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Introduction

Let D be a d-dimensional compact Riemannian manifold with boundary ∂D. We write (φ, λ) ∈ Eig(∆) if φ is a Dirichlet eigenfunction of -∆ in D with eigenvalue λ > 0. According to [START_REF] Shi | Gradient estimate of a Dirichlet eigenfunction on a compact manifold with boundary[END_REF], there exist two constants c 1 (D), c 2 (D) > 0 such that (1.1)

c 1 (D) √ λ φ ∞ ∇φ ∞ c 2 (D) √ λ φ ∞ , (φ, λ) ∈ Eig(∆).
An analogous statement for Neumann eigenfunctions has been derived in [START_REF] Hu | The gradient estimate of a Neumann eigenfunction on a compact manifold with boundary[END_REF].

Concerning Dirichlet eigenfunctions, an explicit upper constant c 2 (D) can be derived from the uniform gradient estimate of the Dirichlet semigroup in an earlier paper [START_REF] Wang | Gradient estimates of Dirichlet semigroups and applications to isoperimetric inequalities[END_REF] of the third named author. More precisely, let K, θ 0 be two constants such that

(1.2) Ric D -K, H ∂D -θ,
where Ric D is the Ricci curvature on D and H ∂D the mean curvature of ∂D. Let (1.3) α 0 = 1 2 max θ, (d -1)K .

Consider the semigroup P t = e t∆ for the Dirichlet Laplacian ∆. According to [START_REF] Wang | Gradient estimates of Dirichlet semigroups and applications to isoperimetric inequalities[END_REF]Theorem 1.1] where c = 2α 0 , for any nontrivial f ∈ B b (D) and t > 0, the following estimate holds:

∇P t f ∞ f ∞ 9.5α 0 + 2 √ α 0 (1 + 4 2/3 ) 1/4 (1 + 5 × 2 -1/3 ) (tπ) 1/4 + 1 + 2 1/3 (1 + 4 2/3 ) 2 √ tπ =: c(t).
Consequently, for any (φ, λ) ∈ Eig(∆),

∇φ ∞ φ ∞ inf t>0 c(t)e λt .
In particular, when Ric D 0, H ∂D 0, (1.4) ∇φ ∞ e (1 + 2 1/3 ) (1 + 4 2/3 ) √ 2π √ λ φ ∞ , (φ, λ) ∈ Eig(∆).

In this paper, by using stochastic analysis of the Brownian motion on D, we develop two-sided gradient estimates; the upper bound given below in (1.8) improves the one in (1.4). Our result will also be valid for α 0 ∈ R satisfying (1.5) 1 2 ∆ρ ∂D α 0 outside the focal set, where ρ ∂D is the distance to the boundary. The case α 0 < 0 appears naturally in many situations, for instance when D is a closed ball with convex distance to the origin. Note that by [10, Lemma 2.3], if under (1.2) we define α 0 by (1.3) then condition (1.5) holds as a consequence. For x 0, in what follows in the limiting case x = 0 we use the convention

1 1 + x 1/x := lim r↓0 1 1 + r 1/r = 1 e .
Theorem 1.1. Let K, θ 0 be two constants such that (1.2) holds and let α 0 be given by (1.3) or more generally satisfy (1.5). Then, for any nontrivial (φ, λ) ∈ Eig(∆), (1.6)

λ de(λ + K) λ d(λ + K) λ λ + K λ/(2K) ∇φ ∞ φ ∞ and (1.7) ∇φ ∞ φ ∞ e(λ + K) if √ λ + K 2A √ e A + λ+K 4A if √ λ + K 2A,
where

A := 2α + 0 + 2(λ + K) √ π exp - α 2 0 2(λ + K) .
In particular, when Ric D 0, H ∂D 0,

(1.8)

√ λ √ de ∇φ ∞ φ ∞ √ λ √ 2e √ π + √ πe 4 √ 2 , (φ, λ) ∈ Eig(∆).
Proof. This result follows from Theorem 2.1 and Theorem 2.2 below in the special case V = 0. In this case, Ric 

c 1 (D) = 1 √ de , c 2 (D) = √ 2e √ π + √ πe 4 √ 2 .
To give explicit values of c 1 (D) and c 2 (D) for positive K or θ, let λ 1 > 0 be the first Dirichlet eigenvalue of -∆ on D. Then Theorem 1.1 implies that (1.1) holds for

c 1 (D) = √ λ 1 de(λ 1 + K) , c 2 (D) = e(λ 1 + K) √ λ 1 1 {B>2A} + √ e √ λ 1 2α + 0 + 2(λ 1 + K) π + λ 1 + K 4 2α + 0 + 2(λ 1 + K)/π 1 {B 2A} with B = λ 1 + K and A = 2α + 0 + 2(λ 1 + K) π .
This is due to the fact that the expression for c 1 (D) is an increasing function of λ and the expression for c 2 (D) a decreasing function of λ. Since there exist explicit lower bound estimates on λ 1 (see [START_REF] Wang | Estimates of the first Dirichlet eigenvalue by using diffusion processes[END_REF] and references within), this gives explicit lower bounds of c 1 (D) and explicit upper bounds of c 2 (D). The lower bound for ∇φ ∞ will be derived by using Itô's formula for |∇φ| 2 (X t ) where X t is a Brownian motion (with drift) on D, see Subsection 2.1 for details. To derive the upper bound estimate, we will construct some martingales to reduce ∇φ ∞ to ∇φ ∂D,∞ := sup ∂D |∇φ|, and to estimate the latter in terms of φ ∞ , see Subsection 2.2 for details.

Next, we consider the Neumann problem. Let Eig N (∆) be the set of non-trivial eigenpairs (φ, λ) for the Neumann eigenproblem, i.e. φ is non-constant, ∆φ = -λφ with N φ| ∂D = 0 for the unit inward normal vector field N of ∂D. Let I ∂D be the second fundamental form of ∂D,

I ∂D (X, Y ) = -∇ X N, Y , X, Y ∈ T x ∂M, x ∈ ∂M.
With a concrete choice of the function f , the next theorem implies (1.1) for (φ, λ) ∈ Eig N (∆) together with explicit constants c 1 (D), c 2 (D).

Theorem 1.2. Let K, δ ∈ R be constants such that (1.9) Ric D -K, I ∂D -δ.

For f ∈ C 2 b ( D) with inf D f = 1 and N log f | ∂D δ, let c ε (f ) = sup D 4ε|∇ log f | 2 1 -ε + K -2∆ log f , ε ∈ (0, 1), K(f ) = sup D 2|∇ log f | 2 + K -∆ log f .
Then for any non-trivial (φ, λ) ∈ Eig N (∆), we have λ + c ε (f ) > 0 and sup ε∈(0,1)

ελ 2 de(λ + c ε (f )) f 2 ∞ sup ε∈(0,1) ελ 2 d(λ + c ε (f )) f 2 ∞ λ λ + c ε (f ) λ/cε(f ) ∇φ 2 ∞ φ 2 ∞ 2 f 2 ∞ (λ + K(f )) π 1 + K(f ) λ λ/K(f ) 2e f 2 ∞ λ + K(f ) π .
Proof. Under the conditions (1.2), Theorem 3.3 below applies with L = ∆, K V = K and n = d.

The desired estimates are immediate consequences.

When ∂D is convex, i.e. I ∂D 0, we may take f ≡ 1 in Theorem 1.2 to derive the following result. According to Theorem 3.2 below, this result also holds for ∂D = ∅ where Eig(∆) is the set of eigenpairs for the closed eigenproblem.

Corollary 1.3. Let ∂D be convex or empty. If Ric V D -K for some constant K, then for any non-trivial (φ, λ) ∈ Eig N (∆), we have λ + K > 0 and

λ 2 de(λ + K + ) λ 2 d(λ + K) λ λ + K λ/K ∇φ 2 ∞ φ 2 ∞ 2(λ + K) π 1 + K λ λ/K 2e(λ + K + ) π .
2 Proof of Theorem 1.1

In general, we will consider Dirichlet eigenfunctions for the symmetric operator L := ∆ + ∇V on D where V ∈ C 2 (D). We denote by Eig(L) the set of pairs (φ, λ) where φ is a Dirichlet eigenfunction of -L on D with eigenvalue λ.

In the following two subsections, we consider the lower bound and upper bound estimates respectively.

Lower bound estimate

In this subsection we will estimate ∇φ ∞ from below using the following Bakry-Émery curvaturedimension condition:

(2.1) 1 2 L|∇f | 2 -∇Lf, ∇f -K|∇f | 2 + (Lf ) 2 n , f ∈ C ∞ (D),
where K ∈ R, n d are two constants. When V = 0, this condition with n = d is equivalent to Ric D -K. Consequently, for K + := max{0, K} there holds

(2.3) ∇φ 2 ∞ λ 2 φ 2 ∞ n(λ + K + ) λ λ + K + λ/K + λ 2 φ 2 ∞ ne(λ + K + ) , (φ, λ) ∈ Eig(L).
Proof. Let X t be the diffusion process generated by 1 2 L in D, and let τ D := inf{t 0 : X t ∈ ∂D}. By Itô's formula, we have

(2.4) d|∇φ| 2 (X t ) = 1 2 L|∇φ| 2 (X t ) dt + dM t , t τ D ,
for some martingale M t . By the curvature dimension condition (2.1) and Lφ = -λφ, we obtain

(2.5) 1 2 L|∇φ| 2 = 1 2 L|∇φ| 2 -∇Lφ, ∇φ -λ|∇φ| 2 -(K + λ)|∇φ| 2 + λ 2 n φ 2 .
Therefore, (2.4) gives

d|∇φ| 2 (X t ) λ 2 n φ 2 -(K + λ)|∇φ| 2 (X t ) dt + dM t , t τ D .
Hence, for any t > 0,

e (K+λ) + t ∇φ 2 ∞ E |∇φ| 2 (X t∧τ D )e (K+λ)(t∧τ D ) λ 2 n E t∧τ D 0 e (K+λ)s φ(X s ) 2 ds = λ 2 n E t 0 1 {s<τ D } e (K+λ)s φ(X s ) 2 ds .
Since φ| ∂D = 0 and Lφ = -λφ, by Jensen's inequality we have

E 1 {s<τ D } φ(X s ) 2 E[φ(X s∧τ D )] 2 = e -λs φ(x) 2 ,
where x = X 0 ∈ D is the starting point of X t . Then, by taking x such that φ(x) 2 = φ 2 ∞ , we arrive at

e (K+λ) + t ∇φ 2 ∞ λ 2 n t 0 e (K+λ)s e -λs φ(x) 2 ds = λ 2 φ 2 ∞ n t 0 e Ks ds = λ 2 (e Kt -1) nK φ 2 ∞ .
This completes the proof of (2.2). Since (2.1) holds for K + replacing K, we may and do assume that K 0. By taking the optimal choice t =

1 K log(1 + K λ ) (by convention t = λ -1 if K = 0) in (2.
2), we obtain

∇φ 2 ∞ λ 2 φ 2 ∞ λ + K λ λ + K λ/K λ 2 φ 2 ∞ ne(λ + K) .
Hence (2.3) holds.

Upper bound estimate

Let Ric V D = Ric D -Hess V . For K 0 , θ 0 such that Ric D -K 0 and H ∂D -θ, let (2.6) α = 1 2 max θ, (d -1)K 0 + ∇V ∞ We note that 1 2 Lρ ∂D α by [10, Lemma 2.3]. Theorem 2.2 (Upper bound estimate). Let K V , θ 0 be constants such that Ric V D -K V , H ∂D -θ. Let α ∈ R be such that (2.7) 1 2 Lρ ∂D α.
1. Assume α 0. Then, for any nontrivial (φ, λ) ∈ Eig(L),

(2.8) ∇φ ∞ φ ∞ e(λ + K V ) if √ λ + K V 2A √ e A + λ+K V 4A if √ λ + K V 2A,
where (2.9)

A := α + 2(λ + K V ) √ π exp - α 2 2(λ + K V ) + |α| ∧ √ 2α 2 π(λ + K V ) .
In particular, (2.8) holds with A replaced by (2.10)

A := 2α + 2(λ + K V ) √ π exp - α 2 2(λ + K V )
.

We also have

(2.11) ∇φ ∞ φ ∞ √ e 2α + 2(λ + K V ) √ π + λ + K V 4 √ π 2α + 2(λ + K V ) . 2. Assume α 0. Then, for any nontrivial (φ, λ) ∈ Eig(L), (2.12) ∇φ ∞ φ ∞ e(λ + K V ) if √ λ + K V 2A * √ e A * + λ+K V 4A * if √ λ + K V 2A * ,
where (2.13)

A * := 2(λ + K V ) √ π exp - α 2 2(λ + K V ) .
In particular,

(2.14) ∇φ ∞ φ ∞ λ + K V 2 π + 1 4 π 2 √ e.
In addition, the following estimate holds:

(2.15) ∇φ ∞ φ ∞ e(λ + K V ) if √ λ + K V 2 √ e  e  + λ+K V 4  if √ λ + K V < 2 √ e Â,
where

(2.16) Â := α + √ 2λ √ π e -α 2 2λ + |α| ∧ √ 2α 2 √ πλ .
The strategy to prove Theorem 2.2 will be to first estimate ∇φ ∞ in terms of φ ∞ and ∇φ ∂D,∞ (see estimate (2.24) below) where f ∂D,∞ := 1 ∂D f ∞ for a function f on D. The this end we construct appropriate martingales in terms of φ and ∇φ.

We start by recalling the necessary facts about the diffusion process generated by 1 2 L, see for instance [START_REF] Arnaudon | Gradient estimates and Harnack inequalities on non-compact Riemannian manifolds[END_REF][START_REF] Hsu | Stochastic Analysis on Manifolds[END_REF]. For any x ∈ D, the diffusion X t solves the SDE (2.17)

dX t = 1 2 ∇V (X t ) dt + u t • dB t , X 0 = x, t τ D ,
where B t is a d-dimensional Brownian motion, u t is the horizontal lift of X t onto the orthonormal frame bundle O(D) with initial value u 0 ∈ O x (D), and

τ D := inf{t 0 : X t ∈ ∂D}
is the hitting time of X t to the boundary ∂D. Setting Z := ∇V , we have

(2.18) du t = 1 2 Z * (u t ) dt + d i=1 H i (u t ) • dB i t where Z * (u) := h u (Z π(u)
) and H i (u) := h u (ue i ) are defined by means of the horizontal lift

h u : T π(u) D → T u O(D) at u ∈ O(D). Note that formally h ut (u t • dB t ) = i h ut (u t e i ) • dB i t = i H i (u t ) • dB i t . For f ∈ C ∞ (D), let a := df ∈ Γ(T * D). Setting m t := u -1
t a(X t ), we see by Itô's formula that

(2.19) dm t m = 1 2 u -1 t ( a + ∇ Z a)(X t ) dt
where a = tr ∇ 2 a denotes the so-called connection (or rough) Laplacian on 1-forms and m = equality modulo the differential of a local martingale.

Denote by Q t : T x D → T Xt D the solution, along the paths of X t , to the covariant ordinary differential equation

DQ t = - 1 2 (Ric V D ) Q t dt, Q 0 = id TxD , t τ D ,
where D := u t du -1 t and where by definition

(Ric V D ) v = Ric V D (•, v) , v ∈ T x D. Thus, condition Ric V D -K V implies (2.20) |Q t v| e K V 2 t |v|, t τ D .
Finally, note that for any smooth function f on D, we have by the Weitzenböck formula:

d ∆ + Z f = d -d * df + (df )Z = ∆ (1) df + ∇ Z df + ∇ . Z, ∇f = ( + ∇ Z )(df ) -Ric V D (•, ∇f ) = -Ric V D + ∇ Z (df ) (2.21)
where ∆ (1) denotes the Hodge-deRham Laplacian on 1-forms. Now let (φ, λ) ∈ Eig(L), i.e. Lφ = -λφ, where L = ∆ + Z. For v ∈ T x D, consider the process

n t (v) := (dφ)(Q t v).
Then 

n t (v) = ∇φ(X t ), Q t v = u -1 t (∇φ)(X t ), u -1 t Q t v
t (v) m = 1 2 ( dφ + ∇ Z dφ)(X t ) Q t v dt + dφ(X t )(DQ t v) dt = - λ 2 n t (v) dt.
It follows that

(2.22) e λt/2 n t (v) = e λt/2 ∇φ(X t ), Q t v , t τ D , is a martingale. Lemma 2.3. Let (φ, λ) ∈ Eig(L).
We keep the notation from above. Then, for any function

h ∈ C 1 ([0, ∞); R), the process N t (v) := h t e λt/2 ∇φ(X t ), Q t v -e λt/2 φ(X t ) t 0 ḣs Q s v, u s dB s , t τ D , (2.23)
is a martingale. In particular, for fixed t > 0 and h ∈ C 1 ([0, t]; [0, 1]) monotone such that h 0 = 1 and h t = 0, we have

∇φ ∞ ∇φ ∂D,∞ P{t > τ D } e (λ+K V ) + t/2 + φ ∞ e λt/2 P{t τ D } 1/2 t 0 | ḣs | 2 e K V s ds 1/2 . (2.24)
Proof. Indeed, from (2.22) we deduce that

h t e λt/2 ∇φ(X t ), Q t v - t 0 ḣs e λs/2 ∇φ(X s ), Q s v ds, t τ D ,
is a martingale as well. By the formula e λt/2 φ(X t ) = φ(X 0 ) + t 0 e λs/2 ∇φ(X s ), u s dB s we see then that N t (v) is a martingale. To check inequality (2.24), we deduce from the martingale property of

{N s∧τ D (v)} s∈[0,t] that ∇φ ∞ ∇φ ∂D,∞ E 1 {t>τ D } e λτ D /2 |h τ D | |Q τ D | + φ ∞ e λt/2 E 1 {t τ D } sup |v| 1 t 0 ḣs Q s v, u s dB s 2 1/2 .
The claim follows by using (2.20).

To estimate the boundary norm ∇φ ∂D,∞ , we shall compare φ(x) and ψ(t, x) := P(τ x D > t), t > 0, for small ρ ∂D (x) := dist(x, ∂D). Let P D t be the Dirichlet semigroup generated by 1 2 L. Then

ψ(t, x) = P D t 1 D (x), so that (2.25) ∂ t ψ(t, x) = 1 2 Lψ(t, •)(x), t > 0.
Lemma 2.4. For any (φ, λ) ∈ Eig(L),

(2.26) ∇φ ∂D,∞ φ ∞ inf t>0 e λt/2 ∇ψ(t, •) ∂D,∞ .
Proof. To prove (2.26), we fix x ∈ ∂D. For small ε > 0, let x ε = exp x (εN ), where N is the inward unit normal vector field of ∂D. Since φ| ∂D = 0 and ψ(t, •)| ∂D = 0, we have

(2.27) |∇φ(x)| = |N φ(x)| = lim ε→0 |φ(x ε )| ε , |∇ψ(t, •)(x)| = lim ε→0 |ψ(t, x ε )| ε .
Let X ε t be the L-diffusion starting at x ε and τ ε D its first hitting time of ∂D. Note that

N t := φ(X ε t∧τ ε D ) e λ(t∧τ ε D )/2 , t 0,
is a martingale. Thus, for each fixed t > 0, we can estimate as follows:

|∇φ(x)| = lim ε→0 |φ(x ε )| ε = lim ε→0 E[φ(X ε t ) 1 {t<τ ε D } ] e λ(t∧τ ε D )/2 ε φ ∞ e λt/2 lim ε→0 E[1 {t<τ ε D } ] ε φ ∞ e λt/2 lim ε→0 ψ(t, x ε ) ε = φ ∞ e λt/2 |∇ψ(t, •)|(x).
Taking the infimum over t gives the claim.

We now work out an explicit estimate for ∇ψ(t, •) ∂D,∞ . Let cut(D) be the cut-locus of ∂D, which is a zero-volume closed subset of D such that ρ

∂D := dist(•, ∂D) is smooth in D \ cut(D). Proposition 2.5. Let α ∈ R such that (2.28) 1 2 Lρ ∂ D α.
Then

∇ψ(t, •) ∂D,∞ α + √ 2 √ πt + t 0 1 -e -α 2 s 2 √ 2πs 3 ds α + √ 2 √ πt e -α 2 t 2 + min |α|, α 2 √ 2t √ π , (2.29) and (2.30) ∇ψ(t, •) ∂D,∞ √ 2 √ πt + α + √ t √ 2π α 2
Notice that by [10, Lemma 2.3] the condition 1 2 Lρ ∂D α holds for α defined by (2.6).

Proof. Let x ∈ D and let X t solve SDE (2.17). As shown in [START_REF] Kendall | The radial part of Brownian motion on a manifold: a semimartingale property[END_REF], (ρ ∂D (X t )) t τ D is a semimartingale satisfying

(2.31) ρ ∂D (X t ) = ρ ∂D (x) + b t + 1 2 t 0 Lρ ∂D (X s ) ds -l t , t τ D ,
where b t is a real-valued Brownian motion starting at 0, and l t a non-decreasing process which increases only when X x t ∈ cut(D). Setting ε = ρ ∂D (x), we deduce from (2.31) together with

1 2 Lρ ∂D α, that (2.32) ρ ∂D (X t (x)) Y α t (ε) := ε + b t + αt, t τ D .
Consequently, letting T α (ε) be the first hitting time of 0 by Y α t (ε), we obtain

(2.33) ψ(t, x) P(t < T α (ε)).
On the other hand, since ψ(t, 

P(t < T α (ε)) ε α + √ 2 √ πt + t 0 1 -e -α 2 s 2 √ 2πs 3 ds.
It is well known that the (sub-probability) density

f α,ε of T α (ε) is (2.36) f α,ε (s) = ε exp -(ε + αs) 2 /(2s) √ 2πs 3 ,
which can be obtained by the reflection principle for α = 0 and the Girsanov transform for α = 0. Thus

P(t T α (ε)) = ε t 0 exp -(ε + αs) 2 /(2s) √ 2πs 3 ds = ε exp(-αε) t 0 e -α 2 s/2 √ 2πs 3 exp - ε 2 2s ds = exp(-αε) 2t/ε 2 0 e -1/r √ πr 3 exp - α 2 ε 2 r 4 dr, (2.37) 
where we have made the change of variable r = 2s/ε 2 . With the change of variable v = 1/r we easily check that (2.38)

∞ 0 r -3/2 e -1/r dr = Γ(1/2) = √ π,
and this allows to write (2.39)

P(t T α (ε)) = exp(-αε) 1 - ∞ 2t/ε 2 e -1/r √ πr 3 dr - 2t/ε 2 0 e -1/r √ πr 3 
1 -e -α 2 ε 2 r/4 dr .

As ε → 0, ∞ 2t/ε 2 e -1/r √ r 3 dr = ∞ 2t/ε 2 1 √ r 3 dr + o(ε) = ε √ 2 √ t + o(ε),
and with change of variable s

= 1 2 ε 2 r 2t/ε 2 0 e -1/r √ πr 3 1 -e -α 2 ε 2 r 4 dr = ε t 0 e -ε 2 2s √ 2πs 3 1 -e -α 2 s 2 ds = ε t 0 1 -e -α 2 s 2 √ 2πs 3 ds + o(ε)
by monotone convergence. Combining these with e -αε = 1 -αε + o(ε), we deduce from (2.39) that (2.40)

P(t T α (ε)) = 1 -ε   α + √ 2 √ πt + t 0 1 -e -α 2 s 2 √ 2πs 3 ds   + o(ε)
which yields (2.35).

Next, an integration by parts yields (2.41)

t 0 1 -e -α 2 s 2 √ 2πs 3 ds = α 2 √ 2π t 0 1 √ u e -α 2 u 2 du - √ 2 √ πt 1 -e -α 2 t 2 .
With the change of variable s = |α| u t in the first term in the right we obtain

(2.42) α 2 √ 2π t 0 1 √ u e -α 2 u 2 du = |α| 2t π |α| 0 e -s 2 t 2 ds.
We arrive at 

(2.43) f (α) := α + √ 2 √ πt + t 0 1 -e -α 2 s 2 √ 2πs 3 ds = √ 2 √ πt e -α 2 t 2 + α + |α| 2t π |α| 0 e -s
f (0) = √ 2 √ πt , f (0) = 1, f (α) = √ 2t √ π e -α 2 t 2
Using the fact that f (α) -α is even, we also get

(2.45) f (α) = √ 2 √ πt + α + |α| 0 √ 2t √ π e -s 2 t 2 s ds √ 2 √ πt + α + √ t √ 2π α 2 .
which yields (2.30).

Remark 2.6. One could use estimate (2.24) (optimizing the right-hand side with respect to t) together with Lemma 2.4 (again optimizing with respect to t) to estimate ∇φ ∞ in terms of φ ∞ . We prefer to combine the two steps.

Lemma 2.7. Assume Ric V D -K V for some constant K V ∈ R. Let α be determined by (2.28).

(a) If α 0, then for any (φ, λ) ∈ Eig(L),

∇φ ∞ inf t>0 max ε∈[0,1] e (λ+K + V )t 2 ε α + √ 2 √ πt e -α 2 t 2 + min |α|, α 2 √ 2t √ π + 1 -ε t φ ∞ ,
as well as

∇φ ∞ inf t>0 max ε∈[0,1] e (λ+K + V )t/2 ε α + 2 πt + √ t √ 2π α 2 + 1 -ε t φ ∞ and ∇φ ∞ inf t>0 max ε∈[0,1] e (λ+K + V )t/2 ε 2α + 2 πt + 1 -ε t φ ∞ . (b) If α 0, then ∇φ ∞ inf t>0 max ε∈[0,1] e (λ+K + V )t/2 ε 2 πt e -α 2 t 2 + 1 -ε t φ ∞ .
In particular,

∇φ ∞ inf t>0 max ε∈[0,1] e (λ+K + V )t/2 ε 2 πt + 1 -ε t φ ∞ .
Proof. For fixed t > 0 in (2.23), we take h ∈ C 1 ([0, t]; [0, 1]) such that h 0 = 1 and h t = 0. Then, by the martingale property of {N s∧τ D (v)} s∈[0,t] , we obtain

|∇ v φ|(x) = |N 0 (v)| = |EN t∧τ D (v)| = E 1 {t>τ D } e λτ D /2 h τ D ∇φ(X τ D ), Q τ D v -1 {t τ D } e λt/2 φ(X t ) t 0 ḣs Q s v, u s dB s . (2.46)
Note that using (2.20) along with Lemma 2.4 we may estimate

E 1 {t>τ D } e λτ D /2 h τ D ∇φ(X τ D ), Q τ D v E 1 {t>τ D } e λτ D /2 |h τ D | ∇φ ∂D,∞ e K V τ D /2 |v| E 1 {t>τ D } e λτ D /2 |h τ D | φ ∞ ∇ψ(t -τ D , •) ∂D,∞ e λ(t-τ D )/2 e K V τ D /2 |v| = E 1 {t>τ D } |h τ D | φ ∞ ∇ψ(t -τ D , •) ∂D,∞ e λt/2 e K V τ D /2 |v| e (λ+K + V )t/2 φ ∞ E 1 {t>τ D } |h τ D | ∇ψ(t -τ D , •) ∂D,∞ |v| ,
as well as

E 1 {t τ D } e λt/2 φ(X t ) t 0 ḣs Q s v, u s dB s e λt/2 φ ∞ P{t τ D } 1/2 t 0 | ḣs | 2 e K V s ds 1/2 .
Taking

h s = t -s t , s ∈ [0, t],
we obtain thus from (2.46)

|∇φ(x)| e (λ+K + V )t/2 t φ ∞ E 1 {t>τ D } (t -τ D ) ∇ψ(t -τ D , •) ∂D,∞ + e λt/2 φ ∞ P{t τ D } 1/2 1 t e K + V t -1 K + V 1/2 . Note that e K + V t -1 K + V te K + V t .
(i) By (2.29), assuming that α 0, we have on {t > τ D }:

t -τ D t ∇ψ(t -τ D , •) ∂D,∞ α t -τ D t + √ 2 √ π √ t -τ D t + t -τ D t t-τ D 0 1 -e -α 2 s 2 √ 2πs 3 ds α + √ 2 √ πt + t 0 1 -e -α 2 s 2 √ 2πs 3 ds α + √ 2 √ πt e -α 2 t 2 + min α, α 2 √ 2t √ π .
Thus, letting ε = P(t > τ D ), we obtain

|∇φ(x)| e (λ+K + V )t/2 φ ∞ ε α + √ 2 √ πt e -α 2 t 2 + min α, α 2 √ 2t √ π + 1 -ε t .
(ii) Still under the assumption α 0, this time using estimate (2.30), we have on {t > τ D }:

∇ψ(t -τ D , •) ∂D,∞ √ 2 π(t -τ D ) + α + √ t -τ D √ 2π α 2 ,
and thus letting ε = P(t > τ D ), we get

|∇φ(x)| e (λ+K + V )t/2 t φ ∞ E 1 {t>τ D } 2 π √ t -τ D + α(t -τ D ) + (t -τ D ) 3/2 √ 2π α 2 + e λt/2 φ ∞ P{t τ D } 1/2 1 t e K + V t -1 K + V 1/2 e (λ+K + V )t/2 φ ∞ ε 2 πt + α + √ t √ 2π α 2 + 1 -ε t .
(iii) In the case α 0, we get from (2.29) in a similar way:

|∇φ(x)| e (λ+K + V )t/2 φ ∞ ε √ 2 √ πt e -α 2 t 2 + 1 -ε t .
This concludes the proof of Lemma 2.7.

Proposition 2.8. We keep the assumptions of Lemma 2.7.

(a) If α 0, then for any (φ, λ) ∈ Eig(L),

∇φ ∞ √ e max ε∈[0,1]    ε   α + 2(λ + K + V ) √ π exp - α 2 2(λ + K + V ) + min |α|, √ 2α 2 π(λ + K + V )   + √ 1 -ε (λ + K + V ) φ ∞ ,
as well as

∇φ ∞ √ e max ε∈[0,1]    ε   α + 2(λ + K + V ) √ π + α 2 2π(λ + K + V )   + √ 1 -ε (λ + K + V )    φ ∞ and ∇φ ∞ √ e max ε∈[0,1]    ε   2α + 2(λ + K + V ) √ π   + √ 1 -ε (λ + K + V )    φ ∞ (b) If α 0, then ∇φ ∞ √ e max ε∈[0,1]    ε 2(λ + K + V ) √ π exp - α 2 2(λ + K + V ) + √ 1 -ε (λ + K + V )    φ ∞ . Proof. Take t = 1/(λ + K + V ) in Lemma 2.7.
We are now ready to complete the proof of Theorem 2.2.

Proof of Theorem 2.2. The claims of Theorem 2.2 (with the exception of estimate (2.15)) follow directly from the inequalities in Proposition 2.8 together with the fact that for any A, B 0,

(2.47) max ε∈[0,1] εA + √ 1 -εB = B 1 {B>2A} + A + B 2 4A 1 {B 2A} .
Finally, to check (2.15) we may go back to (2.24) from where we have

∇φ ∞ εe (λ+K V ) + t/2 ∇φ ∂D,∞ + √ 1 -ε e λt/2 φ ∞ t 0 | ḣs | 2 e K V s ds 1/2 . Taking h s = e -K V t -e -K V s e -K V t -1 , s ∈ [0, t],
we obtain

∇φ ∞ inf t>0 max ε∈[0,1] εe (λ+K V ) + t/2 ∇φ ∂D,∞ + φ ∞ e λt/2 √ 1 -ε K V 1 -e -K V t 1/2 . Noting that K V 1 -e -K V t K + V 1 -e -K + V t t -1 e K + V t ,
and taking t = (K

+ V + λ) -1 we obtain ∇φ ∞ √ e max ε∈[0,1] ε ∇φ ∂D,∞ + (1 -ε)(λ + K + V ) φ ∞ .
Applying Lemma 2.4 and Proposition 2.5 with t = 1/λ, we arrive at

∇φ ∞ φ ∞ max ε∈[0,1] eε α + √ 2λ √ π e -α 2 2λ + |α| ∧ α 2 √ 2 √ πλ + e(1 -ε)(λ + K + V ) .
The proof is then finished as above with observation (2.47).

3 Proof of Theorem 1.2

As in Section 2, we consider L = ∆ + ∇V and let Eig N (L) be the set of the corresponding nontrivial eigenpairs for the Neumann problem of L. We also allow ∂D = ∅, then we consider the eigenproblem without boundary. We first consider the convex case, then extend to the general situation. In this 

Q t exp 1 2 t 0 K V (X s )ds + t 0 δ(X s )d s , s 0,
such that for any t > 0 and h ∈ C 1 ([0, t]) with h(0) = 0, h(t) = 1, there holds

(3.3) ∇P t f = E f (X t ) t 0 h (s)Q s dB s , f ∈ B b (D).

The case with convex or empty boundary

In this part we assume that ∂D is either convex or empty. When ∂D is empty, D is a Riemannian manifold without boundary and Eig N (L) denotes the set of eigenpairs for the eigenproblem without boundary. In this case, if Ric V K V for some constant K V ∈ R, then λ + K V 0 for (φ, λ) ∈ Eig N (L), see for instance [START_REF] Wang | Application of coupling method to the Neumann eigenvalue problem[END_REF].

Theorem 3.2. Assume that ∂D is either convex or empty.

(1) If the curvature-dimension condition (2.1) holds, then for any (φ, λ) ∈ Eig N (L),

∇φ 2 ∞ λ 2 φ 2 ∞ n(λ + K) λ λ + K λ/K λ 2 φ 2 ∞ ne(λ + K + )
.

(

) If Ric V D -K V for some constant K V ∈ R, then for any (φ, λ) ∈ Eig N (L), ∇φ 2 ∞ φ 2 ∞ 2(λ + K V ) π 1 + K V λ λ/K V 2e(λ + K + V ) π . 2 
Proof. (a) We start by establishing the lower bound estimate. By Itô's formula, for any (φ, λ) ∈ Eig N (L) we have

(3.4) d|∇φ| 2 (X t ) = 1 2 L|∇φ| 2 (X t ) dt + 2 I ∂D (∇φ, ∇φ)(X t ) d t + dM t , t 0,
where t is the local time of X t at ∂D, which is an increasing process. Since I ∂D 0, and since (2.1) and Lφ = -λφ imply

1 2 L|∇φ| 2 -(K + λ)|∇φ| 2 + λ 2 n φ 2 , we obtain d|∇φ| 2 (X t ) λ 2 n φ 2 -(λ + K)|∇φ| 2 (X t ) dt + dM t , t 0.
Noting that for X 0 = x ∈ D we have

E[φ(X s ) 2 ] (E[φ(X s )]) 2 = e -λs φ(x) 2 ,
we arrive at

e (λ+K)t ∇φ 2 ∞ e (λ+K)t E[|∇φ| 2 (X t )] λ 2 n t 0 e (λ+K)s E[φ 2 (X s )] ds λ 2 n t 0 e Ks φ(x) 2 ds = λ 2 (e Kt -1) nK φ(x) 2 .
Multiplying by e -(λ+K)t , choosing t = 1 K log(1 + K λ ) (noting that λ + K 0, in case λ + K = 0 taking t → ∞), and taking the supremum over x ∈ D, we finish the proof of (1).

(b) Let ∂D be convex and Ric V D -K V for some constant K V . Then Theorem 3.1 holds for δ = 0, so that

σ t := E t 0 |h (s)| 2 Q s 2 ds 1/2 t 0 |h (s)| 2 e K V s ds 1/2 . Taking h(s) = s 0 e -K V r dr t 0 e -K V r dr we obtain σ t K V 1 -e -K V t 1/2 . Therefore, ∇P t f ∞ f ∞ E t 0 h (s)Q s dB s f ∞ 2 √ 2π σ t ∞ 0 s exp - s 2 2σ 2 t ds = f ∞ σ t √ 2 √ π , t > 0, f ∈ B b (D). (3.5) 
Applying this to (φ, λ) ∈ Eig N (L), we obtain

e -λt/2 |∇φ| φ ∞ σ t √ 2 √ π φ ∞ 2K V π(1 -e -2K V t ) 1/2 , t > 0. Consequently, λ + K V 0. Taking t = 1 K V log(1 + K V λ ) as above, we arrive at ∇φ 2 ∞ φ 2 ∞ 2(λ + K V ) π 1 + K V λ λ/K V .

The non-convex case

When ∂D is non-convex, a conformal change of metric may be performed to make ∂M convex under the new metric; this strategy has been used in [START_REF] Cheng | Functional inequalities on manifolds with non-convex boundary[END_REF][START_REF] Wang | Estimates of the first Neumann eigenvalue and the log-Sobolev constant on non-convex manifolds[END_REF][START_REF] Wang | Harnack inequalities on manifolds with boundary and applications[END_REF][START_REF] Wang | Semigroup properties for the second fundamental form[END_REF] for the study of functional inequalities on non-convex manifolds. According to [15, Theorem 1.2.5], for a strictly positive function f ∈ C ∞ ( D) with I ∂D +N log f | ∂D 0, the boundary ∂D is convex under the metric f -2 •, • . For simplicity, we will assume that f 1. Hence, we take as class of reference functions

D := f ∈ C 2 ( D) : inf f = 1, I ∂D +N log f 0 .

Assume (2.1) and Ric

V D -K V for some constants n d and K, K V ∈ R. For any f ∈ D and ε ∈ (0, 1), define c ε (f ) := sup D 4ε|∇ log f | 2 1 -ε + εK + (1 -ε)K V -2L log f .
We let λ N 1 be the smallest non-trivial Neumann eigenvalue of -L. The following result implies λ 1 -c ε (f ). (1) If (2.1) and Ric V D -K V hold for some constants n d and K, K V ∈ R. Then for any non-trivial (φ, λ) ∈ Eig N (L), we have λ + c ε (f ) 0 and

f 2 ∞ ∇φ 2 ∞ φ 2 ∞ sup ε∈(0,1) ελ 2 n(λ + c ε (f )) λ λ + c ε (f ) λ/cε(f ) sup ε∈(0,1) ελ 2 ne(λ + c ε (f ) + ) . (2) Let Ric V D -K V for some K V ∈ C( D), and 
K(f ) = sup D 2|∇ log f | 2 + K V -L log f .
Then for any non-trivial (φ, λ) ∈ Eig N (L), we have λ + K(f ) 0 and

∇φ 2 ∞ φ 2 ∞ f 2 ∞ 2(λ + K(f )) π 1 + K(f ) λ λ/K(f ) 2e(λ + K(f ) + ) π .
Proof. Let f ∈ D and (φ, λ) ∈ Eig N (L).

(1) On ∂D we have

N (f 2 |∇φ| 2 ) = (N f 2 )|∇φ| 2 + f 2 N |∇φ| 2 = f 2 (N log f 2 )|∇φ| 2 + 2 I ∂D (∇φ, ∇φ) = 2f 2 (N log f )|∇φ| 2 + I ∂D (∇φ, ∇φ) 0. (3.6)
Next, by the Bochner-Weitzenböck formula, using that Ric V D -K V and Lφ = -λφ, we observe Combining this with (2.5), for any ε ∈ (0, 1), we obtain

f 2 2 L|∇φ| 2 + ∇f 2 , ∇|∇φ| 2 -f 2 (εK + (1 -ε)K V + λ)|∇φ| 2 + ελ 2 n f 2 φ 2 + (1 -ε)f 2 Hess φ 2 HS -2 Hess φ HS × |∇f 2 | × |∇φ| - |∇ log f 2 | 2 1 -ε + εK + (1 -ε)K V + λ f 2 |∇φ| 2 + ελ 2 n f 2 φ 2 .
Combining this with (3.6) and applying Itô's formula, we obtain

d(f 2 |∇φ| 2 )(X t ) m = 1 2 L(f 2 |∇φ| 2 )(X t ) dt + N (f 2 |∇φ| 2 )(X t ) d t - 1 2 f 2 L|∇φ| 2 + 2 ∇f 2 , ∇|∇φ| 2 + |∇φ| 2 Lf 2 (X t ) dt ελ 2 n f 2 φ 2 - |∇ log f 2 | 2 1 -ε + εK + (1 -ε)K V + λ -f -2 Lf 2 f 2 |∇φ| 2 (X t ) dt ελ 2 n φ 2 -λ + c ε (f ) f 2 |∇φ| 2 (X t ) dt.
Hence, for X 0 = x ∈ D, f 2 ∞ ∇φ 2 ∞ e (λ+cε(f ))t E e cε(f )t (f 2 |∇φ| 2 )(X t ) ελ 2 n t 0 e (λ+cε(f ))s E[φ(X s ) 2 ] ds ελ 2 n t 0 e cε(f )s φ(x) 2 ds = ελ 2 (e cε(f )t -1) nc ε (f ) φ(x) 2 .

This implies λ + c ε (f ) 0 and

f 2 ∞ ∇φ 2 ∞ φ 2 ∞ sup t>0
ελ 2 e -λt -e -(λ+cε(f ))t nc ε (f ) = ελ 2 n(λ + c ε (f ))

λ λ + c ε (f ) λ/cε(f ) ελ 2 ne(λ + c ε (f ) + )
.

(2) The claim could be derived from [2, inequality (2.12)]. For the sake of completeness we include a sketch of the proof. For any p > 1, let

K p (f ) = sup D K V + p|∇ log f | 2 -L log f .
Note that p|∇ log f | 2 -L log f = p -1 f p Lf -p . Since f ∈ D implies I ∂D -N log f , we have Therefore, repeating step (b) in the proof of Theorem 3.2 with K(f ) replacing K V , we finish the proof of (2).

Q t 2 exp t 0 K V (X s ) ds + 2 t 0 N log f (X s ) d s exp K p (f )t

Theorem 3 . 1 (

 31 [START_REF] Wang | Analysis for Diffusion Processes on Riemannian Manifolds[END_REF]). Let Ric V D -K V and I ∂D -δ for some K V ∈ C( D) and δ ∈ C(∂D). Then there exists a R d ⊗ R d -valued adapted continuous process Q s with(3.2) 

Theorem 3 . 3 .

 33 Let f ∈ D.

2 φ 2 HS

 22 L|∇φ| 2 -∇Lφ, ∇φ -λ|∇φ| Hess -(K V + λ)|∇φ| 2 .

= f -p (x) 1 ,Q t 2 eds f 2 ∞ t 0 |h

 1220 since f 1 by assumption. This shows that E Kp(f )t f p ∞ , t 0. Combining this for p = 2 with Theorem 3.1 and denoting K(f ) = K 2 (f ), we obtainσ 2 t := E t 0 |h (s)| 2 Q s 2(s)| 2 e K(f )s ds.

  V D = Ric D -K is equivalent to (2.1) with n = d. More sophisticated upper bounds are given below in Theorem 2.2. By (1.8), if D is convex with non-negative Ricci curvature then (1.1) holds with

  . Using (2.19), we see by Itô's formula and formula (2.21) that dn

  section, P t denotes the (Neumann if ∂D = ∅) semigroup generated by L/2 on D. Let X t be the corresponding (reflecting) diffusion process which solves the SDE ) dt + N (X t ) d t , where B t is a d-dimensional Euclidean Brownian motion, u t the horizontal lift of X t onto the orthonormal frame bundle, and t the local time of X t on ∂D.We will apply the following Bismut type formula for the Neumann semigroup P t , see [15, Theorem 3.2.1], where the multiplicative functional process Q s was introduced in[START_REF] Hsu | Multiplicative functional for the heat equation on manifolds with boundary[END_REF].

	(3.1)	dX t = u t • dB t +	1 2	∇V (X t

  Proceeding as in the proof of [15, Corollary 3.2.8] or [2, Theorem 2.4], we get

	f -p ∞ E exp -	1 2

exp -1 p t 0 (f p Lf -p )(X s ) ds + 2 t 0 N log f (X s ) d s . As df -p (X t ) m = 1 2 Lf -p (X t ) dt + N f -p (X t ) d t = -f -p (X t ) -1 2 f p Lf -p (X t ) dt + pN log f (X t ) d t ,

we obtain that

M t := f -p (X t ) exp -1 2 t 0 f p (X s )Lf -p (X s ) ds + p t 0 N log f (X s ) d s is a (local) martingale. t 0 f p (X s )Lf -p (X s ) ds + p t 0 N log f (X s ) d s E f -p (X t ) exp -1 2 t 0 f p (X s )Lf -p (X s ) ds + p t 0 N log f (X s ) d s
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