from on-board sensors. These strategies include:
potential fields [3], vector field histogram [4], dynamic win-
dow [5], obstacle-restriction method [6], and closest gap [7].

One of the advantages of reactive strategies is that they can
be well combined with other sensor-based approaches such as
visual servoing [8], [9]. In visual servoing, the task is defined
in the sensor space, instead of configuration space, and it does
not require neither a global model of the environment nor vehi-
cle localization. Works in this area include [10], where image-
based navigation is combined with obstacle avoidance, for a
differential-drive vehicle equipped with a pan actuated camera.
Moving obstacles may be considered in the same approach,
as shown in [11]. Recently, another interesting framework for
visual navigation with obstacle avoidance has been presented
in [12], for a car-like vehicle equipped with an actuated camera
and a lidar. The framework is based on tentacles, i.e., drivable
paths used to predict possible collisions in the near future.
The task realized in [12] consists in following a visual path
represented by key images, without colliding with the ground
obstacles. The authors show that obstacle avoidance does not
affect visual navigation and that their approach outperforms
potential fields [13]. The framework was later improved [14],
by using a Kalman filter to deal with moving obstacles.

A frequent problem in vision-based navigation is the loss
of image features, due to occlusions or to the sensor’s limited
field of view. This problem has been addressed from different
viewpoints. The authors of [15] and [16] study the shortest
paths in terms of distance in the image plane for a differential
drive robot equipped with a limited field of view sensor. The
objective is to obtain the globally optimal paths that allow
the vehicle to maintain a landmark in sight in the absence
of obstacles. Recently, these works have been extended to
handle environments populated with static obstacles [17]–
[19]. However, all the methods proposed in these works are
based on motion planning and require a priori knowledge of
the environment. On the other hand, some researchers have
addressed visibility constraints in reactive, purely sensor-based
navigation strategies. For example, in [20], a homography-
based visual controller drives a mobile robot to a goal pose by
following some of the optimal paths proposed in [15]. Another
solution, proposed in [21], consists in predicting the location
of features, when they are occluded by static obstacles.

Aside the need for environment knowledge, another limita-
tion of the cited works is that none addresses omnidirectional
vehicles. These systems, however, are getting increasingly
popular in industrial applications, since they can perform
complex three-dimensional trajectories, that are indispensable
in limited footprint environments. It is therefore surprising
that no attention has been paid to incorporating collision and
occlusion constraints in the navigation of such platforms.

In this paper, we address the problem of dealing with both
collisions and occlusions caused by static and moving obsta-
cles, during visual navigation of an omnidirectional vehicle
equipped with fixed —limited field of view— on-board sensors.
Specifically, the navigation task consists in making the vehicle
safely and autonomously navigate towards a static or moving
target, in an unknown environment.

To solve this problem, we propose a generalization of the
framework designed in [12] for car-like vehicles, by intro-
ducing omnidirectional tentacles. These tentacles are char-
acterized not only by curvature, but also by course angle,
since the vehicle linear velocity is not necessarily aligned
with its heading, as in traditional nonholonomic systems. We
also consider the visibility constraints that are induced by the
limitations of the fixed sensors field of view. Furthermore, if
the target is lost or occluded by an obstacle, a fast and efficient
strategy is designed to estimate its current pose, by using its
previous pose along with the control inputs.

Let us summarize the constraints that are satisfied by our
approach: 1) safety is ensured, by avoiding collisions with
static and moving obstacles, 2) the target is maintained as
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Fig. 1. General definitions. The robot frame FR is shown along with the
occupancy grid (yellow), occupied cells (gray), omnidirectional tentacles (red),
and visual sensors center (C) with its field of view (blue).

much as possible within the sensors field of view even in
presence of obstacles, 3) the loss or occlusion of the target is
handled by continuous online estimation of its pose.

To our knowledge, this is the first work addressing and val-
idating experimentally safe sensor-based navigation of omni-
directional vehicles under these three constraints. A prelimi-
nary version of our framework was presented in [22] without
considering target occlusion problem nor real vision (the
target pose was estimated via odometry alone). Our main
contributions with regards to that work are indicated hereby.
• The development of an algorithm for detecting and track-

ing the target pose, using one or two cameras along with
the lidar measures.

• The inclusion of target loss management to deal simulta-
neously with collision and occlusion.

• Analysis of the controller stability.
The remainder of the paper is organized as follows. In

Sect. II, the problem and relevant variables are defined.
The omnidirectional generalization of tentacles is presented
in Sect. III, and we detail our controller in Sect. IV. In
Sect. V, we present the strategy for determining the best
path (tentacle) to be tracked by the controller. Section VI
describes the algorithm used to detect and track the visual
target. Experiments are presented in Sect. VII, and we finally
conclude in Sect. VIII.

II. GENERAL DEFINITIONS
A. Omnidirectional platform

We consider an omnidirectional vehicle (robot), which can
move in any direction on the ground plane. Hence, the control
inputs are:

u = [vX vY ω]> . (1)

These are aligned with the axes of the robot frame
FR (R,XR,YR) (see Fig. 1), with R the center of rotation, XR
pointing forward and YR pointing left.

The vehicle is equipped with a set of forward looking visual
sensors (e.g., one or more cameras) with a combined field of
view β , centered at C. It also has distance sensors for building
a local map (occupancy grid) of the obstacles surrounding
it. The visual sensors are fixed, so the vehicle heading also
determines its viewing direction.

 

   

 

 

  

 

 

 

 

YR 

R𝜃𝑇  

R 

R𝜃𝑇
∗

 

XR 

R𝑋𝑇  

R𝑋𝑇
∗

  

R𝑌𝑇  
R𝑌𝑇

∗
 

𝛼𝑇  

𝛼∗
 

𝜌∗ 

𝑇 

𝑇∗ 𝜌𝑇  

𝑣𝑋  

𝑣𝑌  

𝜔 

Fig. 2. Definition of the visual target related variables.

B. Visual navigation
The navigation task consists in driving towards a visible

target, while avoiding the environment obstacles. When the
environment is safe, the vehicle should progress forward,
while visually tracking the target. In case avoidable obstacles
are present, the vehicle should circumnavigate them, while
maintaining the target in the field of view. If the target is lost
or occluded by an obstacle, its current pose must be estimated
by using its previous location along with the current control
inputs. Finally, if collision is inevitable or if the target is not
visible for a long time, the vehicle must stop.

The specifications of the navigation task are: 1) orient the
vehicle so as to point the visual sensors towards the target,
2) make the vehicle progress towards the target, 3) avoid
collisions with the obstacles, while keeping the target in sight,
4) estimate the target pose during occlusions, in order to
predict its pose in case of reappearance.

More formally, to fulfill specifications 1 and 2, the ve-
hicle should move so that the visual target T (that can be
static or moving) is displaced in FR , from the current pose
RpT =

[
RXT

RYT
RθT
]> to a desired constant pose, Rp∗T =[

RX∗T
RY ∗T

Rθ ∗T
]> (see Fig. 2 for a complete illustration of these

variables). We define (see Fig. 2):
1) the distance between current and desired target posi-

tions:

ρ
∗ =

√
(RXT −R X∗T )

2 + (RYT −R Y ∗T )
2, (2)

2) the orientation offset between current and desired target
positions, defined only when ρ∗ 6= 0:

α
∗ = atan2

(RYT −R Y ∗T ,
R XT −R X∗T

)
, (3)

3) the distance between vehicle and target position:

ρT =

√
RXT

2 + RYT
2, (4)

4) the heading to the target:

αT =

{
atan2

(
RYT ,

R XT
)

if
(

RXT ,
R YT

)
6= (0,0) ,

0 otherwise.
(5)

In our work, we also consider the following hypothesis,
which will be used in the stability proofs of Sect. IV-E.
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Hypothesis 1. The velocity of the target is negligible with
respect to that of the vehicle.

Under hypothesis 1:
RẊT =−vX + ω RYT
RẎT =−vY − ω RXT
Rθ̇T =−ω.

(6)

Although this hypothesis is needed for the stability proof, in
the experiments we have also validated our framework in cases
where the target velocity is close to the vehicle one.

C. Obstacle occupation times
For obstacle modeling, we use the occupancy grid shown in

Fig. 1: it is linked to FR , with cell sides parallel to XR and YR.
Its longitudinal and lateral extensions are limited (Xm ≤ XR ≤
XM and Ym ≤ YR ≤ YM), to ignore obstacles that are too far to
be dangerous. Any grid cell c centered at (X ,Y ) is considered
occupied if an obstacle has been sensed in c.

The set of occupied cells with their estimated velocities, is
denoted by state vector O:

O = {c1, . . . ,cn, ċ1, . . . , ċn} . (7)

This is used to derive possible future collisions. Indeed, the es-
timations of the obstacles positions and velocities are updated
at every iteration, by the Kalman observer designed in [14].
Then, for each ci that may be occupied by an obstacle within
time horizon Th, we can predict initial ti0 (O)∈ [0,Th] and final
ti f (O) ∈ [ti0,Th] obstacle occupation times, in function of the
set of occupied cell states O .

III. OMNIDIRECTIONAL TENTACLES
We hereby present a generalization of the tentacles-based

approach proposed in [12], to omnidirectional vehicles.

A. Definitions
We use a set of drivable paths (tentacles) both for perception

and motion execution. Each tentacle j is a semicircle that
starts in R and is tangent to the linear velocity. The norm of
this velocity is: ‖v‖=

√
v2

X + v2
Y . In contrast with the tentacles

originally proposed in [12], our omnidirectional tentacles are
characterized not only by their curvature (i.e., inverse radius)

κ j =

{
ω/‖v‖ if ‖v‖ 6= 0,
0 otherwise, (8)

but also by their course angle

α j =

{
atan2(vY ,vX ) if ‖v‖ 6= 0,
0 otherwise. (9)

Instead, on traditional nonholonomic systems, since the linear
velocity is aligned with the heading vY = 0, thus α j = 0 for all
control inputs (i.e., all tentacles are tangent to the heading).

Curvature κ j belongs to K , a uniformly sampled set1:

κ j ∈K = {−κM, . . . ,0, . . . ,κM} (10)

and α j belongs to A , another uniformly sampled set:

α j ∈A = {αMin, . . . ,0, . . . ,αMax} ⊆ [−π,π[ . (11)

1For algorithmic reasons, we bound the tentacle curvature to an arbitrarily
large value κM , although omnidirectional vehicles can follow tentacles of
infinite curvature (i.e., pivot in place) whenever ‖v‖= 0.

The set of tentacles is T = K ×A . The total number of
tentacles in T is the product of the number of candidate
curvatures by the number of candidate course angles. An
example with 36 tentacles (3 curvatures × 12 course angles) is
shown in Fig. 1. Since tentacles are used both for perception
and motion, a compromise between computational cost and
control accuracy is needed to set the sizes of K and A .

Each tentacle j is characterized by two classification areas
(collision and dangerous), which are obtained by rigidly
displacing, along the tentacle, two rectangular boxes, with
increasing size. The boxes are overestimated with respect to
the vehicle dimensions. For each tentacle j, the sets of cells
belonging to the two classification areas are noted C j and D j

2.
The sets O , C j and D j are used to calculate the variables
required in our control law, as will be explained just below. In
particular, the largest classification area D j is used to select
the safest tentacle and to assess its danger, while the thinnest
one C j determines the - eventually needed - deceleration.

B. Vehicle occupation times
For each dangerous collision cell in tentacle j (i.e., for

each cell ci ∈ D j), we compute the vehicle occupation time
ti j. This is an estimate of the time at which the box will
enter the cell, assuming the vehicle follows the tentacle at
the current velocity. To calculate ti j (ci,v,α j,κ j), we assume
that the vehicle motion is uniform, and displace the box at its
current velocities: {

vX = ‖v‖ cosα j
vY = ‖v‖ sinα j
ω j = κ j ‖v‖,

(12)

until the instant ti j at which the box intersects cell ci.

C. Dangerous instants and collision instants
Once the obstacle and vehicle occupation times have been

calculated for each cell, we can derive the earliest time
instant at which a collision between obstacle and vehicle may
occur on each tentacle j. By either checking all cells in D j,
or focusing just on C j ⊂ D j, and using variables ti0 and
ti f introduced in Sect. II-C, we discern between dangerous
instants and collision instants. These are defined as:

t j = inf
ci∈D j

{
ti j : ti0 ≤ ti j ≤ ti f

}
(13)

tc
j = inf

ci∈C j

{
ti j : ti0 ≤ ti j ≤ ti f

}
(14)

respectively. In both cases, we seek the earliest time at which
a cell is simultaneously occupied by the obstacle and by the
vehicle. These metrics give a good approximation of the time
that the vehicle can travel along the tentacle without colliding.
Further details are given in [12].

IV. CONTROL SCHEME
A. Tentacle risk function

To assess the danger of each tentacle j, we design a tentacle
risk function, by using t j and tuned thresholds td > 0 and
ts > td (d stands for dangerous, and s for safe):

H j =


0 if t j ≥ ts
1
2

[
1+ tanh

(
1

t j−td
+ 1

t j−ts

)]
if td < t j < ts

1 if t j ≤ td .
(15)

2For further details on the derivation of C j and D j , refer to [12].
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Note that H j smoothly varies from 0, when possible collisions
are in the far future, to 1, when they are forthcoming. If H j = 0,
tentacle j is tagged as clear.

To determine the best behaviour (among visual target track-
ing and obstacle avoidance) to adopt, we assess the danger of
the environment via the risk function H =Hv of the visual task
tentacle, (κv,αv). This is the tentacle that best approximates
the visual path that the vehicle would follow to reach the target
in absence of obstacles. Depending on the value of H (noted
situation risk function), we distinguish the contexts (safe or
unsafe) explained below. The derivation of the visual task
tentacle is also explained hereby.

B. Safe context

In the safe context (H = 0), no dangerous obstacle is
detected on the vehicle path. In this case, it is desirable that the
vehicle realizes the task of driving RpT to Rp∗T , while keeping
as much as possible T within its field of view.

Since the angular velocity ω determines both the conver-
gence of RθT to Rθ ∗T (for pose regulation) and that of αT to
0 (for target visibility), a compromise must be reached. We
weigh the two objectives respectively with a gain λω ∈ [0,1]
and with its complementary 1−λω . Priority is given to target
visibility when the desired position is farther than ρα , and to
pose regulation when it is nearer than ρθ

3. In between, we use
a smoothing function, as in (15):

λω (ρ∗)=


1 if ρ∗ ≥ ρα

1
2

[
1+ tanh

(
1

ρθ−ρ∗ +
1

ρα−ρ∗

)]
if ρθ < ρ∗ < ρα

0 if ρ∗ ≤ ρθ .
(16)

The norm of the translation velocity v must be reduced, as the
target is approached. We specify this through variable:

vs (ρ
∗) =

{
V if ρ∗ > ρv,
ρ∗

ρv
V otherwise, (17)

with V > 0 the maximum desired value for vs and ρv > 0 the
distance at which the vehicle should slow down. Both V and
ρv are easily tunable variables.

Finally, the translation velocity must be aligned with the
heading towards the desired position α∗, when the target is far
(λω = 1). As the target gets near (λω < 1), we also compensate
the effects of the angular velocity ω in (6). In summary, the
vehicle control inputs in the safe context are: vX = vs cosα∗ + (1−λω) ω RYT

vY = vs sinα∗ − (1−λω) ω RXT
ω = λω αT + (1−λω)

(
RθT − Rθ ∗T

)
.

(18)

The above safe context control law (18) is also used to define
the visual path curvature κs and course angle αs:{

κs =
[
λω αT + (1−λω)

(
RθT − Rθ ∗T

)]
/‖v‖

αs = atan2(vY ,vX ) .
(19)

Note that in general κs and αs will not correspond to a
tentacle belonging to set T , but they will be used to find the
nearest tentacle in T , i.e., the visual task tentacle (κv,αv) that
characterizes the risk function H, as explained in Sect. V-C.

3Both ρα and ρθ are pre-tuned, and 0 < ρθ < ρα .

C. Unsafe context
In the unsafe context (H = 1), dangerous obstacles are de-

tected. The vehicle should circumnavigate them by following
the best tentacle. The norm of the translation velocity must
be reduced for safety reasons (i.e., to avoid collisions). We
specify this by using a function vu ∈ [0,vs]:

‖v‖= vu =

 vs if tc
b ≥ tc

s
vs
√

tc
b− tc

d/tc
s − tc

d if tc
d < tc

b < tc
s

0 if tc
b ≤ tc

d

(20)

(with tc
d > 0 and tc

s > tc
d two thresholds corresponding to

dangerous and safe collision times) to guarantee that the
vehicle decelerates (and eventually stops) as the collision
instant on the best tentacle tc

b decreases. Then, the control
inputs in the unsafe context are:{

vX = vu cosαb
vY = vu sinαb
ω = κb vu.

(21)

D. General control law
In intermediate contexts (0 < H < 1), the vehicle should

navigate between the visual path, and the best tentacle. The
transition between these two extremes will be driven by H.
Using all the variables defined above, we can write our
controller for visual navigation with obstacle avoidance: vX = (1−H)

(
vs cosα∗+(1−λω)ω RYT

)
+H vu cosαb

vY = (1−H)
(
vs sinα∗− (1−λω)ω RXT

)
+H vu sinαb

ω = (1−H)
(
λω αT +(1−λω)

(
RθT −R θ ∗T

))
+H vu κb.

(22)
When H = 0 this coincides with (18), and for H = 1, with (21).

E. Stability Analysis
We now focus on the stability properties of control law (22).

Property 1. In the safe context, if ρ∗ ≥ ρα (and therefore
λω = 1) controller (22) guarantees asymptotic convergence of
task vector s= [ρ∗ αT ]

> to s∗= [ρα 0]>. Therefore, the vehicle
will orient its heading towards the target while simultaneously
approaching it until ρ∗ = ρα .

Proof. First, let us derive αT with respect to time, using (5)
(for ρT 6= 0), along with (6):

α̇T =
vX

RYT − vY
RXT

ρT 2 − ω. (23)

Injecting the safe context controller (18) in (23) when λω = 1:

α̇T =
vs

ρT 2

(RYT cosα
∗ − RXT sinα

∗) − αT . (24)

Since RYT/ρT = sinαT and RXT/ρT = cosαT :

α̇T =
vs

ρT
sin(αT −α

∗) − αT . (25)

Note that when ρ∗ ≥ ρα , αT ≈ α∗, since the Euclidean
distance between points R and T ∗ becomes neglectable with
respect to ρ∗ (see Fig.2). Hence, (25) becomes:

α̇T =−αT . (26)

Now, let us derive ρ∗ with respect to time, using (4):

ρ̇
∗ =

(
RXT −R X∗T

)R ẊT +
(

RYT −R Y ∗T
)R ẎT

ρ∗
. (27)
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From (3) if ρ∗ 6= 0 (as is the case here):{
RXT −R X∗T = ρ∗ cosα∗
RYT −R Y ∗T = ρ∗ sinα∗.

(28)

Injecting this in (27) yields:

ρ̇
∗=−(vX cosα

∗+ vY sinα
∗) + ω ρT sin(αT −α

∗) , (29)

and with the safe context controller (18) since αT ≈ α∗:

ρ̇
∗ =−vS. (30)

Finally, let us consider the Lyapounov function V = e>e/2
where e = s− s∗. Its time derivative is:

V̇ = ė>e = [ρ̇∗ α̇T ]

[
ρ∗−ρα

αT

]
. (31)

Injecting (26) and (30) in (31) yields:

V̇ =−vs (ρ
∗−ρα)−α

2
T , (32)

which is clearly negative definite for e 6= 0 when ρ∗ ≥ ρα .

An alternative control strategy would have consisted in
applying the linear velocity that cancels the effect of ω in (6):{

vX = vs cosα∗+ωRYT
vY = vs sinα∗−ωRXT .

(33)

Although this controller guarantees asymptotic convergence of
both ωRXT and ωRYT to 0, it makes the value of αT constant
throughout navigation. Indeed, plugging (33) in (23) yields:

α̇T =
vs

ρ
sin(αT −α

∗) , (34)

which is neglectable, since αT ≈ α∗. In summary, con-
troller (33) does not center the target in the field of view,
as one would wish (particularly for far target).

Property 2. In the safe context, if ρ∗ ≤ ρθ , controller (22)
guarantees asymptotic convergence of task vector s =[
ρ∗ RθT

]> to s∗=
[
0 Rθ ∗T

]>. Hence, the vehicle will asymptot-
ically converge to the desired pose with respect to the target.

Proof. When λω = 0 (since ρ∗ ≤ ρθ ), injecting the safe
context controller (18) in 29 yields:

ρ̇
∗ =−vs, (35)

and from the last equation of (6):
R

θ̇t =
R

θ
∗
T −R

θT . (36)

Consider the same Lyapounov function as above. Since Rp∗T
is constant, the Lyapounov function derivative is:

V̇ = ė>e =
[
ρ̇
∗ R

θ̇T
][ ρ∗

Rθt −R θ ∗T

]
. (37)

If ρ∗ 6= 0, injecting (35) and (36) in (37) yields:

V̇ =−vsρ
∗−
(R

θT −R
θ
∗
T
)2
, (38)

which is clearly negative definite for e 6= 0.
If ρ∗ = 0, RXT =R X∗T and RYT =R Y ∗T . Hence, V̇ =

−
(

RθT −R θ ∗T
)2, which is also negative definite for e 6= 0.

Property 3. In the unsafe context, if moving (‖v‖ 6= 0), the
vehicle will precisely follow the best tentacle (κb,αb).

Proof. When H = 1, (22) becomes (21), and it is trivial to see,
by applying (8) and (9) that whenever ‖v‖ 6= 0, the curvature
and course angle will respectively coincide with κb and αb.

These three properties outline some nice features of our
framework. For instance, consider the safe context. Property 1
shows that from far, the vehicle will orient its heading towards
the target (hence maintain it within its field of view), while
approaching it. When the vehicle is near enough to the target,
Property 2 is triggered. Then, the vehicle will servo its heading
towards the desired relative orientation, while converging to
the desired position with respect to the target.

It is noteworthy to mention that the properties are valid in
given operating situations (H and λω either null or unitary). It
is very difficult (and out of scope here) to study analytically
the behaviour of the system in the intermediate situations,
i.e., when H and λω are different from 0 or 1. However, the
smooth design of these two functions, as well the extensive
experimental validation of (22) (see Sect. VII) make us very
confident about the global performance of our framework.

In the next section, we explain the strategy that is adopted
to select the best tentacle to be followed in the unsafe context.

V. TENTACLES SELECTION STRATEGY

Here, we describe our strategy for selecting the best tentacle
(κb,αb), that allows the vehicle to avoid the obstacles while
simultaneously performing the visual task. To this end, we first
define a metric for sorting the tentacles. This is explained in
Sect. V-A. The visibility constraints to be satisfied by the best
tentacle are given in Sect. V-B. These criteria are finally used
to select the best tentacle, as explained in Sect. V-C.

A. Sorting tentacles
To apply any search algorithm to set T , in order to find

the best tentacle (κb,αb), the set must be somehow sorted. To
this end, we must find a metric characterizing similarity (or
difference) among tentacles. This is a non-trivial task, since
T is defined in a discrete non-Euclidean space:

T = K ×A ⊂ R×SO(2) , (39)

where a distance metric cannot be defined, without weighing
– arbitrarily – the relative importance of a scalar (κ j) and an
angle (α j). To solve this, we rely on the following property.

Property 4. Let an omnidirectional vehicle be modeled as
a point. Its Cartesian position, after having followed tentacle
(κ j,α j) at velocity ‖v‖ for an iteration ∆t << 1, depends only
on the scalar function: φR = α j + ‖v‖ ∆t

2 κ j.

Proof. Since we model the vehicle as a point, only changes
in the vehicle position (not orientation) are considered. We
start by calculating the position change after ∆t, in function of
(κ j,α j). To this end, we define a fixed frame FO (O,XO,YO)
that corresponds to the robot frame at the beginning of the
iteration (see Fig. 3). For each tentacle j, we can calculate
the vehicle position OpR =

[
OXR

OYR
]> in FO after it has

followed the tentacle for time ∆t. We can relate the derivative
of the vehicle pose in FO and the control inputs:

˙OXR = vX cos
(

OθR
)
− vY sin

(
OθR

)
˙OYR = vX sin

(
OθR

)
+ vY cos

(
OθR

)
˙OθR = ω.

(40)
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Using (12), we can rewrite (40) in function of the followed
tentacle, i.e., in function of κ j and α j:

˙OXR = ‖v‖ (cosα j cos
(

OθR
)
− sinα j sin

(
OθR

)
)

˙OYR = ‖v‖ (cosα j sin
(

OθR
)
+ sinα j cos

(
OθR

)
)

˙Oθr = ‖v‖ κ j.
(41)

By integrating this expression, we can obtain the vehicle
position at ∆t. We distinguish two cases according to κ j:
• if κ j = 0 (i.e. the tentacle is a straight line), the vehicle

position will be:{
OXR = ‖v‖ ∆t cosα j
OYR = ‖v‖ ∆t sinα j;

(42)

• if κ j 6= 0, the vehicle position will be:{
OXR = 2/κ j sin(κ j ‖v‖ ∆t/2) cos(α j + κ j ‖v‖ ∆t/2)
OYR = 2/κ j sin(κ j ‖v‖ ∆t/2) sin(α j + κ j ‖v‖ ∆t/2).

(43)
Converting the position to polar coordinates (rR,φR), with

rR =
√

OX2
R +O Y 2

R and φR = atan2(OYR,
O XR) (see Fig. 3) yields

rR (α j,κ j) =

{
‖v‖ ∆t if κ j = 0
2
κ j

sin
(

κ j
2 ‖v‖ ∆t

)
otherwise, (44)

φR (α j,κ j) = α j +
‖v‖ ∆t

2
κ j. (45)

Since the vehicle movement is small during an iteration (as
∆t << 1), sin

(
κ j
2 ‖v‖ ∆t

)
≈ κ j

2 ‖v‖ ∆t, and therefore rR will
not vary much from a tentacle to the other (rR ≈ ‖v‖ ∆t).
Hence, the vehicle position after having followed the tentacle
at velocity ‖v‖ for ∆t will depend only on φR.

As a consequence of Property 4, we have decided to sort the
tentacles according to their values of φR, calculated using (45),
and noted φR, j for each tentacle j.

B. Tentacles guaranteeing visibility
In this section, we introduce the visibility constraints in our

obstacles avoidance strategy. To ensure that the target is not
lost during navigation, the best tentacle should keep the target
in sight. However, this is not possible for all tentacles, since the
vehicle is constrained to look in its heading direction. Here,
we consider as tentacles that guarantee visibility, those that
will keep the target in the field of view after an iteration ∆t.

For a given tentacle j, we define (again, refer to Fig. 3):
1)
(

OXT ,
O YT ,

OθT
)
: the target pose (at t = 0) in the initial

robot frame FO (RO,XO,YO)
2)
(

RXT ,
R YT ,

RθT
)
: the target pose (at t = ∆t) in the robot

frame FR (RR,XR,YR).
The relation between these two poses is given by :
RXT
RYT
RθT

1

=

 cos(ω∆t) sin(ω∆t) 0 RXO
−sin(ω∆t) cos(ω∆t) 0 RYO

0 0 1 −ω∆t
0 0 0 1




OXT
OYT
OθT

1


(46)

where
(

RXO,
R YO

)
are the coordinates of the origin of FO in

FR . After ∆t these can be expressed in polar coordinates as:{
RXO =−rR cos(φR−ω ∆t)
RYO =−rR sin(φR−ω ∆t). (47)

 

 

 

YO 

𝜔∆𝑡 

 

O 

𝜔∆𝑡

2
 

XO 

Fig. 3. Variables needed for tentacle selection.

Injecting (47) in (46) and using (45), we derive the target
position

(
RXT ,

R YT
)

in FR after ∆t. We distinguish two cases:
• when κ j 6= 0:

RXT = cos(κ j ‖v‖ ∆t) OXT + sin(κ j ‖v‖ ∆t) OYT
−2/κ j sin(κ j ‖v‖ ∆t/2) cos(α j−κ j ‖v‖ ∆t/2)

RYT =−sin(κ j ‖v‖ ∆t) OXT + cos(κ j ‖v‖ ∆t) OYT
−2/κ j sin(κ j ‖v‖ ∆t/2) sin(α j−κ j ‖v‖ ∆t/2),

(48)
• if κ j = 0: {

RXT = OXT − ‖v‖ ∆t cos(α j)
RYT = OYT − ‖v‖ ∆t sin(α j).

(49)

For the target to be visible, its position in the vehicle frame
must satisfy the following constraints:

RXT > RXC
RYT >R YC− (RXT −R XC) tan

(
β

2

)
RYT <R YC +(RXT −R XC) tan

(
β

2

)
,

(50)

with
(

RXC,
R YC

)
the sensors center coordinates in FR and

β their field of view (see Fig. 1). In summary, to determine
whether tentacle j guarantees target visibility, it is sufficient
to inject its (κ j,α j) into (48) or (49) and then check if the
resulting RXT and RYT verify constraints (50).

C. Selecting the best tentacle
Let us describe the best tentacle selection strategy.

At initialization, all tentacles in set T = K ×A are sorted
according to their φR, j, calculated with (45). Then, at each
iteration ∆t we proceed as follows (see Algorithm 1).

1) The subset of all tentacles that guarantee the visibility
constraints is derived as explained in Sect. V-B. If the
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Algorithm 1 Selecting the best tentacle
input: Sorted set of tentacles T , visual path (αs, κs), previ-

ous best tentacle (αp, κp), and target pose OpT .
output: Risk function H and best tentacle (αb, κb) (if H 6= 0).

1: N← FindVisibilityGuaranteeingTentacles(T , OpT );
2: if N > 5 then
3: T ← RemoveOtherTentacles(T );
4: end if
5: φR,s← CalculateSortingAngle(αs, κs);
6: φR,v← FindNearestSortingAngle(T , φR,s);
7: (αv,κv)← CalculateTentacleParameters(φR,v);
8: H← CalculateRiskFunction(αv, κv);
9: (αb,κb)← null;

10: if H 6= 0 then
11: φR,p← CalculateSortingAngle(αp, κp);
12: if φR,v < φR,p then
13:

(
φi, φ f

)
← (φR,v, φR,p);

14: else
15:

(
φi, φ f

)
← (φR,p, φR,v);

16: end if
17: (αb,κb)← FindNearestClearTentacle(T ,

[
φi, φ f

]
);

18: if (αb,κb) = null then
19: (αb,κb)← FindNearestClearTentacle(T ,
20: ]φmin,φi[∪

]
φ f , φmax

[
);

21: end if
22: end if
23: return (H, (αb,κb));

number of tentacles in this subset is sufficient (at least
5 in this work), all other tentacles are removed from T .
Otherwise, the entire set T is kept, to privilege obstacle
avoidance over occlusion avoidance. This choice is mo-
tivated on one hand by obvious safety reasons, and on
the other by the possibility – offered by the method that
will be explained in the next Section – of estimating the
target pose even when it is not visible.

2) For the path that the vehicle would perform if there were
no obstacles, i.e., if the safe context controller (18) was
applied, we compute: the course angle αs , curvature κs
using (19), and polar angular coordinate φR,s.

3) The tentacle that best approximates the visual path in T
(i.e., the nearest in terms of φR) is computed; we denote
it as the visual task tentacle (κv,αv) and calculate its
situation risk function as Hv using (15). This is also the
value that will be used in control law (22): H = Hv.

4) If H = 0, the visual task tentacle is clear and the safe
context controller (18) can be applied.

5) Instead, if H 6= 0, we seek a clear tentacle (H j = 0).
a) First, we search among the tentacles with φR, j be-
tween the one of the visual task tentacle and that of
the best tentacle at the previous iteration. b) If there
are many clear tentacles, the nearest to the visual task
tentacle is chosen. c) If none is clear, we search among
the others (those that are not between the visual task
and the previous best tentacles). Again, the best tentacle
will be the clear one closest to the visual task tentacle.

VI. TARGET DETECTION AND TRACKING

In this section, we describe our approach for detecting and
tracking over time the target pose in the vehicle frame, RpT .
This is done by the vehicle visual sensor/s with an image
processing algorithm described in Sect. VI-A. If the target is

 

    
(a) (b) 

    
(c) (d) 

    
(e) (f) 

Fig. 4. Target detection and tracking in the left and right images.(a-b) Raw
images. (c-d) Blob detection. (e-f) Cart contour extraction.

not visible, because it exits the field of view or is occluded,
an alternative method is applied, as explained in Sect. VI-B.

A. Vision-based target detection
Our target detection algorithm relies on the following as-

sumptions:
• the target is characterized by a predominant color,
• the visible part of the target is planar,
• the target height is known,
• as position of the target (RXT ,

R YT ), we take the Cartesian
coordinates of the visible plane in FR,

• as target orientation RθT , we take the angular offset from
XR to the normal vector entering the visible plane.

The described algorithm has been developed for the sensor
suite available on our self-made robotic platform BAZAR [23].
This is composed of a forward looking fixed pair of 55.8◦ field
of view cameras operating at 30 Hz, and two 270◦ Hokuyo
lidars placed at opposite corners of the base, and operating
at 40 Hz. The algorithm relies on both cameras, and on the
forward looking lidar. The lidar however, is used only when the
target is near, to obtain a precise estimation of RpT . The reason
is that, although lidar measurements are more precise on a
short range, they are biased by inaccuracy and false positives
on the long range. On the other hand, from far, when only
vision is used, orientation RθT cannot be properly estimated.
Note that controller (22) does not require RθT as long as ρ∗ ≥
ρα . Hence, the most intuitive design choice is to start using
the lidar only when ρ∗ < ρα . While ρ∗ ≥ ρα , only the target
position (RXT ,

R XT ) is calculated from vision without using
lidar data. Even if this estimation is imprecise, it will make
the vehicle approach the target, while orienting its heading
towards it until, for ρ∗ < ρα , the lidar will be activated and
RθT will also be estimated, to drive the vehicle to the desired
pose with respect to the target.

For image processing, the same steps (developed with
OpenCV4) are applied to the left and right cameras. These

4 http://opencv.org/

http://opencv.org/
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Fig. 5. Detecting the cart face segment using lidar measurements.

steps are detailed below and illustrated in Fig. 4.

1) The images are binarized with a logic conjunction (and
operator) of predefined ranges in the Hue, Saturation and
Value color space. This way, pixels of a certain color
(blue in Figures 4c and 4d) can be isolated.

2) A dilation and an erosion are applied to the binary image
to form blobs of pixels of the target’s color.

3) The blob with largest contour is extracted (Fig. 4e, 4f).
4) Knowing the real target height and the camera intrinsic

and extrinsic parameters, the position of the front face
centroid is projected in FR to obtain (RXT ,

R YT ).
5) If the blob is detected by both cameras, the average of

the two positions is used.

As the vehicle approaches the target and ρ∗ < ρα , the front
lidar is also utilized, to improve the position, and add the
orientation estimates. We proceed as follows (see Fig. 5):

1) A high resolution occupancy grid (cell size 3×3 cm) is
built from lidar measurements.

2) The two side borders of the blob are projected in the
grid for both the left (blue cone in Fig. 5) and right
(green) cameras.

3) The Hough transform is applied to detect all line seg-
ments in the two cones.

4) The extreme (nearer and farther) corners among all these
line segments are used to define a region of interest,
where linear regression on the raw lidar data is used to
find the visible target projection (red segment in Fig. 5).

5) From this segment, the target pose RpT is derived.
6) A Kalman Filter (with state vector composed of RpT and

RṗT ) is finally used to ensure continuity and robustness
of the target pose estimation.

B. Dealing with total loss of the target

If none of the tentacles that guarantee vehicle safety can
satisfy the visibility constraints, the target will exit the field
of view and the above approach cannot be applied. The same
applies if obstacles on the vehicle path provoke a partial or
total target occlusion. To overcome both problems, we estimate
the target pose

(
RXT ,

R YT ,
RθT
)

in the robot frame by using its
previous pose

(
OXT ,

O YT ,
OθT

)
and control inputs (vX , vY , ω).

This is done by integrating the target pose over time interval
∆t, using (46) and (47):

• if ω 6= 0:
RXT = cos(ω ∆t) OXT + sin(ω ∆t) OYT
−2v/ω sin(ω ∆t/2) cos(α − ω ∆t/2)

RYT =−sin(ω ∆t) OXT + cos(ω ∆t) OYT
−2v/ω sin(ω ∆t/2) sin(α − ω ∆t/2)

RθT = OθT − ω ∆t,

(51)

with α defined as in (9), but in the general case (not just
α ∈A ).

• If ω = 0, the previous expression becomes:
RXT = OXT − vX ∆t
RYT = OYT − vY ∆t
RθT = OθT .

(52)

Injecting these equations in the same Kalman Filter as above
(with state vector composed of RpT and RṗT ), it is possible
to deal with the target total loss, by predicting its location
without affecting the vehicle behaviour. In practice, we use
either (51) or (52) (depending on ω) in control law (22).

VII. EXPERIMENTAL VALIDATION

Here, we report the simulated and real experiments that we
performed to validate our approach. These are also shown in
the video attached to this paper5. In all tests, we use the same
setup and parameters, the only difference being the wheeled
platform: KUKA youBot in simulation and Neobotix MPO700
(the base of our BAZAR platform) in real experiments. The
target is a blue wheeled cart, similar to the one used for
kitting in automotive manufacturing by our partner PSA Peu-
geot Citroën. It is automatically moved in simulations, and
manually pushed in the real experiments. For simplicity, we
position the target in the sensors field of view at the beginning
of each simulation/experiment. A “target searching” navigation
procedure, out of scope here, could be devised as future work.

Both the simulated KUKA youBot and real Neobotix
MPO700 are equipped with the BAZAR sensor suite described
in Sect. VI-A. In the visibility constraint equation (50), we
use as C the midpoint of the 2 optical centers and as β

(conservatively) the field of view of the cameras (55.8◦).
We set to ∆t = 200 ms the sampling time of our algorithm,
that includes visual processing (Sect. VI), tentacle processing
(Sections III and V) and control (Sect. IV) in a unique thread.
This choice of ∆t is motivated by the limitations of the PC
graphics card; in the future, we plan on parallelizing the
computation on multiple threads, to reduce ∆t. The obstacle
detecting occupancy grid (with XM =YM = 3 m, Xm =Ym =−3
m, and cell size 10× 10 cm) is built by projecting the lidar
readings from the two lidars. We use 147 tentacles (7 curva-
tures × 21 course angles), with κM = 0.4 m−1, αMin =−170◦,
and αMax = 170◦ The maximum translational velocity, that
is applied in the safe environment, and far from the target
using (17) is V = 0.4 ms−1. For the situation risk function we
use ts = 3.5 s and td = 3 s, for the unsafe translational velocity
tc
s = 2.25 s and tc

d = 1.5 s, and for the visual task ρα = 3.5 m
ρθ = 1 m and ρv = 2 m.

A. Simulation
Let us recall that the main goal is to perform vision-based

omnidirectional navigation in the presence of static or moving
– and possibly occluding – obstacles. To this end, preliminary

5Also visible online at https://youtu.be/K9yoNlqkqSI

https://youtu.be/K9yoNlqkqSI
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Fig. 6. V-REP simulation: the vehicle (green box), equipped with two cameras (blue cones) and lidar scanners (red lines) navigates towards a static target
(blue) while avoiding collisions and dealing with occlusions caused by one static and three moving obstacles (all brown).

simulations were carried out in V-REP6, with the KUKA
youBot, an omnidirectional robot with 4 Swedish wheels. A
typical simulation scenario is shown in Fig. 6 , along with the
images acquired by the cameras. In this figure, the vehicle,
target and obstacles are represented respectively by green,
blue and brown boxes. The environment is cluttered, with
four obstacles that may partially or totally occlude the target.
The closest obstacle is static, while the three others move.
At the beginning of the task, the vehicle is deviated and
oriented so that the camera is pointing at the target. When
it approaches the first obstacle, it starts avoiding it while
keeping the target in the camera field of view. Then, the
vehicle progresses toward the desired pose before avoiding the
second obstacle which induces a total occlusion of the target.
Nevertheless, the vehicle performs its task thanks to the target
pose estimation module described in Sect. VI-B. Afterwards,
the vehicle succeeds in avoiding the last two obstacles and
reaches the target despite the occlusions they cause (see images
7 and 8 in Fig. 6). Then, the environment is free again, and the
visual task can be performed for the rest of the experiment.
At the end, the vehicle decelerates and stops when the desired
pose relative to the target has been reached.

B. Real experiments
After the simulations, we have validated our approach

in extensive real experiments, carried out on our Neobotix
MPO700 platform. This is an omnidirectional robot with 4
steerable wheels, hence with a reduced mobility as compared
to the Swedish wheels platform used in V-REP. The MPO700
wheels are driven by a low level controller that runs on the
embedded PC at a rate of 40 Hz. Instead, our controller and
sensor processing algorithms run on an on-board PC that sends
the velocity commands (vX ,vY ,ω) to the MPO700 PC, via
ethernet. We have designed three scenarios:

1) Scenario A: The MPO700 navigates towards the – static
– blue cart, with two obstacles (brown panels) present in the
environment. The purpose of the experiment is to validate
our framework when the vehicle has to handle simultaneously
collisions and occlusions. We show in Fig. 7 the scenario
as well as the images acquired by the left camera during
navigation. The control inputs are plotted in Fig. 8. At the
beginning (snapshots 1-3), since there is no risk of collision
or occlusion, the vehicle is deviated (vY ) and oriented (ω) so
that the cameras points at the blue chariot. The first obstacle is

6http://www.coppeliarobotics.com

then circumnavigated without provoking occlusions nor target
loss. After that, we manually move the second obstacle to
totally occlude the target (snapshots 4 and 5). As can be
seen, the vehicle successfully predicts the target location, while
avoiding the obstacle. Finally, when there is no more risk of
collisions or occlusions, the MPO700 converges to the blue
cart (snapshots 6-10). The evolution of the target position and
orientation errors, during the navigation task, are plotted in
Fig. 9. It can be seen that all three errors converge to zero as
desired. As shown in Fig. 8 , the control inputs generated by
our controller are not smooth. This is due to the nature of our
approach, that is based on sampling a set of drivable paths.
Since the sample time of our controller is higher than that of
the steering wheels controller, it could be possible to filter this
signal at low level. This will be done as future work.

2) Scenario B: In the second experiment, the navigation
task consists in exploiting the omnidirectional characteristic
of the MPO700, to follow and keep in sight a moving target,
while avoiding a lateral moving obstacle (a pedestrian). As
shown in Fig. 10, the vehicle successfully performs the visual
task in spite of the walking person.

3) Scenario C: A final very challenging experiment was
carried out to assess the performance in a complex environ-
ment, including first a corridor and then a cluttered hall (see
Fig. 11). The MPO700 starts by following the blue chariot that
is moving along the corridor (snapshots 1-4). A first moving
obstacle (human) crosses the robot path and occludes the target
without affecting its behaviour (snapshot 5). The vehicle also
succeeds in avoiding a second obstacle, while following and
keeping the target in its field of view until reaching the hall
(snapshot 6 and 7). Then, the MPO700 is in a difficult situation
where an obstacle crosses its way, while the target has slightly
changed direction (snapshot 8). This leads to a complete loss
of target visibility. Once again, the vehicle manages to avoid
the obstacle and to recover the chariot, thanks to the target
pose estimation module. Finally, it reaches the desired pose
with respect to the target (snapshots 9 and 10), after having
avoided all obstacles while either keeping the target visibility
or predicting its location.

VIII. CONCLUSIONS
We have presented a framework that guarantees obstacle

avoidance during visual navigation of an omnidirectional ve-
hicle that has to deal with visibility constraints. Additionally,
the proposed framework can deal with partial and total visual
occlusions provoked by the obstacles. For both perception and

http://www.coppeliarobotics.com
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Fig. 7. Real Scenario A: the MPO700 platform navigates safely towards a static blue chariot. Top: images from the left camera, bottom: the MPO700 (grey)
avoids two obstacles while dealing with total target occlusion.

 

Fig. 8. Real Scenario A: MPO700 Control inputs (linear velocities vX and
vY in m/s and angular velocity ω in rad/s).

 

Fig. 9. Real Scenario A: evolution of position (in meters) and orientation (in
degrees) errors of the target in the robot frame.

motion execution, we design omnidirectional tentacles that
exploit the kinematics of the platform. Simulated and real
experiments show that the vehicle is able to perform the task,
with safety and smoothness, in spite of occlusions. Future
work will investigate how to extend the proposed framework
to Multi-Target Tracking (i.e., looking at multiple targets) in
the presence of static and moving obstacles.
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