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Abstract

By methods of stochastic analysis on Riemannian manifolds, we derive explicit constants
c1(D) and cq(D) for a d-dimensional compact Riemannian manifold D with boundary such that

1l (D)VAlloe < [Vollos < c2(D)VAISlloo

holds for any Dirichlet eigenfunction ¢ of —A with eigenvalue A. In particular, when D is convex
with non-negative Ricci curvature, the estimate holds for

V2T
VT 4v2 )

Corresponding two-sided gradient estimates for Neumann eigenfunctions are derived in the sec-
ond part of the paper.
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1 Introduction

Let D be a d-dimensional compact Riemannian manifold with boundary 0D. We write (¢, \) €
Eig(A) if ¢ is a Dirichlet eigenfunction of —A in D with eigenvalue A > 0. According to [7], there
exist two constants c1(D), ca(D) > 0 such that

(L.1) cl(D)VA[@lloo < IVlloe < c2(D)VAISlloo, (9, 2) € Eig(A).

AT is supported by FNR Luxembourg: OPEN scheme (project GEOMREV 014/7628746).
FW is supported in part by NNSFC (11771326, 11431014).




An analogous statement for Neumann eigenfunctions has been derived in [5].

Concerning Dirichlet eigenfunctions, an explicit upper constant co(D) can be derived from the
uniform gradient estimate of the Dirichlet semigroup in an earlier paper [10] of the third named
author. More precisely, let K, 6 > 0 be two constants such that

(1.2) RiCD = —K, H()D = —9,

where Ricp is the Ricci curvature on D and Hyp the mean curvature of 9D. Let

(1.3) ap = %max{&,\/(d—l)K}.

Consider the semigroup P; = e*2 for the Dirichlet Laplacian A. According to [10, Theorem 1.1]
where ¢ = 2y, for any nontrivial f € %,(D) and t > 0, the following estimate holds:

2 /a0(1 44234 (1 +5x 271/3) /1 4+21/3 (1 4 42/3
< 9.5a0 + Go(1 + )L (145 x )+ i 1+ ):: c(t).

(tm)!/4 2Vt

VP floo
[1flloo

Consequently, for any (¢, ) € Eig(A),

1V¢lloo < lllloo inf c(t)e™.
In particular, when Ricp > 0, Hyp = 0,

Ve (1 +21/3) (1 4 42/3)
(1.4) V6|0 < NoT VA8l

In this paper, by using stochastic analysis of the Brownian motion on D, we develop two-sided
gradient estimates; the upper bound given below in (1.8) improves the one in (1.4). Our result will
also be valid for ag € R satisfying

(¢, \) € Eig(A).

1
(1.5) §APBD < ap outside the focal set,

where pgp is the distance to boundary. The case ag < 0 appears naturally in many situations, for
instance when D is a closed ball with convex distance to the origin. Note that by [10, Lemma 2.3],
if under (1.2) we define g by (1.3) then condition (1.5) holds as a consequence.

For z > 0, in what follows in the limiting case x = 0 we use the convention

1 1/z . 1 r 1
( ) = lim ( ) = —.
1+« rlo \1+r e

Theorem 1.1. Let K,0 > 0 be two constants such that (1.2) holds and let o be given by (1.3) or
more generally satisfy (1.5). Then, for any nontrivial (¢, ) € Eig(A),

(1.6) LA (A e Vel
JIOTE) S VADTR) W+ K S 6l

and

(1.7) Vol _ JveA+K) if VA+K =24

' [Pllee Ve (A+2E) if VATK <24,



where

20+ K) al
A=2af + X2~ 7 N )
R eXp( 2<A+K>>

In particular, when Ricp > 0, Hyp > 0,

VX _ 96l _ 5 (V3 VA
Vie S Tl <ﬁ<ﬁ+m

Proof. This result follows from Theorem 2.1 and Theorem 2.2 below in the special case V' = 0. In
this case, Ric% = Ricp > —K is equivalent to (2.1) with n = d. More sophisticated upper bounds
are given below in Theorem 2.2. O

(1.8)

) , (¢, A) € Eig(A).

By (1.8), if D is convex with non-negative Ricci curvature then (1.1) holds with
1 V2 v
= ——, aD)="=+Y"
Vde VT 42

To give explicit values of ¢i(D) and ca(D) for positive K or 6, let Ay > 0 be the first Dirichlet
eigenvalue of —A on D. Then Theorem 1.1 implies that (1.1) holds for

VA1

C1 (D)

(D)= ——,
(D) Ve + K)
\/e()\1+K) \/6 + 2(}\1+K) M+ K
(D)= +———=1 + —— | 20 + 1
2( ) \/)\71 {B>2A} \/X 0 T 4(20[3_—’— 2(>\1+K)/7’[') {B<2A}
with
2(\ K
B=+v/M+K and A:2a3'+ w
T

This is due to the fact that the expression for ¢; (D) is an increasing function of A and the expression
for co(D) a decreasing function of . Since there exist explicit lower bound estimates on A; (see [9]
and references within), this gives explicit lower bounds of ¢; (D) and explicit upper bounds of ca(D).

The lower bound for ||[V¢||o will be derived by using It6’s formula for |V¢|?(X;) where X is
a Brownian motion (with drift) on D, see Subsection 2.1 for details. To derive the upper bound
estimate, we will construct some martingales to reduce |Vo|/w to ||[Vo|5p o 1= supgp |V, and
to estimate the latter in terms of ||¢]|~, see Subsection 2.2 for details. 7

Next, we consider the Neumann problem. Let Eigy(A) be the set of non-trivial eigenpairs
(¢, A) for the Neumann eigenproblem, i.e. ¢ is non-constant, A¢ = —A¢ with N¢|sp = 0 for the
unit inward normal vector field N of 0D. Let Iyp be the second fundamental form of 0D,

Top(X,Y) = —(VxN,Y), X,Y €T,0M, z € M.

With a concrete choice of the function f, the next theorem implies (1.1) for (¢, \) € Eigy(A)
together with explicit constants ¢;(D), ca(D).

Theorem 1.2. Let K,0 € R be constants such that
(1.9) RiCD = —K, HaD = —0.
For f € C¢(D) with i%ff =1 and Nlog flop = 0, let

4e|V 1 2
e.(f) = Sup{w C K- 2Alogf}, c e (0,1),
g -
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K(f) = 5111)p{2|Vlogf|2 + K — Alog f}.

Then for any non-trivial (¢, \) € Eign(A), we have XA+ c-(f) > 0 and

- N2 < s N2 ( A )A/CS(f)
ceo deO+ cc(MIIFIZ ™ oo A+ - (1% \N + (/)
IVBIZ 2 fI2+ K(f) 1, K(f)\VEWD)
<ol S . (1+537)

< 20 IR AT KW,

Proof. Under the conditions (1.2), Theorem 3.3 below applies with L = A, Ky = K and n = d.
The desired estimates are immediate consequences. ]

When 0D is convex, i.e. Isp > 0, we may take f = 1 in Theorem 1.2 to derive the following
result. According to Theorem 3.2 below, this result also holds for 0D = @ where Eig(A) is the set
of eigenpairs for the closed eigenproblem.

Corollary 1.3. Let dD be convex or empty. If Ric), > —K for some constant K, then for any
non-trivial (¢, \) € Eign(A), we have A+ K > 0 and

2 2 NK 2 AN K +
A < A < A )/ <HV¢H00<2()‘+K)(1+E)/ <2e(>\+K )
der+ KH) S A0+ K)\A+ K ]2, - X\ -

2 Proof of Theorem 1.1

In general, we will consider Dirichlet eigenfunctions for the symmetric operator L := A+ VV on D
where V € C?(D). We denote by Eig(L) the set of pairs (¢, \) where ¢ is a Dirichlet eigenfunction
of —L on D with eigenvalue .

In the following two subsections, we consider the lower bound and upper bound estimates
respectively.

2.1 Lower bound estimate

In this subsection we will estimate ||V¢||oo from below using the following Bakry-Emery curvature-
dimension condition:

2
(2.) SV IP (VL) > K+ EE e o),

where K € R, n > d are two constants. When V = 0, this condition with n = d is equivalent to
RiCD = -K.
Theorem 2.1 (Lower bound estimate). Assume that (2.1) holds. Then

AZ(eft -1 .
(22) Vol > olEosup S-S (6. € Eig(D)

Consequently, for KT := max{0, K} there holds

>\2||¢H§o< A )A/K+> X913
A+ KT \\+ K+ ~ ne(\+ Kt)’

(2.3) IVells >~ (6, )\) € Eig(L).
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Proof. Let X; be the diffusion process generated by %L in D, and let
7p:=1inf{t > 0: X, € dD}.

By Itd’s formula, we have

1
(2.4) d|\Ve[*(X) = SLIV[(Xy) dt +dM;, <7,
for some martingale M;. By the curvature dimension condition (2.1) and L¢ = —A¢, we obtain
1 2 1 2 2 5 AN o
(2.5) FLIVEI" = SLIVEI™ = (VLo Vo) = AVe|" 2 —(K + A)[Ve[" + —-¢”.

Therefore, (2.4) gives
2 Ny 2
AIVOP(X) > (S = (K + NIV ) (X de+ dM;, ¢ < p.
Hence, for any ¢t > 0,

e(K-l—)\)th HV(ngo > E[‘V(MZ(Xt/\TD)e(K+)\)(tATD):|

)\2 tATD
> A |:/ e(K+)\)s¢(X5)2 d8:|
0

n

)\2 ! K4\ 2
=_—E |:/0 1{S<TD}e( - )s¢(Xs) d3:| :

n

Since ¢|sp = 0 and Lo = —A¢, by Jensen’s inequality we have

E [L{serpy)0(X)?] = (E[3(Xonry)])? = e M0(2)?,

where ¥ = Xy € D is the starting point of X;. Then, by taking = such that ¢(z)? = |¢||%, we
arrive at

)\2 t
N V2, > = /0 RO

NS [ o, _ N )
= 2 1Pl sqs =2 72 '
e [ ereas = ool

This completes the proof of (2.2).
Since (2.1) holds for KT replacing K, we may and do assume that K > 0. By taking the
optimal choice t = £ log(1 + &) (by convention ¢ = A~! if K = 0) in (2.2), we obtain

Nllglse (A \VE_ Nel2
2 > e8] > o8] .
IVélleo A+ K ()\—l—K) ne(A + K)

Hence (2.3) holds. O



2.2 Upper bound estimate

Let Ric¥ = Ricp — Hessy. For Ky, 6 > 0 such that Ricp > —Ky and Hyp > —6, let

(2.6) a= % (max {6,/(d—1)Ko} + IIVVlloo)

We note that %Lpap < « by [10, Lemma 2.3].
Theorem 2.2 (Upper bound estimate). Let Ky ,0 > 0 be constants such that
RicY > —Ky, Hyp > —b.
Let a € R be such that
1
(2.7) inaD < .

1. Assume a > 0. Then, for any nontrivial (¢, ) € Eig(L),

(2.8) Vol _ e(A + Ky) if VAt Ky =24
' [olee =~ \ve (4+25%) of VARV <24,
where
2\ + Ky) ( o2 ) V2a2
In particular, (2.8) holds with A replaced by
2.10 A =9 vewnThv) )
(2.10) 0 Y exp( .

We also have

[Volloo 20+ 2A+ Kyv) A Ky N
(2.11) 16l < \/6< Jr L e m) .

2. Assume o < 0. Then, for any nontrivial (¢, \) € Eig(L),

(2.12) Vol _ [VeA+EY) if VA+ Ky > 24
' [lloo \/é(A*-i-)\ZL{EV) if VAF Ky <247,
where
2(A+ Ky) a?
2.13 A .= VAAT BV) )
(213) e (e

In particular,

(2.14) IVélloo < VA+ Ky <\/Z+ i\/Z) Ve.

16lloo



In addition, the following estimate holds:

(215) [Volloe _ (Ve + K] if VAFEY > 2464
| R
where
1 2)\ oc2 2 2
(2.16) A=a+ \/76_i n |a| A \[Oz

e VX

The strategy to prove Theorem 2.2 will be to first estimate ||[V¢|s in terms of ||¢|lc and
IVollop o (see estimate (2.24) below) where ||f|l5p o = [[1lonflle for a function f on D. The
this end we construct appropriate martingales in terms of ¢ and V.

We start by recalling the necessary facts about the diffusion process generated by %L, see for
instance [1, 3]. For any = € D, the diffusion X; solves the SDE

1
(217) dXt = §VV(X15) dt =+ ut 0 dBt7 XO =7, t < TD,

where B; is a d-dimensional Brownian motion, u; is the horizontal lift of X; onto the orthonormal
frame bundle O(D) with initial value ug € O, (D), and

mp:=1inf{t > 0: X, € 9D}
is the hitting time of X; to the boundary 0D. Setting Z := VV, we have
1 d .
(2.18) dug = 5 2° (ur) dt + > Hi(u) o dB}
i=1

where Z*(u) := hy(Zz@)) and H;(u) = hy(ue;) are defined by means of the horizontal lift
hy: TrwyD — T, O(D) at u € O(D). Note that formally Ay, (ut 0 dBy) = 37, hu, (ure;) o dBy =
S, Hi(uy) o dBL.

For f € C®(D), let a := df € T'(T*D). Setting m; := u; 'a(X}), we see by It6’s formula that

m

1
(2.19) dm; = gu;l(Da + Vza)(Xy)dt

where Ca = tr V2a denotes the so-called connection (or rough) Laplacian on 1-forms and = equality
modulo the differential of a local martingale.

Denote by Q:: T, D — Tx,D the solution, along the paths of X;, to the covariant ordinary
differential equation

.. .
DQ, = —§(R1cl‘§)ﬂQt dt, Qo =idr,p, t < 7p,
where D := uydu; ' and where by definition
(Ric¥)*v = Rich (-, v)f, v e T,D.

Thus, condition Ric}, > — Ky implies

K
(2.20) |Qv] < e 2! |, t<7p.



Finally, note that for any smooth function f on D, we have by the Weitzenbock formula:
d(A+2)f =d(—d*df + (df)2)
= ADAf +Vzdf +(V.Z,V])
= [0+ Vz)(df) = Ricp (-, V)
(2.21) = (O - Ric}, + Vz)(df)

where A denotes the Hodge-deRham Laplacian on 1-forms.
Now let (¢, A) € Eig(L), i.e. Lp = —A¢p, where L = A+ Z. For v € T, D, consider the process

ni(v) := (d9)(Qrv).
Then
nu(v) = (VO(X2), Q) = (u (V) (X0), u ' Qu).
Using (2.19), we see by 1t6’s formula and formula (2.21) that
dny(v) 2 1(0d6 + V246)(X,) Quv d + do(X,)(DQuw) dt = —m(v) .
It follows that
(2.22) M2y (v) = M2 (VH(XY), Qu), t < T,

is a martingale.

Lemma 2.1. Let (¢,\) € Eig(L). We keep the notation from above. Then, for any function
h € C1([0,00); R), the process

(2.23) Ni(v) := by M2 (Vo (Xy), Quv) — M2 (Xy) / t(thsv,usdB5>, t < 1p,
0

is a martingale. In particular, for fixed ¢t > 0 and h € C*([0,1];[0, 1]) monotone such that hg = 1
and h; = 0, we have

IVlloo < [Vllop o BLE > 7p} ePHEV)TH2

t 1/2
(2.24) + |6l M2 P{t < Tp}1/? (/ |h5|2eKVsds> :
0

Proof. Indeed, from (2.22) we deduce that

t
hy QAt/2 (Vo(X,), Q) — /0 hs eNs/2 (Vo(Xs),Qsv)ds, t < 1p,

is a martingale as well. By the formula

t
A2 B(X,) = p(Xo) + / /2 (V(X,), usdB,)
0

we see then that NV;(v) is a martingale. To check inequality (2.24), we deduce from the martingale
property of { Nsar, (U)}se[o,t] that

I¥6llo0 < 196000, B [Ltsrp €772 ey | [Qr |
1/2

t 2
+ ||¢Hooe)\t/2E [1{t<frp} sup (/ <hs styusdBS>>
0

lv[<1

The claim follows by using (2.20). O



To estimate the boundary norm [|V¢||,p ., we shall compare ¢(z) and
Y(t,x) :=PrpH >1t), t>0,
for small p,p(x) := dist(xz,0D). Let PP be the Dirichlet semigroup generated by %L. Then

w(ta 1‘) = F)tDlD(x)v

so that

(2.25) Ot z) = %Lw(t, ), >0,
Lemma 2.3. For any (¢,\) € Eig(L),

(2.26) IVéllop,co < lI8lloo }ggeMﬂ IV (t, )llop,co-

Proof. To prove (2.26), we fix x € 9D. For small € > 0, let 2° = exp,.(¢N), where N is the inward
unit normal vector field of OD. Since ¢|gp = 0 and (¢, -)|sp = 0, we have

(227) V()| = INo(@)] = lim PN g(e, @) =t T

e—0 IS

Let X; be the L-diffusion starting at x° and 7}, its first hitting time of 0D. Note that
N; = ¢(Xjppe ) XND2 1 >0,

is a martingale. Thus, for each fixed ¢ > 0, we can estimate as follows:

V()] = tim 122!

e—0 )

E[p(XF) Yjp<rsy] XtAD)/2
= lim
e—0 g

E[1y,-
< H(bHooe’\t/Q lim M
e—0 IS5

t. €
< ”(z)HOOe)\t/Q lim T/J( » L )
e—0 5

= [|0lloc ™ [Vt )l ().

Taking the infimum over ¢ gives the claim. O

We now work out an explicit estimate for ||V (¢, -)|lap,c0- Let cut(D) be the cut-locus of 0D,
which is a zero-volume closed subset of D such that p,, := dist(-,0D) is smooth in D \ cut(D).

Proposition 2.4. Let a € R such that

1
(2.28) §Lp3D <o

Then

2 L
IV, lop.eo < @+ v2 / C s
0



2 o 22t
(2.29) <a+\/\%e2 —|—min{]a’, O[\/Tr}’
and
\@ ﬁ 9
2.30 Vi(t, - oS ——=+a+ —a

Notice that by [10, Lemma 2.3] the condition £Lpgp < « holds for o defined by (2.6).

Proof. Let x € D and let X; solve SDE (2.17). As shown in [6], (pyp(X¢))i<rp, is a semimartingale
satisfying

1 t
(231) ol X0) = pap(@) + b+ 5 [ Loop(X)ds—lis ¢ <1,
0

where b; is a real-valued Brownian motion starting at 0, and I; a non-decreasing process which
increases only when X7 € cut(D). Setting ¢ = pyp(zr), we deduce from (2.31) together with

%Lpap < a, that

(2.32) pap(Xe(z)) <Y (e) =e+b+at, t<Tp.
Consequently, letting 7(e) be the first hitting time of 0 by Y,*(¢), we obtain
(2.33) P(t,x) <Pt < Te)).

On the other hand, since 1 (t, -) vanishes on the boundary and is positive in D, we have for all
y € 0D

oy YT)
(234) |V1/J(t,y)’ - xeB}g_}y PaD(SU)'

Hence, by (2.33), to prove the first inequality in (2.29) it is enough to establish that

2
P(t < T 2 fl—e "2
l0 € vt o V2ms3

It is well known that the (sub-probability) density f, . of T%(¢) is

_eexp (—(e+ as)?/(2s))
(2.36) faze(s) = Norrs ,

which can be obtained by the reflection principle for &« = 0 and the Girsanov transform for o # 0.
Thus

texp (— as)?/(2s
s o = [ SRCE ),

t o—a’s/2 £2
(2.37) = sexp(—aa)/ exp <_s) ds
0

27s3
2t/e? —1/r 2

= exp(—as)/ ¢ exp (— c T) dr,
0 rd 4

10




where we have made the change of variable r = 2s/c2. With the change of variable v = 1/r we
easily check that

(2.38) /OOO r32e7 YT dr = 0(1/2) = /7,

and this allows to write

0 —1/r 2t /e e—l/r ) o
2.39 P(t > T%¢)) = exp(—ae 1_/ e dr_/ 1—o—0®r/a) qp |
(239) P> T(e)) = exp(—ae) ( M1 el A= )

Ase — 0,

——dr = dr+o — +o(g),
/ = [ i) = ©)

and with change of variable s = %527"

2t/€2 e_l/r a2e2r t e 2s a?s
/ <]_—e 4 >dr:5/ <1—62>d8
0 3 0 V2ms3

_a®s

/tl_e —ds + o(e)
= ———ds+ofe
0 V2ms

by monotone convergence. Combining these with e™* =1 — ae 4 o(e), we deduce from (2.39) that

0(25'
2 1—67
LV2
\/H 0 27T8

w

(2.40) Pt>T%e))=1—c¢ +o(e)

which yields (2.35).
Next, an integration by parts yields

2
tl—e_% Oé2 t 1 o%u \/§ o2t
2.41 /ds:/ e_2du—<1—e_2>.
(241 ) Vot BT am by v Vi

With the change of variable s = ]a\ﬁ in the first term in the right we obtain

2 t |l 2
o 1 o2y 2t s“t
2.42 — | —=e 2 du——a\// e 2 ds
( ) \/271'/0 Vu o] ™ Jo

We arrive at

28 fle= \/> / : _2(;:;3 ds = \/\C -5t +a+ |05|\/>/a| 7ﬁ

|at] 52 $2
Bounding 4/ — / e~ 7 ds by \/— / Tt ds = 1, respectively bounding e by 1 in the

integral yield ( 229
V2 a2 2t /lal o2
a)=——e 2 +a+|al\/— e 2 ds
fla)= 2= ol |

The function
11




is smooth and an easy computation shows that

_ V2 1 — " _ V2t —%Qt
(2.44) 0= 2 FO =1 )= Yz
Using the fact that f(a) — « is even, we also get
o \/§ |a‘ \F _s%t \f \/7E 2
(245) f(Oé) == \/? + o+ 0 ﬁ d \/i o+ ﬁa .
which yields (2.30). O

Remark 2.2. One could use estimate (2.24) (optimizing the right-hand side with respect to t)
together with Lemma 2.3 (again optimizing with respect to t) to estimate ||V¢| . in terms of
|olloo- We prefer to combine the two steps.

Lemma 2.5. Assume RicY, > —Ky for some constant Ky € R. Let o be determined by (2.28).

(a) If « > 0, then for any (¢, \) € Eig(L),

me;g%f%”%( f%mm@ry)%w }wm

as well as

2 Vi 1—¢
< (M+Kt/2 = 2
Voo \%ggarg[gﬁ]e v elaty/ -+ Nor 3 16l o
2 1—¢
o <inf A+KD)t/2 9 a .
Vol inf max e v 5 aﬂ/m 1\ 6]l o

(b) If « <0, then
< (MK)t/2 _a2t
[Vélloo < inf max e \/ 2 11]oc-

IV6llso < inf max e KV {E 5} 161l

t>0¢e€[0,1]
Proof. For fixed t > 0 in (2.23), we take h € C*([0,1];]0,1]) such that hg = 1 and h; = 0. Then, by
the martingale property of { Nsarp (v)}se[o,1], We obtain

and

In particular,

[Vodl(2) = [No(v)| = [ENiar, ()]

t
(2.46) = |E [1{t>TD}e”D/2 hTD<V¢(XTD),QTDv>1{t<TD}eM/2¢(Xt)/O (hs st,usst)H-

Note that using (2.20) along with Lemma 2.3 we may estimate
E|1 A2 (V(X
{t>mp} € TD< ¢( TD)7 QTDU>

12



<E L) 772 | | IVl o 0 €5V /210l

N

E|
E [Lsrp) @72 hop| 6]l V(= 7D, lop 0 X712 KV 012 o]
= E [Lsrp) lrp | [9lloo IVt = 7, Ylop o0 €72 €57/ 2 )]

+
DN o E [Lppsrpy hrp | V(= 705 lop o 0] +

N

as well as

t t 1/2
E [1{t<TD}e)‘t/2¢(Xt)/ (hs st,usst>] < M| ¢llos P{t < Tp}/? (/ yhsyzeKVSds>
0 0

Taking
t —
he=—=. selod],
we obtain thus from (2.46)
eA+E)E/2
V@) € ——— 0l E [Lsmp) (¢ = 70) Ve = 70, ) llop 0]
1[0t —1\?
At/2 P{t < 2z~ - .
+ M ol Pl < 7} 5 (S
Note that N
eKVt -1 K+
— < teVh
Ky

(i) By (2.29), assuming that o > 0, we have on {t > 7p}:

C¥2S

t—7p t—1p V2i—1p t—T1p [FTTP1—e 2
IVt — 70, lopee < -T2 + Y2 g =tk
t ’ t Nz tJo V2rs3
2
V2 /tl—ea2s
at+—=+ | ———ds
vt 0o V2ms3
2 a2 22t
<a+\[6_2t+min{a, M}
vVt N

Thus, letting ¢ = P(t > 7p), we obtain

a2 2\/ p—
Vo(x)| < o(AHE)/2 6]l o [5 <a + \/ie; + min {a, a 2t}) + ! 6] .
™

NG ¢

(i) Still under the assumption a > 0, this time using estimate (2.30), we have on {t > 7p}:

V2 Vi
V2T

HV@/J(t —TD; ')HBD,OO <
w(t —7p)

and thus letting ¢ = P(t > 7p), we get

cOFE)/2 2 (t—7p)*?
V()] < 7%”%[@ Litsrp) ;M+a(t—TD)+Wa2

13



1 /eEvt —1\1/2
b2 gl Pl < rpy 2 (1
i\ Ky

+ 2 Vit 1—c¢
< MRV 1) [5 (,/m +at %(f) 3 ] .

(iii) In the case o < 0, we get from (2.29) in a similar way:

\/§ azt 1 — &
Vo(x)| < e()‘+K‘t)t/2 E——e 2 44— ;.
V(o) 9 2 s t
This concludes the proof of Lemma 2.5. O

Proposition 2.3. We keep the assumptions of Lemma 2.5.
(a) If o > 0, then for any (¢, \) € Eig(L),

200+ K7) 2 50,2
[Vd|loo < Ve max (e [ a+ vV exp (_a+) + min <|a|, \[O‘)
el VT 20+ K7) A+ Ky

Ve \/<A+K¢>} 161l

as well as

200+ K7) 2
IV]loo < Ve max { e [ a+ L e +VT—e O+ ED) 3 14l
=€[0.1 v om(A+ K7)

and

2N+ K
[Volloo < fmax £ 2oz+M +VI—e A+ KY) ¢ 9l

€[0,1] NS
(b) If @ <0, then

20+ K77) 2
IV6lloe < ve max { e 4 p( o
S

= ——— 1-— M+ K&
[0,1] VT o 2)\+K‘J;)>+\/75 A+ K7) ¢ [[0llo

Proof. Take t = 1/(A+ K;}) in Lemma 2.5. O
We are now ready to complete the proof of Theorem 2.2.

Proof of Theorem 2.2. The claims of Theorem 2.2 (with the exception of estimate (2.15)) follow
directly from the inequalities in Proposition 2.3 together with the fact that for any A, B > 0,

BQ
(2.47) srg[%)l(] {€A+ \/1 — EB} B]I{B>2A} + <A+ 4A> ]I{ngA}. D

Finally, to check (2.15) we may go back to (2.24) from where we have
n t 1/2
IVl < XV V) gp o + VI =€/ [0 </ |hs|26Kvst> '

0

14



Taking
evat _ evas

hs = T Kvi_g o ® € [0,1],

we obtain

t>0e€[0,1] 1 — e Kvt

K 1/2
V6o < inf max {5e<A+Kv>*t/2 980l + Il 2VT=E (120 ) } |

Noting that
Ky K& 1 gt
V< 1% <t LKVt
1—efv 1— e—Kvt

and taking ¢t = (K;> + A)~! we obtain

V6l < V& mae {elIVillope + /(1= DN+ 57) 6]}

Applying Lemma 2.3 and Proposition 2.4 with t = 1/)\, we arrive at

me_% + || A a2\/§> + \/e(l —e)(A+ K‘Jfr)} )

Vol < 0o +
IVl < 91 mx]{<a 2 o

The proof is then finished as above with observation (2.47). O

3 Proof of Theorem 1.2

As in Section 2, we consider L = A + VV and let Eigy (L) be the set of corresponding non-
trivial eigenpairs for the Neumann problem of L. We also allow 9D = @, then we consider the
eigenproblem without boundary. We first consider the convex case, then extend to the general
situation. In this section, P; denotes the (Neumann if 0D # &) semigroup generated by L/2 on
D. Let Xy be the corresponding (reflecting) diffusion process which solves the SDE

1
(31) dX; = us odB; + EVV(Xt) dt + N(Xt) dty,
where B; is a d-dimensional Euclidean Brownian motion, u; the horizontal lift of X; onto the
orthonormal frame bundle, and ¢; the local time of X; on 0D.

We will apply the following Bismut type formula for the Neumann semigroup P, see [15,
Theorem 3.2.1], where the multiplicative functional process ()5 was introduced in [4].

Theorem 3.1 ([15]). Let Ric}, > —Kyv and Iypp > —0 for some Ky € C(D) and § € C(D). Then
there exists a R? @ R-valued adapted continuous process Qs with

t t
(3.2) Q] < exp (;/ KV(XS)der/ 5(Xs)d€s>, s> 0,
0 0

such that for any t > 0 and h € C*([0,t]) with h(0) = 0, h(t) = 1, there holds

(33) vr—E[fx) [ WeQan]. semb)

15



3.1 The case with convex or empty boundary

In this part we assume that 0D is either convex or empty. When 9D is empty, D is a Riemannian
manifold without boundary and Eigy (L) denotes the set of eigenpairs for the eigenproblem without
boundary. In this case, if RicV > Ky for some constant Ky € R, then A + Ky > 0 for (p,\) €
Eign (L), see for instance [8].

Theorem 3.2. Assume that 0D is either convex or empty.

(1) If the curvature-dimension condition (2.1) holds, then for any (¢, \) € Eigy (L),

>\2H¢||go< A )*/K> X113
n(A+ K)\\+ K ~ ne(A\+ Kt)’

IVlI3, >

(2) IfRicY > —Ky for some constant Ky € R, then for any (¢, \) € Eigy(L),

IVeIlZ _ 20\ + Kv) (1 N ﬁ)A/Kv 20+ KY)

el = A h m

Proof. (a) We start establishing the lower bound estimate. By Ito’s formula, for any (¢, \) €
Eign (L) we have

(3.4) d|Vo|?(X;) = %L|V¢]2(Xt) dt +2T5p(Vo, Vo) (Xy) dly +dM;, t >0,

where /4 is the local time of X; at 9D, which is an increasing process. Since Igp > 0, and since
(2.1) and L¢ = —\¢ imply

SLIVO > ~(K 4 NIVe? + g,
we obtain
dVe2(X,) = (A:qs? (A K)|V¢]2>(Xt) dt +dM,, > 0.
Noting that for Xo = « € D we have
E[¢(X:)?] > (E[p(X,)])* = e o (x)?,

we arrive at

2 t
O Vg, > O ETOR (X)) > T [ MO BlgR(x,) ds
n Jo
)\2 t K 9 AQ(eKt — 1) 2
> = ) =k @
" ) e o(x)”ds e ()

Multiplying by e~ A5t choosing ¢ = +log(1 + %) (noting that A+ K > 0, in case A+ K =0
taking ¢ — 00), and taking the supremum over x € D, we finish the proof of (1).
(b) Let D be convex and Ric¥ > —Ky for some constant Ky . Then Theorem 3.1 holds for

0 =0, so that
t 1/2 t 1/2
oy = (E/ |h'(s)\2||Qs||2ds) < (/ |h’(s)\zeKV5ds> .
0 0
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Taking

fo e Kvr qr
h(S) - ﬁ
fo e fvrdr
we obtain X »
14
o< (o)
Therefore,
t /
VP flloo < [[fllc E ; R (s)QsdBs
2 © S2
3.5) < ||f||oo/ s exp <—> ds
( V2m oy Jo 207
o1V/2
= [ flloo if , >0, f€B(D).

Applying this to (¢, \) € Eigy (L), we obtain

- V2 _ 2K 1/2
99 < [0l < N0l i aerrry) o 0

Consequently, A + Ky > 0. Taking t = log( + Ev =¢) as above, we arrive at

2 N K
Vol < 2(\ + Kv) <1+ﬁ> /Ky
[o11% ™ A

3.2 The non-convex case

When 0D is non-convex, a conformal change of metric may be performed to make M convex
under the new metric; this strategy has been used in [2, 12, 13, 14] for the study of functional
inequalities on non-convex manifolds. According to [15, Theorem 1.2.5], for a strictly positive
function f € C*°(D) with Iyp +Nlog flop = 0, the boundary dD is convex under the metric
f72(.,-). For simplicity, we will assume that f > 1. Hence, we take as class of reference functions

P = {f€C2([?): inf f =1, Ipp +Nlog f > 0}.

Assume (2.1) and Ricg > — Ky for some constants n > d and K, Ky € R. For any f € ¥ and
€ (0,1), define

4e|V log f|?
ce(f) = sup{e‘loiﬂ+EK+(1—€)KV—2L10gf}.
I _

We let /\le be the smallest non-trivial Neumann eigenvalue of —L. The following result implies
AL 2> _Cs(f)-
Theorem 3.3. Let f € 9.

(1) If (2.1) and Ric), > —Ky hold for some constants n > d and K,Ky € R. Then for any
non-trivial (¢, \) € Eign (L), we have A+ c-(f) >0 and

1131V 113 eN? A \MelD) eN?
M > sup ( ) = sup — AT
16115 ec(o,)) A + () \A + ee(f) ec(o,)) "e(A + ¢ (f)F)

17



(2) Let RicY, > —Ky for some Ky € C(D), and

K(f) :s%p {2|Vlog f|* + Kv — Llog f} .

Then for any non-trivial (¢, \) € Eign (L), we have A+ K(f) > 0 and

VOl 200+ K(f) . K(DNVED _ 2e(r+ K()*)
BRIfT S . () s

Proof. Let f € 2 and (¢, \) € Eign(L).
(1) On 0D we have

N(f*IVo[*) = (Nf?)|Ve[* + f*N|Ve|?
= f2((Nlog f3)|Ve|* + 21yp(V¢, Vo))
(3.6) =2f?((Nlog /)|Ve|* + Iop(Ve, Vo)) = 0.

Next, by the Bochner-Weitzenbdck formula, using that Ric% > —Ky and L¢ = —)\¢, we observe
1 1
SLIVOP = SLIVG[? = (VL6, Vo) = AV
> [[Hess s — (Kv + 1)Vl

Combining this with (2.5), for any ¢ € (0, 1), we obtain

2
S LIVOP + (V2 VIVel)

)\2
> — 2K + (1 - ©)Ky + NIVof + - f2g?
+ (1= &) [ Hessy 5 — 2([Hessll s x V£7] x [V
N {IVlogf“

)\2
> T +5K+(15)KV+>\} f2\V¢l2+%f2¢2.

Combining this with (3.6) and applying It&’s formula, we obtain
2 2 R 2 2 2
d(fIVeIT)(Xe) = S LIfFIVOP)(Xe) dt + N(f7[V[7) (X) dby
1
> =5 (FLIVOP +2(VF2 VIVSP) + VP LF?) () dt

> {E:;Qf%? — <|Vio§f|2 +eK+(1—e)Ky + A — szf2> f2|V¢’2} (X¢)dt

2% 2 2 2
> (2502 (v ) PITR) (.
Hence, for Xg =z € D,
1712 9612, e o=t > B |08 12|96[2) (X,)|

N 1 e ())s 2
> — [ T EVISE[G(X,) ] ds
n Jo
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2t
> 0 [ e rg(a)as
n-Jo
eX2(ec= (Nt — 1
= 2 e,
nee(f)
This implies A 4+ ¢.(f) > 0 and

2 2 A2 (e M _ o—(\es(£)t
IFIEIVOIE, o X (e )
16115 >0 nee(f)
_ eN? ( A )A/Cs(f) N eN?
n(A+ce(f)) \A+c=(f) - ne(A +ce(f)*)
(2) The claim could be derived from [2, inequality (2.12)]. For the sake of completeness we
include a sketch of the proof. For any p > 1, let

Kp(f) = sup {Ky +p|Vieg f|* — Llog f} .

Note that p|Vlog f|> — Llog f = p~!fPLf~P. Since f € & implies Ipp > —N log f, we have

t t
102 < exp ( / Ky (X,)ds +2 / Nlog f@@)d@)
0 0
t
0

< exp (Kp(f)1) exp (—; | as 2 /0 ' Nlog f(X.) ng> .

AFP(X) = LLf (X0 i+ N P(X) diy

106 (~ PG 4 pN Tog £ 06 ).
we obtain that
1 t t
M, = fP(X,) exp (— / PPX)LLP(X,) ds + p / Nlog f<X8>ows>
2 Jo 0

is a (local) martingale. Proceeding as in the proof of [15, Corollary 3.2.8] or [2, Theorem 2.4], we
get

1 t t
LE |exp| —= PIXHLfP(Xs)d N1 X5)dls
12 [oxo (=5 [ recozsroeyas+p [ Viog x|

<e[rr0en (-3 [ PO s [ Mo x)ae)]
=[P(x) <L
since f > 1 by assumption. This shows that
1Qul* < S DT FIIE,, -t > 0.

Combining this for p = 2 with Theorem 3.1 and denoting K (f) = Ka(f), we obtain

t t
o =E /0 W ()P1Qul ds < |1 FI% /0 1 (s) 2K D5 s,

Therefore, repeating step (b) in the proof of Theorem 3.2 with K(f) replacing Ky, we finish the
proof of (2). O
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