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Abstract

Object recognition is essential to enable robots to interact with their environment. Robots should be capable,
on one hand of recognizing previously experienced objects, and on the other, of using the experienced objects for
learning novel objects, i.e. objects for which training data are not available. Recognition of such novel objects can be
achieved with Zero-Shot Learning (ZSL). In this work, we show the potential of ZSL for haptic recognition. First, we
design a zero-shot haptic recognition algorithm and, using the extensive PHAC-2 database [1] as well as our own, we
adapt, analyze and optimize the ZSL for the challenges and constraints characteristic of haptic recognition. Finally,
we apply the optimized algorithm for haptic recognition of daily-life objects using an anthropomorphic robot hand.
Our algorithm enables the robot to recognize eight of the ten novel objects handed to it.

Keywords: Haptic recognition, Zero-shot learning, Attribute-based description, Robotic hand.

1. Introduction

Transferring human perceptual capabilities to robots can enhance their autonomy, and hence facilitate their inte-
gration in human environment. Object recognition is a powerful human capability that, when transferred to a robot,
can optimize grasping and manipulation. For instance, recognizing a mug and its functionalities can guide a robot to
hold it vertically to avoid spilling the liquid.

Object recognition has been extensively studied in computer vision and tremendous advances have been made [2].
Visual recognition of an object however, requires it to be in the camera field of view, and is limited by lighting
constraints and visual occlusions. One way to overcome these constraints is by the integration of visual recognition
with additional sources of information, such as haptics; i.e., touch and proprioception. Haptics can not only help
overcome the constraints associated with visual recognition, but also provide additional information regarding the
shape, size, texture and compliance of an object, that can arguably improve recognition.

An object encountered by a robot can be one that it has enough experience with (that it has enough training
data on). In this case, the object can be recognized using the available haptic recognition algorithms that use multi-
class classifiers to efficiently deal with challenging robotic setups [3, 4] and object sets [5, 6], using various machine
learning and optimization techniques [7, 8, 9]. On the other hand, an encountered object may be one with sparse, or in
the worst case, no training data [10, 11, 12, 13]. In our study, we focus on the problem of recognizing new objects that
have never been experienced before. To the best of our knowledge, this problem has never been addressed in regard
to haptic recognition.

Recognition of novel objects that have not been trained on, is referred to as Zero-shot learning or ZSL. The key
idea underlying ZSL is the exploitation of object relationships in order to transfer the knowledge learned from known
objects, to recognize novel ones. In this work, we adopt an attributes-based approach. An attribute is a high-level
object property that may represent, for example object size (e.g. small), or object texture (eg. rough). By describing
all objects using attributes, the system can be trained to learn how to map haptic data to attributes. This mapping is
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used to recognize novel objects solely given their attribute-based description. For example, the system can recognize
a bottle given its description: a glass or plastic container that has a narrow neck and usually has no handle3, if it has
learned from known objects the meaning of each underlined attribute.

Different studies (e.g.[7]) have shown that vision techniques can be effectively applied to haptics. This motivated
us to use the Direct Attributes Prediction (DAP) model, proposed by [14] for vision-based ZSL, on haptic data. First,
we adapt DAP for the haptic constraints and develop a zero-shot learning (ZSL) algorithm for haptic recognition
using the state of art PHAC-2 database. This database provides haptic data and attribute-based descriptions for 60
objects that cover a wide range of physical properties. Next, we implement the developed ZSL framework on our
anthropomorphic robot hand equipped with tactile fingertip BioTac sensors. Our robot can recognize novel objects by
grasping them, and without requiring vision or any prior information about the object shape or orientation.

This paper is organized as follows: section 2 reviews the state of art studies on haptic recognition and ZSL.
Section 3 presents the theoretical background of ZSL and the attribute-based approach. Section 4 investigates the
application of ZSL to haptic data using the PHAC-2 database. Section 5 details our proposed solutions to adapt the
theoretical framework to object recognition with a robot hand. Finally, section 6 provides conclusions and future
perspectives.

2. Related work

During the last three decades, there has been a growing interest in exploiting haptic data for object recognition. An
early approach [15, 16, 17, 18, 19, 20] uses contact points and robot joint readings to perform shape-based recognition.
Recent studies, instead, consider tactile contact patterns as tactile images [4, 6, 7, 21, 22, 23, 24] and make use of the
rich state of art on pattern recognition. In this regard, studies have also focused on developing sophisticated tactile
sensors and thus integrating new modalities such as texture [25], material [26] and compliance [27] for recognition.
In addition, new feature extraction and classification techniques such as deep learning [6] and sparse coding [28,
9] were shown to improve recognition accuracy. Recent studies have also targeted object recognition in special
environments (e.g., underwater [29]), dealing with data sparsity and noise [30], recognizing with a single-grasp [31],
or incrementally [32], and exploring actively [33, 34].

An important but rarely discussed issue in haptic recognition is the high cost of training data collection, which is
practically unfeasible for the plethora of daily life objects. Traditional multi-class classifiers on the other hand, require
large data population for good recognition performance. When using a traditional multi-class classifier, the unbalance
in the number of training data between objects, under-fits those with few data, and omits those with no data at all. On
the other hand, spending time on collecting sufficient training data for all objects can obviously be extremely hardware
consuming. Knowledge transfer, by reusing knowledge previously learned from other objects, can efficiently cope
with the lack of data. In case of under-represented classes, this solution is known as one-shot learning. It has been
applied to haptic recognition based on texture properties by Kaboli et al. in [35, 36] showing that models learned
from ten objects can be used to recognize twelve new textures having one or few training samples. The authors utilize
knowledge transfer to avoid the long data collection phase.

In the extreme case, under-represented objects may have no training data. This case is called zero-shot learning or
ZSL. Note that a multi-class classifier will fail to classify samples to classes having zero training data. ZSL has been
extensively discussed for visual recognition [37] but never so in regard to haptic object recognition. Lampert et al.
proposed the first attribute-based framework in [14] for visual recognition. They built the «Animals with Attributes»
image database of 50 animal classes separated into 2 disjoint sets: training and test sets. A list of 85 human defined
binary attributes (e.g. white, furry, small) were used to describe all animals. A series of studies followed. In [38],
multiple techniques for mining attributes and class-attribute associations using multiple linguistic knowledge bases
were compared. Yu et al. [10] proposed a new framework based on generative models. The authors of [39] studied
attribute learning in large-scale datasets.

All these cited works use binary attributes, [40, 13] generalized to real-valued attributes. Kankuekul et al. [41]
handled attributes inconsistency when learned incrementally from different persons. To minimize human attribute
definition and labeling effort, [42] proposed an automatic method to design non-semantic data-driven attributes. The
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authors of [43] considered attributes unreliability and proposed a statistic solution to leverage errors in attributes. In
[44], the two stages of learning attributes and inference were replaced by a simplistic implementation.

In this work, we choose to use semantic binary attributes as they are intuitive and yet shown to perform well on
visual data [14]. To define a set of attributes describing the haptic sensation of objects, we refer to an important work
for describing haptic sensation using words [1]. This work proposed a framework to describe 60 different objects
using a list of 24 binary haptic adjectives based on human blind haptic exploration of objects. We believe this is an
important step toward improving the answer of a robot while touching objects: instead of returning the name or the
identity of the object, the authors propose to return a vector of binary values indicating the presence of each haptic
adjective in the object. In addition to the multiple applications of this adjective-based description presented in [1], we
investigate its application to zero-shot learning.

3. Zero-shot learning

3.1. Problem formulation

ZSL consists of training and testing a recognition system by using disjoint training and test class sets. Specifically,
the system is trained on Dtrain ⊂ X × Y and tested on Dtest ⊂ X × Z, where X is the feature space in which data is
represented and Y = {y1, . . . , yN} and Z = {z1, . . . , zL} two disjoint sets of classes4. A multi-class classifier will fail to
learn a mapping function f : X −→ Z from Dtrain in such a case since Y ∩ Z = ∅.

3.2. Solution overview

The key idea behind ZSL is to exploit relationships between Y and Z to transfer knowledge learned from Y to
recognize objects in Z through a layer of attributes, as illustrated in Fig. 1. All objects from O = Y ∪ Z are described
using a set of attributes A = {a1, . . . , aM} (e.g. A = {thin, so f t, rigid}). This results in the object-attribute matrix K
(see Fig. 1a), in which the row i is the attributes-based description aoi =

[
aoi

1 , . . . , a
oi
M

]
of an object oi ∈ O, such that

aoi
m = 1 if attribute am is present in object oi, and aoi

m = 0 otherwise (e.g. vector a = [1, 0, 1] for object class pencil).
Then, Dtrain and attribute-based descriptions of training objects {ayn , yn ∈ Y} are used to learn a mapping from X to A:
for any x ∈ X, this mapping predicts a probabilistic attribute-based description p(a1|x), . . . , p(aM |x), where p(am|x) is
the probability of the presence of am in x (e.g. p(thin|x) = 0.8, p(soft|x) = 0.2, p(rigid|x) = 0.5 for x collected from a
pencil)(see Fig. 1b). Finally, for a test sample x ∈ X, the returned posterior p(am|x) of each attribute am is used by a
DAP model [14] along with the attribute-based descriptions of test objects {azl , zl ∈ Z} to infer the final classification
zx = f (x) (see Fig. 1c).

In this scenario the cost of adding a new object to the test set is dramatically lower than with traditional learning.
In fact, it breaks down to adding a row (the attribute-based object description) to matrix K. This is a very low cost as
compared to collecting haptic data for the new object to retrain the multi-class classifier.

3.3. Direct Attributes Prediction (DAP)

The attribute-based zero-shot recognition system of [14] proposed two models: Direct Attributes Prediction (DAP)
and Indirect Attributes Prediction (IAP). When comparing models recognition accuracies [14, 12], the difference is
relatively small, with a slightly better accuracy given by DAP. Thus, in this work, we focus only on DAP.

DAP is a probabilistic model that makes use of attributes learned from trained objects Y , to classify a test sample
x ∈ X as one of a set of novel objects Z, using object-attribute matrix K. During the training phase, DAP learns a
mapping from X to A. By assuming attribute independence, for each attribute am, an independent probabilistic binary
classifier gm : X −→ [0, 1] is trained with Dm

train = {(x, ay
m) s.t. (x, y) ∈ Dtrain}. Each gm returns the attribute posterior

p(am|x) for a given x ∈ X.
During the test phase, to recognize a sample x as one of Z objects, DAP computes a posterior probability p (zl | x)

for each object zl ∈ Z. For this, both the object’s attribute-based description azl (provided by matrix K) and its

4Since we study object recognition, a class here represents an object category.
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Figure 1: Attribute-based zero-shot learning: system overview.

posterior probability p(azl |x) are needed. To compute the zl object posterior, the attributes layer is introduced and
Bayes’ rule is applied to obtain:

p(zl | x) =
∑

a∈{0,1}M
p(zl | a) p(a | x)

=
∑

a∈{0,1}M
p(a | zl)

p(zl)
p(a)

p(a | x),
(1)

Since each object zl is associated with a discriminating attributes vector azl , p(a | zl) = 1 if a = azl and 0
otherwise. Replacing in (1) yields:

p(zl | x) =
p(zl)

p(azl )
p(azl | x), (2)

where test class priors are considered uniform. DAP assumes attributes independence so p(azl |x) =
∏M

m=1 p(azl
m | x)

and (2) becomes:

p(zl | x) =
p(zl)

p(azl )

M∏
m=1

p(azl
m | x), (3)

Finally, mapping function f : X −→ Z recognizes object zx, as the one having the highest posterior:

zx = f (x) = argmax
zl∈Z

p(zl | x). (4)

4. Evaluation of zero-shot learning for haptic recognition

So far, we presented the theoretical background of attribute-based ZSL. However, its use with haptic data col-
lected by a robot is not trivial. The specific nature of haptic data and robotic limitations add challenges that require
various adaptations of the aforementioned theoretical framework. First, haptic data collection is costly, requiring the
optimization of training data. Second, both the choice of attributes and the nature of haptic data depend heavily on
a robot’s sensing capabilities, hindering comparisons and generic solutions. Third, data gathered from the robot can
be multimodal (e.g. joints, temperature. . . ) requiring processing and fusion techniques. Fourth, the spatial limitation
of robot exploration leads to sparse and noisy, or missing data, which is challenging to the recognition algorithm. To
assess the use of ZSL on haptics in the presence of all these difficulties, we started by applying it to the state of art
PHAC-2 dataset [1].

The performance of a recognition algorithm may be evaluated by its classification accuracy, computation speed
and memory requirement. Here we concentrate on classification accuracy as we are using an offline recognition
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method and are not constrained by the training response time. Furthermore, we suppose that enough resources are
available to run our algorithms. This was the case throughout our experiments which were carried out successfully on
a PC with an Intel(R) Core(TM) i7-3840QM processor having a speed of 2.8 GHz and a RAM of 8 GB.

4.1. PHAC-2 database description

The PHAC-2 dataset5 was designed to study how a robot can learn to describe its haptic perception using words.
The developers of PHAC-2 use haptic adjectives which are binary high-level physical properties of objects such as
‘hard’, ‘absorbent’ and ‘bumpy’. By considering the PHAC-2 adjectives as attributes, we can apply an attribute-based
approach to perform ZSL.

Several characteristics motivated us to use PHAC-2 to evaluate our ZSL framework. First, it is probably the single
largest object database with objects labeled by their haptic characteristics [5, 45, 46]. Second, the objects in the
database encompass a variety of physical properties in terms of texture, material and stiffness. Third, the adjective
definition and the binary associations between objects and adjectives have been developed using an arguably unbiased
procedure. And finally, PHAC-2 provides data from multiple explorations of the same object, allowing for the testing
of algorithms for robustness to inter-trial variabilities.

The PHAC-2 database contains 60 objects, labeled by a broad range of material, texture and stiffness related
adjectives. Twenty four haptic adjectives were defined by human volunteers for the set of objects. For our analysis
we utilized 19 adjectives (after removing adjectives present in less than 3 objects). The adjectives used by us were
A = {absorbent, bumpy, compressible, cool, f uzzy, hard, hairy,metallic, porous, rough, scratchy, slippery, smooth,
so f t, solid, springy, squishy, textured, thick}.

In addition to the adjectives, the PHAC-2 database provides 48-dimensional vectors of raw haptic signals. These
have been obtained using the Willow Garage PR2 robot6 gripper, equipped with two BioTacs sensors7. The gripper
provides the following kinesthetic information: aperture Xg and height Zg in the robots torso coordinate frame. Ad-
ditionally, each BioTac provides cutaneous information: core temperature TDC , heat flow TAC , static pressure PDC ,
dynamic pressure PAC and the voltage change for each of the 19 impedance sensing electrodes [E1 . . . E19]. These data
items (Xg, Zg and 23 signals from each BioTac) sum up to define the 48-dimensional vector. Ten vectors are provided
for each object, one corresponding to each trial that had four exploration procedure, or EP (including a squeeze, hold,
slow slide and fast slide on the object), making a total of 600 samples (60 objects × 10 trials).

4.2. Splitting the object set O

To perform ZSL using the PHAC-2 dataset, we split the 60 objects into two disjoint sets. To ensure that the results
are independent from the chosen splits, we generated 5 splits {(Ys,Zs), s = 1, . . . , 5} where each pair respects two
constraints: Ys ∪ Zs = O and Ys ∩ Zs = ∅. To generate each pair (Ys,Zs), we randomly chose for the test set 10 objects
out of the 60: Zs = {ok ∈ O , k ∈ rand(10, 60)}8. The remaining 50 objects were used for training: Ys = O − Zs.
However, some objects have the same attributes vector and since ZSL identifies each test object by its attributes vector,
we verified that the attributes vectors of all objects in Zs were mutually different. If not, the random selection (of the
10 objects) was repeated until the condition was satisfied.

4.3. Feature Extraction

As in [1], we considered the minimum gripper aperture, mean aperture and travelled distance for each exploration
as features. This results in a vector of 12 kinesthetic features (3 features × 4 EP). For the BioTac readings, we exploit
the results from [26, 33, 47]. First, we removed the baseline activity from the BioTac readings by subtracting the mean
of the first 100 readings. Next, the average of each signal was computed over the exploration time. The computed
features were then normalized to have zero mean and standard deviation of 1. Since the BioTacs are not calibrated
in the dataset, we considered each BioTac separately. Thus, by concatenating features of the 4 EP, we obtained a
vector of 92 features for each BioTac (23 BioTac features × 4 EP). This vector was concatenated with the gripper’s 12

5https://github.com/IanTheEngineer/Penn-haptics-bolt
6http://www.willowgarage.com/pages/pr2/overview
7https://www.syntouchinc.com/sensor-technology/
8rand(k, n) returns k random numbers in range 1, . . . , n.

5

https://github.com/IanTheEngineer/Penn-haptics-bolt
http://www.willowgarage.com/pages/pr2/overview
https://www.syntouchinc.com/sensor-technology/


features, which resulted in a vector of 104 features for each BioTac. This high dimension was reduced using Principal
Component Analysis (PCA) to a 25-dimensional vector that justifies 95% of the variance. To sum up, an exploration
trial results in 2 vectors of haptic features xb1, xb2 ∈ R25, one for each BioTac.

4.4. Attributes classification

Attributes classification aims at estimating the presence of attribute am for a given feature vector x, i.e., to derive
p (am|x). By assuming attributes independence, we trained a Support Vector Machine (SVM) classifier for each
attribute and each BioTac. When a test sample x is given to a SVM classifier, it returns a score s (x) corresponding to
the distance from x to the decision boundary. The attribute posterior p (am|x) is estimated by transforming s(x) into a
probability using a sigmoid function.

We trained a binary classifier for attribute m and BioTac bi using the training set Dm
train,bi

= {(xbi , a
y
m) s.t. (x, y) ∈

Dtrain}. First, by analyzing the provided matrix K, we noticed that for each attribute the number of objects in which it
is present was significantly smaller than the number of objects from which it was absent. This leads to an unbalanced
training set Dm

train,bi
: the ratio of class 1 samples to class 0 samples is a : b with a << b. An unbalanced training

set can lead to over-fitting of the over-represented class. To cope with this problem, we under-sampled class 0 by
randomly removing pairs (xbi , a

yk
m ) having ayk

m = 0 from Dm
train,bi

until we obtained an equal number of training samples
for classes 0 and 1. This under-sampling was repeated multiple times, and sets giving the best results were used.
Using the balanced set, we then trained a non-linear SVM classifier with a Gaussian kernel using the python machine
learning library Scikit-learn9. Parameters C and γ were tuned using leave-one-out cross-validation, by varying C
between 1 and 102 and γ between 10−2 and 1.
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Figure 2: Recognition accuracy of attributes binary classification.

Fig. 2a shows the average classification accuracy for each attribute. We averaged the accuracies obtained from the
two BioTacs classifiers that were tested on the 5 different test object sets. The results show that attributes classifiers
were able to learn from training data whether an attribute is present or absent in a novel object. However, performance
varied from one attribute to the other: we obtained an accuracy of 92% for attribute solid whereas we obtained
modest, though still better than random, performance for attributes smooth (64%) and textured (64%). To evaluate
the influence of the object splits, we plot in Fig. 2b the attributes classification accuracies for each of the five splits
(Sect. 4.2), averaged on the 2 BioTac and on all attributes. The figure shows that classification accuracies are not
heavily influenced by the choice of object splits: the average accuracy is 78%, with a maximum difference of only 3%
between splits 2 and 5.

While above we report the choice of attribute classification assuming attribute independence, we did also consider
attribute classification without the assumption of independence. For this, we trained a multi-label SVM classifier for
each BioTac bi using Dtrain,bi = {(xbi , ay) s.t. (x, y) ∈ Dtrain}, with the Python scikit-multilearn10 library implementing
the classifier proposed in [48], and tuned the SVM parameters C and γ using a leave-one-out cross validation. This

9http://scikit-learn.org/stable/
10http://scikit.ml/

6

http://scikit-learn.org/stable/
http://scikit.ml/


multi-label classifier predicts, given a test sample x, a vector of posteriors, one for each attribute. However, with this
multi-label classifier, we obtained an average recognition accuracy of 0.31, which is lower than that 0.39 obtained
assuming independent attributes (see table 1).

4.5. Recognition of novel objects
The final step consists of combining the attribute posteriors to infer the identity of the distinct test sample x (see

Sect. 3.3). Since we distinguish features from each BioTac: x = (xb1, xb2), attributes posteriors p(azl
m|xb1) and p(azl

m|xb2)
must be combined to infer p(azl

m|x). For this, we propose two methods. The first (that we name MAXDAP) considers
only the highest posterior, by assuming that it is the most confident value between the two:

p(azl
m|x) = max(p(azl

m|xb1), p(azl
m|xb2)). (5)

The second method (AVGDAP) considers the average of both posteriors to eliminate the influence of misclassification:

p(azl
m|x) =

p(azl
m|xb1) + p(azl

m|xb2)
2

. (6)

Attributes classification posteriors are used by DAP to perform zero-shot recognition according to equation (3).
First, we compare in table 1 the use of MAXDAP and AVGDAP to combine BioTac posteriors by assuming uniform
attributes posteriors. Since we use the MAP estimator in equation (4) to distinguish the ten test objects, the random
classification accuracy for the ZSL algorithm is 0.1. The reported accuracies were therefore significantly higher than
random chance. Performances of the two methods are similar, since the objects have homogeneous properties on their
surfaces, giving close attributes posteriors for the two BioTacs.

Split MAXDAP AVGDAP
1 0.48 0.48
2 0.38 0.36
3 0.38 0.38
4 0.35 0.35
5 0.35 0.36

Average 0.39 0.39

Table 1: ZSL accuracy for independent attributes classifiers.

We compared three methods for measuring the attribute prior p(azl
m):

1. based on its presence in training objects: p(am = 1) = 1
N
∑N

n=1 ayn
m ,

2. based on its presence in test objects: p(am = 1) = 1
L
∑L

l=1 azl
m,

3. based on a uniform distribution: p(am = 1) = 0.5.

We refer to these methods as train-prior, test-prior and uni-prior respectively. Note that test-prior is feasible because
the attribute vectors of unknown objects are available to the robot in ZSL. We report in table 2, results obtained
using AVGDAP method. Results show that the three methods give similar accuracies with a slight improvement with
uni-prior. This is coherent with results reported in [14], which show that attribute prior estimation is not crucial.

4.6. Robustness to the choice of objects
Considering that recognized objects are experienced for the first time, the results listed in tables 1 and 2 show that

our ZSL can be used for haptic recognition. However, as one would expect, we found that the recognition results vary
depending on the training and test set (see the difference in performance across the 5 splits). This is an interesting
finding because Fig. 2 shows that attributes classification accuracies themselves do not differ between the splits. This
discrepancy highlights the influence of attribute space, that is that object closer in attributes space are more difficult to
distinguish from one another, and motivated us to test the robustness of our method with more challenging data sets,
where the similarities between the training and test sets are minimal.
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Split uni-prior test-prior train-prior
1 0.48 0.24 0.36
2 0.38 0.33 0.28
3 0.38 0.39 0.32
4 0.35 0.39 0.38
5 0.35 0.33 0.29

average 0.39 0.34 0.33

Table 2: DAP accuracy for independent attributes classifiers.

Previously, we reported results for five random training/test splits. To minimize the similarities between the
training and test data, and make the recognition more challenging for our ZSL algorithm, we considered our objects in
a 2-dimensional representation of haptic similarities (Fig. 3). To obtain this representation, we used PCA to reduce the
dimension of each trial feature vector from R25 to R2 (by considering the first two principal components to represent
the objects). Following this, we averaged the 10 vectors corresponding to the 10 trials of each object so as to obtain
one vector that represents the object in the 2-dimensional space.
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Figure 3: Splitting the PHAC-2 objects set into five partitions.

In this representation space, note that near objects feel similar when touched, and are harder to distinguish by a
haptic recognition system. Therefore, to create challenging splits, we first used lines y = x and y = −x (red) and
divided the object space into 4 partitions. Since the partition on the left of the graph is significantly denser than the
others, we divided it again in two with line y = 0 (blue), to yield 5 partitions in total. We then considered 5 splits,
by using each time one partition as test set and the 4 others for training. Since attribute-based ZSL cannot distinguish
between objects having identical attribute vectors, in each test set we kept only objects having different attributes
vectors. Next, to increase the attributes classifier’s ability to generalize to new objects, we ensured that each attribute
classifier is trained using at least 3 different objects. Overall, the above procedure helped us create challenging object
splits that ensure that, a) test objects are different from training objects, and b), test objects are similar, making them
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harder to distinguish.
In table 3, we report the classification accuracies with the challenging splits. Overall, we note a decrease in

accuracies, as compared to the results obtained using random splits. This was expected since we intentionally made
the ZSL task more difficult. Despite the decrease in accuracy, the recognition accuracy was above chance, highlighting
the ability of the algorithm to recognize object very different from those it has trained on.

Split number of objects random accuracy AVGDAP
1 11 0.09 0.18
2 7 0.14 0.21
3 7 0.14 0.3
4 10 0.1 0.22
5 11 0.09 0.27

Average 0.24

Table 3: DAP accuracy for challenging splits.

4.7. Influence of attribute numbers

Finally, we investigated the influence of the number of attributes on the ZSL accuracy. As mentioned before,
we used 19 attributes to perform ZSL. To estimate the accuracy when using j attributes, we randomly picked up to
1000 combinations of j attributes out of the 19, and then averaged the accuracies of ZSL obtained with each of the
combinations. We do so with j varying from 7 to 19. We started from 7 since it is the size of the minimum subset of
attributes that allows to distinguish between objects. Results, reported in Fig. 4, show that, as expected, increasing the
number of attributes generally improves the performance. Increasing the number of attributes improves the separation
between objects, which are now represented in a higher dimensional space, and having more distinct attribute vectors
between objects alleviates the influence of misclassifying them.
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Figure 4: Recognition accuracy vs. the number of attributes utilized for ZSL.

4.8. Summary

To summarize, we developed a variant of ZSL for haptic recognition of novel objects. Using the PHAC-2 dataset,
we analyzed the influence of several factors on the performance of the haptic ZSL, including the choice of attribute
prior, the way of combining the attribute posterior, the number of attributes, and the object set split. Furthermore, we
showed the robustness of our algorithm by minimizing the similarity between the training and test set. We show that
even in the worst case, when the training and test objects are very different, the algorithm can still give above chance
recognition accuracies.

Next, we applied the developed haptic ZSL on an anthropomorphic hand system, to test its performance in a real
experimental setting.
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5. Recognition of hand held daily life objects by a robotic hand

5.1. Motivation: Beyond PHAC 2
PHAC-2 offers an important amount of objects, attributes and haptic data allowing us to test the application of

ZSL on haptics. However, the database was built in a controlled setting and with objects of regular shape, that may
not always be the case in a real robotics application. Therefore, in our experimental setup we used a less controlled
exploration, more realistic objects with heterogeneous surface properties, and different modalities of haptic data. The
goal was to show how ZSL can be applied to real life robotic applications, and to recognize any new constraints the
recognition system could face in such applications. Specifically:

1. We did not have a planned object exploration strategy (like in PHAC 2), and our object exploration is achieved
during open-loop random grasps. Our robot grasped the object in an unknown position and orientation, and
used whatever it senses as exploration data. This made the exploration short and coarse, but crucially more
realistic.

2. We used daily-life objects with semantic meanings (e.g. bottle, mug and box). The objects were not of any
particular shape. In addition, we allowed objects to have heterogeneous physical properties on their surfaces,
meaning that the object can feel differently depending on the touched part. This requisites the exploration to be
incremental and to include different sources of information.

3. We used a dexterous anthropomorphic robotic hand that offered not only cutaneous information, but also rich
kinesthetic data, typical of whole hand object grasps.

4. We made use of available (online dictionary based) textual descriptions of the object in order to avoid the time-
consuming human exploration process and minimize the human effort needed in this procedure. This is more
suitable for real scenarios, since we aim at minimizing the cost of adding a new object to set O.

Figure 5: Our zero-shot recognition system overview.

In Fig. 5, we summarize the different steps of our robotic experimentation. First, we collected two disjoint sets
of daily life objects, one for training and the other for testing. Then, we defined a list of attributes allowing us to
describe both sets of objects, resulting in the object-attribute matrix K. Next, we trained binary attribute classifiers:
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using BioTac readings for material attributes and robot joint readings for shape attributes. Finally, haptic readings
collected by exploring a new test object are introduced to the attributes classifiers and the resulting posteriors are used
by the DAP model to infer the test object’s identity.

5.2. Robot hand setup
Our robot setup consists of a cable-driven Shadow Dexterous Hand11 with a BioTac sensor mounted on each fin-

gertip. The encoders on the hand’s 19 joints provide kinesthetic information xshadow = {q1, . . . , q19}, where qi is the an-
gular position of joint i, and each BioTac provides cutaneous information xbiotac = {TAC ,TDC , PDC , PAC , E1, . . . , E19}.

5.3. Daily life object set
We collected a set of different daily life objects to form our object set O. Our choice was based on multiple

state of art studies that established lists of real objects that are interesting for robotic manipulation. The authors of
[49] propose a list of objects ordered according to their relevance for automatic retrieval after surveying people with
amyotrophic lateral sclerosis (ALS). A larger list of daily life objects categorized according to their use is given in
[50]. The YCB database [51] also regroups a set of physical objects to be used for object manipulation benchmarking.
We chose our objects from these previous works that were big enough to be grasped by the Shadow Hand, and which
were not hot, or have sharp edges that could damage the BioTacs. Finally, we selected the 20 objects illustrated in
Fig. 6 to form our object set.

plas c bo le

glass bo les

cardboard boxes

mugs

themal cup

round container

measuring cup

glass

salter

blender leg

bowl

tube

rectangular container

ball

jar

plas c cup

Figure 6: Disjoint training (left) and test (right) object sets.

5.4. Attribute-based description
For attribute-based ZSL, the design of the dataset requires defining: (1) training objects Y , (2) test objects Z, (3)

the set A of attributes that can be derived from the data collected with our setup and (4) matrix K. First, we randomly
split the object set O into two equal disjoint sets: Y = {cardboard box, glass bottle, plastic bottle, round container,
mug, thermal mug} and Z = {ball, rectangular container, tube, blender leg, bowl, glass, plastic cup, measuring cup,
jar, salter} as illustrated in Fig. 6. Next, we defined a set of attributes A appropriate for describing the haptic sensation
of Y and Z. Here, we deal with a specific type of attribute which is semantic and binary-valued. Considering non-
semantic [52] and real-valued attributes [40] is beyond the scope of this paper. Multiple works have studied the
definition of attributes by relying on human expressing capabilities [1, 53] or linguistic knowledge databases [39, 38].
In PHAC-2, authors relied on human experiments to define the adjectives list, which can depend on the participants’
choice of words. Here, we chose a more objective approach by making use of objects names to extract their textual
descriptions from online dictionaries12. From these descriptions, we chose attributes that could be sensed by our
robot. For instance, from the definition of a bottle: a glass or plastic container that has a narrow neck and usually

11shadowrobot.com
12We used merriam-webster.com and en.oxforddictionaries.com.

11
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has no handle, we extracted the underlined statements as attributes. Overall, by analyzing all objects descriptions, we
extracted a list of 11 shared attributes : A = {porcelain, plastic, glass, cardboard, steel, cylindrical, round, rectangular,
concave, has a handle, has a narrow part}.

Next, we set ao
m = 1 if the attribute am is used to describe the object o as a required property (e.g. has a narrow part

for a bottle), and ao
m = 0 if the attribute is an undesired or unnecessary property (e.g. has no handle for a bottle). Using

this procedure we obtained the object-attribute matrix K illustrated in table 4. Training objects yn having identical ayn

are indicated only once in the table, this is why we have 6 instead of 10 training objects. Note that each test object zl

has a specific azl that will be used to distinguish it from other objects during recognition.
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cardboard box 0 0 1 0 0 0 0 1 0 0 0
glass bottle 0 0 0 1 0 1 0 0 0 0 1

plastic bottle 0 1 0 0 0 1 0 1 0 0 1
round container 0 1 0 0 0 0 1 0 0 0 0

mug 1 0 0 0 0 1 0 0 1 1 0
thermal mug 0 1 0 0 1 1 0 0 1 1 0

ball 0 1 0 0 0 0 1 0 0 0 0
rectangular container 0 1 0 0 0 0 0 1 0 0 0

tube 0 1 0 0 0 1 0 0 0 0 0
blender 0 1 0 0 0 1 0 0 0 0 1

bowl 1 0 0 0 0 0 1 0 1 0 0
glass 0 0 0 1 0 1 0 0 1 0 0

plastic cup 0 1 0 0 0 1 0 0 1 0 0
measuring cup 0 1 0 0 0 1 0 0 1 1 0

jar 0 1 0 1 0 0 0 1 0 0 0
salter 0 0 0 1 1 1 0 0 0 0 1

Table 4: Class-attribute matrix K for training (upper) and test (lower) objects.

5.5. Data collection

The next step was data collection from the training objects, to learn attributes. We note that our attributes can
be decomposed into 2 categories: material and shape attributes. We referred to the state of art on haptic exploration
to choose the best procedure a hand must perform in order to recognize shapes and materials. According to [54],
materials can be measured by performing a static contact between sensors and object surface. Shape can be inferred
from the hand grasping/enclosing the object. Thus, we chose to explore each object by grasping/enclosing, which
combines the exploration procedures required to perceive both, material and shape.

During the training phase, each training object was handed to the Shadow hand by an experimenter 10 times in
random positions and orientations. To grasp the object, the robot fingers were spread out to their joint limits. Then,
they were closed by setting a desired constant current to each joint actuator. The currents (and corresponding cable
tensions) were kept low enough to avoid damage during contact with object, or in the case of self collisions, while
ensuring a “good” contact between the BioTac and object. Once all joints stopped (either because the finger contacted
the object, or because it reached its joint limit), the contact was maintained for 20 seconds to obtain the thermal
equilibrium between sensors and object. Different examples are illustrated in Fig. 7.

Since our attributes have different nature, we assume attribute independence and learn each one separately. From
each grasp, we gathered BioTac readings xbiotac serving as inputs for material attributes classifiers, and encoders
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Figure 7: Examples of object grasps by the Shadow Hand.

readings xshadow serving as inputs for shape attributes classifiers. After exploring all objects from Y , the collected data
were used to build a training set Dam

train for each shape attribute and Dam
train,b for each material attribute-BioTac pair.

Each test object was grasped up to 15 times, again using the same grasping procedure as during training, to build
the test set Dtest. Grasps in which none of the fingers touched the object were dropped as they do not include material
information. A video of the experiments is provided with this paper13.

5.6. Attributes classification

For material attributes, we chose the same feature extraction technique as for the previous experimental setup (see
Sect. 4.3). We used a time average of the features and linear SVM as suggested in [26]. But in contrast to that work,
since we performed a static contact, we did not consider the vibrations signal PAC from the BioTac. We obtained a
feature vector of 22 normalized means which was reduced using PCA to a 8-dimensional vector xmat that explained
more than 98% of the variance. The resulting xmat was used for the classification of the material attributes.

For each shape attribute, a binary classifier was trained using joints position measurements from the Shadow hand
xshadow. Joints that did not contribute to the closing procedure (e.g. the wrist) were excluded, resulting in a feature
vector xsh of 10 angular positions input to the shape attributes classifiers. The classification was performed using
nonlinear SVM with a Gaussian kernel. We used the same sigmoid function as in Sect. 4.4 to convert the SVM
classification score to an attribute posterior.

5.7. DAP – handling robotic constraints

To classify a test sample x, we introduced it in each attributes binary classifier, to obtain a set of posteriors
{p(am | x),m = 1, . . . , 19}. The attributes posteriors and object-attribute matrix are used by DAP (see Sect. 3.3) to
return the object class.

When the hand grasps an object, it provides a data sample x = (xsh, xmat) where xmat = (x1,mat, . . . , xB,mat) with
1 ≤ B ≤ 5 depending on the number of BioTacs in contact. Thus, the attributes classifiers return p(am | xsh) for shape
attributes and {p(am | xb,mat), b = 1, . . . , B} for material attributes. These posteriors must be combined to infer the final
attribute posterior required in equation (3).

Furthermore, the attribute posteriors have to take into account several constraints posed by our realistic experi-
mental setup, which were absent when we worked with the PHAC-2 database:

1. Test objects can be made of multiple materials. Thus, BioTacs on different fingers can be in touch with different
materials (e.g. the salter grasp in Fig. 7), requiring the integration of information from different fingers to
estimate the material attributes.

2. Objects can be heterogeneous and a grasp may provide only a local view. For example, in Fig. 7 (right) the
hand grasps the lower part of the bottle and misses the presence of the narrow neck. Therefore, we need to deal
with information missing from touched parts and to combine grasps to obtain a global view.

3. The number of touching fingers B can vary from one grasp to another, giving a different size of the test sample
each time, which must be taken into account in multi-grasp classification.

In the next sections, we propose and test different solutions proposed to take into account these constraints.

13The video can also be found on the IDH YouTube channel: https://youtu.be/Ekd28b0BiQs
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5.7.1. Single grasp classification – Combining information from various BioTacs
Since the test object is grasped in an unknown pose, the number of BioTacs B making contact may vary for each

grasp. The contact of a BioTac is detected when the difference in static pressure exceeds a given threshold. For each
material attribute am, we obtain a set of posteriors from the contacting BioTac classifiers {p(am | x1,mat), . . . , p(am |

xB,mat)}. To obtain the final attribute posterior for the material attributes, we tested both MAXDAP and AVGDAP (see
Sect. 4.5) to combine classifications from the contacting BioTacs. MAXDAP considers only the BioTac that is most
confident about the presence of the am, and was implemented as:

p(am = 1 | x) = max
b=1,...,B

p(am = 1 | xb,mat). (7)

AVGDAP on the other hand, combines all contacting BioTacs by averaging their posteriors:

p(am = 1 | x) =
1
B

B∑
b=1

p(am = 1 | xb,mat). (8)

Finally, while the material attribute posteriors were obtained using either MAXDAP or AVGDAP, the shape at-
tributes were assessed as: p(am = 1 | x) = p(am = 1 | xsh).

5.7.2. Single grasp classification – Handling local view
In regard to both material and shape attributes, a grasp may miss some attributes that are not present in the touched

part of the object. This implies that if p (am = 1 | x) < 0.5, the attribute could be absent from the whole object or only
from that particular grasp. To alleviate the effect of a possible misclassification, we replace the attribute posterior with
a uniform distribution if the attribute is absent from x. For shape attributes:

p(am = 1 | x) = max(0.5, p(am = 1 | xsh)), (9)

and for material attributes:

p(am = 1 | x) =
1
B

B∑
b=1

max(0.5, p(am = 1 | xb,mat)). (10)

We refer to this method as ’Local DAP’ or LDAP.

5.7.3. Multi-grasp classification – Developing a global view
While single grasp classification can recognize objects by making some assumptions about absent attributes, com-

bining several grasps is obviously advantageous as it gives a wider view of the object, and thus is expected to improve
recognition performance [6]. Grasping an object T times in different positions results in a set x = {x(1), . . . , x(T )} of test
samples. We compare two approaches to exploit information from multiple grasps: data fusion and decision fusion.

Data fusion merges data from the T grasps to form one “super grasp", that can be used to classify an object just
like a single grasp. Formally, for shape attributes, we have:

p(am = 1 | x) =
1
T

T∑
t=1

max(0.5, p(am = 1 | x(t)
sh)), (11)

and for material attributes:

p(am = 1 | x) =
1
T

T∑
t=1

1
Bt

Bt∑
b=1

max(0.5, p(am = 1 | x(t)
b,mat)). (12)

We refer to this method as ‘Data Fusion for Multi-grasp DAP ’ or DF-MDAP.
Decision fusion separately classifies each grasp in the sequence starting from x(1) until k similar classifications are

made or until x(T ) is reached. The classification that reaches k is taken as final decision on the object. We refer to this
method as ‘Similar classifications for Multi-grasp DAP’ or SC-MDAP.
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5.8. Experimental evaluation and results

We made a series of experiments to evaluate the multiple adaptations of DAP to our experimental setup. For
better analysis, we decomposed the test set Z into 3 subsets: objects having homogeneous material and shape prop-
erties Zhom ={ball, rectangular container, tube}, objects whose shape properties can differ according to the touched
part Zhet,sh ={blender leg, bowl, glass cup, plastic cup, measuring cup} and objects made of multiple materials:
Zhet,mat ={jar, salter}.

5.8.1. Attributes classification
First, we evaluate the performance of the binary classification of attributes. In Fig. 8, we present the accuracies

of attributes classifiers on the test set. All accuracies are averaged across the test trials. Material attributes are
additionally averaged over the five BioTacs. Overall, attribute classification achieved a satisfying average accuracy of
89%. However, attribute plastic had an accuracy of 45% which is considerably lower than the rest. This was probably
due to the variety of plastic types used in the training and test sets. For example, the round container is made of a
softer plastic than the blender leg.
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Figure 8: Recognition accuracy of attributes binary classification.

To analyze the performance of attributes classifiers on each object, we averaged p(am = 1 | x) for each object-
attribute pair across the test trials of each object. Ideally, if x is collected from object zl then p(am = 1 | x) should be
close to azl

m since p(am = 1 | x) ∼ 1 if azl
m = 1 and p(am = 1 | x) ∼ 0 otherwise. Matrix S presented in Fig. 9 measures

L1 distance between attributes binary labels and their posteriors:

Sl,m =|| azl
m −

1
| Dzl

test |

∑
x∈Dzl

test

p(am = 1 | x) ||1, (13)

Dzl
test represents the set of test samples gathered from object zl. We note that the majority of distances are lower than

0.5, indicating that objects are well classified by the corresponding attribute classifier. However, some classifiers
perform badly on some objects, probably because these are too different from the ones they have trained on. For
instance, the plastic attribute column presents high distances for the ball, rectangular container and jar because of the
difference between the plastic material constituting these objects, and that constituting the training objects.

5.8.2. Single grasp DAP
Recognition accuracies of test objects using a single grasp are presented in table 5. First, it is clear that the accuracy

obtained with homogeneous objects is better than that obtained with heterogeneous ones. This is because all object
properties can be felt from a single grasp. Furthermore, all BioTacs touch the same material over a homogeneous
object, “collaborating” to give a more confident classification. However, this collaboration becomes more delicate for
objects belonging to Zhet,mat, which explains the accuracy deterioration. Moreover, we note that AVGDAP performs
better than MAXDAP for heterogeneous objects. This is probably because AVGDAP averages the decision from the
BioTacs, and is hence less sensitive to errors from individual sensors.

However, LDAP outperforms all methods because we found that more often than not, random grasps on daily life
objects lead missing some parts of the object, and the LDAP can deal efficiently with absent attributes.
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Figure 9: Distance between attributes binary labels and their posteriors for test objects.

Method Zhom Zhet,sh Zhet,mat Z
MAXDAP 77.78% 44.83% 20% 52.29%
AVGDAP 77.78% 50% 33.33% 56.88%

LDAP 75% 55.17% 40% 59.63%

Table 5: Recognition accuracy of DAP on test objects from a single grasp.

Note that table 5 should however be viewed considering the fact that single grasps, by nature, are constrained by
local object properties. Consider the three example grasps on the measuring cup during the single grasp classification
(Fig. 10). We found that for 83% of grasps having the fingers touching the cylindrical part, the measuring cup is
classified as a tube. All the grasps touching the upper side lead to the measuring cup being classified as the pink cup,
and 66% of grasps touching the handle are classified as a measuring cup. These cases should not all be considered as
misclassifications because this is the best decision that can be made from the given local grasp. For instance, a human
touching the cylindrical part of the measuring cup can also not be sure if this is the tube, the pink cup or the measuring
cup, since the three objects share the same local shape. Hence, table 5 shows the limitation of single grasps for object
recognition.

Figure 10: Representative grasps on the "measuring cup" show how different grasps may indicate distinct kinematic features.

5.8.3. Multi-grasp DAP
Using a single grasp, LDAP gave the best recognition accuracy of 59.63% over all objects, which is modest, hence

encourages multi-grasp recognition. Next, we checked the recognition accuracies during multiple grasps, using both
DF-MDAP and SC-MDAP. In Fig. 11, we analyzed the DF-MDAP and SC-MDAP performances by changing their
parameters T and k, respectively. We note that DF-MDAP accuracy increases constantly with the number of merged
grasps T . This is understandable as an increase of T improves the information contained in the “super grasp". Since
LDAP gave the best accuracy, we used it to perform each single grasp classification for SC-MDAP. For SC-MDAP, the
best accuracies were obtained between k = 2 and k = 4. The presence of an optimal k can be explained by the fact that,
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Figure 11: Recognition accuracy vs. number of combined grasps T for DF-MDAP (a) and vs. number of similar classifications k for SC-MDAP (b).

while increasing the number of required similar classifications helps removing noisy classifications, it becomes harder
to find k similar classifications when k becomes large. Overall, both methods improve the performance compared to
single grasp recognition (k = 1,T = 1).
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Figure 12: Confusion matrices of LDAP , DF-MDAP (T = 5) and SC-MDAP (k = 4) respectively. SC-MDAP achieved perfect recognition of 8
out of 10 new objects.

Figure 12 shows the confusion matrices with different DAP choices. The best classifications were achieved with
SC-MDAP. We note that multi-grasp recognition was very beneficial to correct Zhom misclassifications, to the point
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that SC-MDAP reached an accuracy of 100% for all objects. For Zhet,sh, we note that the blender, bowl and glass
are correctly classified by both multi-grasp methods. The plastic cup is still frequently confused with a tube by DF-
MDAP but these misclassifications were overcome with SC-MDAP. However, all methods performed weakly on the
measuring cup and on the jar, which were often confused with the tube. This was because the attributes classifications
were poor on these objects (see distance matrix in Fig. 9), subsequently influencing their classification.

Overall we could analyze and develop a haptic ZSL algorithm for an anthropomorphic hand that enables very
good recognition of daily life objects that the robot encounters for the first time (see Fig. 12c).

6. Discussion and Conclusion

In this work, we proposed a haptic zero shot learning algorithm that enables a robot to recognize novel objects,
which it has never been trained on before. First, we applied ZSL to probably the best haptic object database for
ZSL (the PHAC-2), which includes 60 objects with a wide variety of texture, material and stiffness properties. This
allowed us to analyze the possibilities and constraints associated with the application of ZSL to haptic recognition.
We used this analysis to understand if and how the choice of attribute classifier (Sect. 4.4), the way of combining
attribute posteriors (Sect. 4.5), the choice of training set (Sect. 4.6 ) and the number of attributes (Sect. 4.7) affect
recognition performance. The algorithm developed from this analysis was then applied on an anthropomorphic robot
hand, to make it recognize unexplored objects (Sect. 5). In this realistic scenario, we further optimized our algorithm
and enabled it to account for heterogeneous objects (Sect. 5.7) and to integrate information from multiple grasps
(Sect. 5.7.3). Our final algorithm enabled the robot to correctly recognize eight out of ten objects, that it grasps for
the first time (third panel of Fig.12).

Note that the recognition rate in our real robot experiment (Fig.12) was much better than in the PHAC-2 database
recognition (Tables 1 and 2). Comparison is difficult, as different objects were used in the two cases. However, it
is still interesting to note that the real robot implementation worked better, considering that it used coarse grasps
to explore heterogeneous objects of different shapes, compared to recognition with the PHAC-2 database in which
objects were homogeneous, regularly shaped, and explored using a regular and well controlled procedure. However,
we believe that the results of our robot experiment are in fact a better indicator of the capabilities of our algorithm for
haptic object recognition. This is because of several reasons. Primarily, the PHAC-2 database focuses on the tactile
properties of objects, and not on shape (all objects were in fact of the same shape in the dataset). On the other hand,
shape is definitely a fundamental feature for haptic recognition during grasps, and our robot is able to integrate both
tactile and shape information (through its joint angles) efficiently to improve object recognition. Moreover, while
homogeneous objects (as in PHAC-2) may intuitively feel to be easier to recognize, this may not always be true. Most
real life objects are heterogeneous and in fact the heterogeneous nature of an object, if explored well (we propose one
way in Sect. 5.5), can act as a signature for the object, making it easier to recognize. This was probably the case in
our robot experiment as well. Finally, the recognition of the two discussed features, i.e material heterogeneity and
shape, are further improved by our algorithm by using multiple grasps in our robot experiment. In PHAC-2 on the
other hand, the homogeneity of objects and regularity of explorations make the data similar across exploration trials,
making simulated multiple grasps irrelevant.

The results obtained with our robotic setup show the promising capabilities of haptic ZSL for object recognition.
This is very encouraging, given that this is still a prototype system that can be improved in several aspects. First,
in this work we focused on the ZSL problem by assuming that all evaluated objects have never been experienced
before. However, robots encounter previously explored as well as unexplored objects, and the integration of ZSL with
other suggested multi-class object recognition systems can enable them to recognize known objects and progressively
integrate novel ones. Second, since the goal of this study was to introduce and adapt ZSL to haptics, we adopted a
simplistic approach using semantic binary attributes and the DAP model. Semantic representation and learning can
be improved by investigating new techniques as those presented in [55]. Finally, in this work we study haptic object
recognition by assuming that vision is unavailable, with the prospect in the future of combining the results with visual
object recognition to improve general object recognition by machines [56]. In summary, our work highlights the
efficiency of ZSL for haptic recognition, and we hope it will provide a start to works for optimizing haptic object
recognition by autonomous robots in uncertain environments.
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