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Abstract

By methods of stochastic analysis on Riemannian manifolds, we derive explicit
constants ¢1(D) and (D) for a d-dimensional compact Riemannian manifold D with
boundary such that

cl(D)VAdlloo < [Volloo < c2(D)VA]l0o

holds for any Dirichlet eigenfunction ¢ of —A with eigenvalue A. In particular, when
D is convex with nonnegative Ricci curvature, this estimate holds for

(D) =+, y(D) = Vo + e\}f
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1 Introduction

Let D be a d-dimensional compact Riemannian manifold with boundary 0D. We write
(¢, A) € Eig(A) if ¢ is a Dirichlet eigenfunction of —A in D with eigenvalue A > 0. According
to [6], there exist two constants ¢;(D), ca(D) > 0 such that

(1.1) ct(DIVA[Blloe < Voo < c2(D)VA[ ooy (6, X) € Eig(A).

In this paper, by using stochastic analysis of the Brownian motion on D, we present
explicit expressions of these two constants in terms of the lower bounds of Ricp and Iyp
where Ricp is the Ricci curvature on D and Iyp the second fundamental form of 9D.

Theorem 1.1. Let K,0 > 0 be two constants such that
RiCD 2 —K, ]IBD 2 —0.

Let

((d—1)0+/(d - 1)K).

Then, for any nontrivial (¢, \) € Eig(A),

A _ Vel _ V2) ag
o S ol SVt +e<o‘°+f+ m)

N —

In particular, when Ricp, Iogp = 0,

VA _ IVelle _ ev2 .
(1.2) \/_< ol < f(\f+ \/‘)’ (¢, \) € Eig(A).

Proof. This result follows from Theorem 2.1 and Theorem 3.1 below for the special case
V = 0. In this case, Ric), = Ricp = —K is equivalent to (2.1) with n = d. O

Remark 1.1. Various other estimates can be obtained from our method. For instance, let
a € R be such that %ApaD < «a outside the focal set, where p,,, denotes the distance to
boundary dD. Then for A < a?/4,

Vol _
ol

This relies on Remark 3.1 where another estimate of the right hand side of (3.13) is given.
It improves the estimate in Theorem 1.1 in the case when a < 0 and |«a| is large. See
Theorem 3.5 below for case that £ =0 and 6 < 0.

By (1.2), when D is convex with nonnegative Ricci curvature, (1.1) holds with

V2
=

‘ Q

>

2.2 2 2
(A—i—K)—I—e(Zmax(a 0) RNy P )

(1.3) =5

Cl(D) = CQ(D) = \/6+

1
Ve’



To estimate ¢1(D) and c2(D) for positive K or 6, let A\; > 0 be the first Dirichlet eigenvalue
of =A on D. Then Theorem 1.1 implies that the inequalities (1.1) hold for

iy
' Ve + K)

(D) = e\ + K) +e((d—1)0+«/K(d—1) +Q+ ((d—1)9+\/K(d—1))2)
’ VA 2v A1 VT A\v2r '

This is due to the fact that the first expression is an increasing function of A and the second
one is a decreasing function of A. Since there exist explicit lower bound estimates on )\,
(see [8] and references within), this gives explicit lower bounds of ¢;(D) and upper bounds
of co(D).

The lower bound estimate of ||V || will be derived by using It6’s formula for |V¢|?(X;)
where X; is a Brownian motion (with drift) on D, see Section 2 for details. A powerful
probabilistic tool for establishing upper bound gradient estimates is the use of Bismut type
formulas for the Dirichlet semigroup PP on D, which gives

VAPl < D, 150, feB(D)
Pap
where pyp, is the Riemannian distance to 0D and ¢(t) an explicit quantity depending on the
geometry of D, see [7] for details. However, as this estimate blows up at the boundary 0D, it
does not give the wanted upper bound estimate of ||V || near the boundary. To achieve the
goal of a uniform upper bound on D, we will construct some martingales to reduce ||V¢|
t0 [V op oo 1= SuPsp | V4|, and to estimate the latter using ||¢||«o, see Section 3 for details.
In general, we will consider Dirichlet eigenfunctions for the symmetric operator L :=
A +VV on D where V € C?(D). We denote by Eig(L) the set of pairs (¢, \) where ¢ is a
Dirichlet eigenfunction of —L on D with eigenvalue .

2 Lower bound estimate

In this Section we will estimate ||V¢||« from below using the following Bakry-Emery curva-
ture-dimension condition:

21) Lot - wL v = kvt R e o),

where K € R, n > d are two constants. When V' = 0, this condition with n = d is equivalent
to Ricp > — K.

Theorem 2.1 (Lower bound estimate). Assume that (2.1) holds. Then

2 2 A2 (et 1) .
22) IVl > 6l sup "2 e (6 € Bis(L)
Consequently, for Kt := max{0, K} there holds
/\2
2.3 (A 2 A) € Eig(L).
(2. IVOIE > —2re 0l (6.3 € Big(L)



Proof. Let X, be the diffusion process generated by %L in D, and let
Tp :=inf{t > 0: X, € 9D}.

By 1to’s formula, we have

1
(2.4) d|Vo[*(X,) = §L|V¢|2(Xt) dt + dM,;, t < 7p,
for some martingale M;. By the curvature dimension condition (2.1) and Lé = —A¢, we
obtain

1 1 )\2
SLIVEI* = SLIVOP — (VL Vo) — AVo|* > —(K + X)[Vo[* + o
Therefore, (2.4) gives

)\2
dIVo]*(Xy) > <Z¢2 — (K + )\)|V¢|2>(Xt) dt + dM,, t < 7p.
Hence, for any t > 0,
(KNt Vo2 > E[’V¢’2(Xt/\TD)e(K+)\)(tATD):|

)\2 tATD
> F { / N34 X )2 ds]
n 0

)\2 t
=—FE { / 1{S<TD}e(K“)S¢(XS)2d3] :
0

n

Since ¢|ap = 0 and Lo = —A¢, by Jensen’s inequality we have

E [1eerp}0(X0)?] = (Blp(Xonmp)])” = e ¥ o(2)?,

where x = X, € D is the starting point of X;. Then, by taking = such that ¢(z)? = ||6[|%,,
we arrive at

)\2 t

+ S . —AS

e(KJr)\) t HV¢H20 > ?/ e(KJr)\) e ¢($)2 ds
0

)\2||¢H2 ! K )‘Z(em —1) 2
_ 0 Sds = .

This completes the proof of (2.2).
Since (2.1) holds for K replacing K, we may and do assume that K > 0. By taking
t = = in (2.2), we obtain

MK
s G VY S S
>~ nKe 7 ne(A+ K) T
Hence (2.3) holds. O



3 Upper bound estimate

Let Ric), = Ricp — Hessy.

Theorem 3.1 (Upper bound estimate). Let Ky, Ko,0 > 0 be constants such that
Ric}, > —Ky, Ricp > —Ky, Isp > —0.

Let

(3.1) o= % (4= 10+ Vi~ DKo+ [VV ).

Then, for any (¢, \) € Eig(L),

V2 o?
\rV¢\|oo<|1¢>|yoo{ €(>\+Kv)+e<a+7+a/\m>}.

To prove this result, we first estimate ||[V¢||o in terms of [[¢[| and [[V¢||,p o, where
1 fllop.co = [[Top flleo for a function f on D.

Lemma 3.2. Assume Ric), > —Ky for some constant Ky € R. Then, for any (¢,)\) €
Eig(L),

O+t N Ky 1/2
(3.2) Vol <& 2 [Vellop o + 0l e® (=) t>0.
Consequently,
(3.3) V6]l < €2 (nwnaD,w A K ||¢>||oo), (6,A) € Eig(L).

Proof. We first recall some facts concerning the diffusion process generated by %L, see for
instance [1, 3]. For any = € D, the diffusion X} solves the SDE

1
3.4 dXt =-VV Xt dt + U 0 dBt, X() =, t < TD,
2

where B; is a d-dimensional Brownian motion, u; is the horizontal lift of X; onto the ortho-
normal frame bundle O(D) with initial value uy € O,(D), and

p:=inf{t > 0: X, € 9D}

is the hitting time of X; to the boundary 0D. Setting Z := VV| we have

d
1 .

i=1
where Z*(u) := hy(Zx()) and H;(u) := hy(ue;) are defined by means of the horizontal lift

hy: TewyD — T,,0(D) at u € O(D). Note that formally h,, (u;0dB;) = >, hy, (ue;) odB] =
S Hi(ug) o dB.



For f € C*®(D), let a := df € I'(T*D). Setting m; := u; 'a(X,), we see by Itd’s formula
that

m 1
(3.6) dm; = U "(Oa + Vza)(X;)dt

where (a = tr V2a denotes the so-called connection (or rough) Laplacian on 1-forms and =
equality modulo the differential of a local martingale.

Denote by Q;: T,,D — T, D the solution, along the paths of X, to the covariant ordinary
differential equation

1 . .
DQy = —5(Ricp'Qidt, Qo =idr,p, t < 7p,

where D := u,du; ! and where by definition
(Ricp)* = Rich(+,v)*, v € T,D.
Thus, condition Ricg > — Ky implies
(3.7) Q| <eF o], t<
Finally, note that for any smooth function f on D, we have by the Weitzenbock formula:
d(A+2)f=d(—ddf + (df)2)
= AWdf +Vzdf +(V.Z,Vf)

= (O+ V2)(df) = Ricp(-, Vf)
(3.8) = (O - Ric), + Vz)(df)
where A denotes the Hodge-deRham Laplacian on 1-forms.

Now let (¢, \) € Eig(L), i.e. Ly = —A¢p, where L = A+ Z. For v € T, D, consider the
process

ni(v) == (d¢)(Qw).
Then
n(v) = (Vo(X,), Q) = (u; ' (Vo) (X), u; ' Q).

Using (3.6), we see by It6’s formula and formula (3.8) that
m 1 A
dn(v) = §(Dd¢ + Vzd¢)(Xi) Qv dt + do(X,)(DQuv) dt = —57%(“) dt.

It follows that
e/\t/Q nt(v) = eAt/Q <V¢(Xt)v Qtv>7 t < D,

is a martingale, and consequently, for any function h € C''([0, 00); R),

B, M/ (Vo(X,), Quo) — /t o, s/2 (Vo(Xs), Qsv)ds, t < 1p,
0

6



is a martingale as well. By the formula

P OX) = 90 + [ V), B
0

we see then that
t
Ni(v) = by M (V) (X)), Q) — M ¢(X,) / (hsQsv,usdBy), t < Tp,
0

is a martingale.
Now, for fixed t > 0, we take h € C''([0,1]; [0, 1]) such that hy = 1 and h; = 0. Then, by
the martingale property of {Nyar, (v)}scpo,g We obtain

19.61(2) = INo(®)] = [ENjry ()
_ )E [1{%} AL ey (V6o Qi) — Loy 70(X0) [ (s Qe usst>] ' .
0

This together with (3.7) yields

1/2

t
‘V¢(x)‘ < e(A+Kv)+t/2 HV¢H8D,OO + /2 H¢HOO</ (hs)QeKVs ds)
0

Taking
hy = e:_v; e_ll(v s e 0,1,
we obtain (3.2). Finally, noting that
+
1 —[zVKvt ! —IZYKW ST,
and taking t = (K;; + A\)~! in (3.2), we prove (3.3). O

To estimate the term [|V¢||,p o, We shall compare ¢(z) and
Y(t,z) =P(tf >t), t>0,

for small p,p(z) := dist(z,0D). Let PP be the Dirichlet semigroup generated by £ L. Then
Y(t, ) = PP1p(z), so that

(3.9) ub(t, z) — %Lw(t, Nz), >0,
Lemma 3.3. For any (¢, \) € Eig(L),

(3.10) IVllon o < 19l inf e [V (t, )llop co-



Proof. To prove (3.10), we fix x € dD. For small € > 0, let ° = exp,(¢N), where N is the
inward unit normal vector field of dD. Since ¢|sp = 0 and (¢, -)|op = 0, we have

B1) (Vo) = V6] = lim PN o) ) = i PO

e—0 £

Let X; be the L-diffusion starting at x° and 775, its first hitting time of D. Note that
Ny = 6(XG, e ) D2, 130,

is a martingale. Thus, for each fixed ¢t > 0, we can estimate as follows:

V()| = tim 12

e—0 g

i ‘E[QS(th) Lii<rey] e)‘(“\%)ﬁ‘
= lim

e—0 g
E[l{i<rs)]

€

P(t, 2°)

€

= [|glloc /2 [V (2, -) ().

Taking the infimum over ¢ gives the claim. O]

< [[¢lloc /2 lim
e—0

< 6]l /2 lim
e—0

We now estimate || Vi)(¢, - )|| - Let cut(D) be the cut-locus of D, which is a zero-volume
closed subset of D such that p,p, := dist(-,dD) is smooth in D \ cut(D).

Proposition 3.4. Let o € R be such that
1

(3.12) §L/)8D<35) <a, x€D)\cut(D).
Then
V2 /t 1— e’aT%
Vi(t, - wSa+ —=+ ——ds
(313) || 1/1( )||8D, Tt 0 \/ﬁ

Proof. Let x € D and let X; solve SDE (3.4). As shown in [5], (pgp(X¢))e<r
martingale satisfying

5 1s a semi-

1 t
(3.14) Pop(Xi) = pap(x) + by + 5/0 Lpgp(Xs)ds — 1, t < 7p,

where b; is a real-valued Brownian motion starting at 0, and [; a non-decreasing process
which increases only when X7 € cut(D). Hence, setting ¢ = pyp,(x), we deduce from (3.12)
and (3.14) that

(3.15) pop(Xe(2)) <Y (e) :=e+ b +at, t<7p.

8



Consequently, letting 7%(¢) be the first hitting time of 0 by Y,*(¢), we obtain
(3.16) Y(t,x) <Pt < Te)).

On the other hand, since 9 (t, -) vanishes on the boundary and is positive in D, we have for
all y € 0D

(3.17) Yoty = lim LY

ze€D, z—y 108D (m) '

Hence, by (3.16), to prove the first inequality in (3.13) it is enough to establish that

P(t < T V2 [t — e
t<T*® —e 2
(3.18) lim sup ﬂ <a+— —i— .

0 € AU 0oV Vors

It is well known that the (sub-probability) density f,. of T%(¢) is

gexp <—_(6—2:as)2 )
V2ms3

which can be obtained by the reflection principle for & = 0 and the Girsanov transform for
a € R. Thus

(3.19) Jaels) =

t ex <_(E+as)2>
/ p 2s d
Pt>T%e)) =c¢ s
( (€) i Tﬂsg

(3.20)

&2
= cexp(— exp | ——
()

2t/s efl/r a?e?
=exp(—ae exp dr,
(~ae) o Vmrd ( 4 )

where we have made the change of variable r = 2s/e2. With the change of variable v = 1/r
we easily check that

(3.21) /OO r32e7 YT dr = T(1/2) = V7,

and this allows to write

0o o—1/r 2t/e* —1/r —a2:2,
(3.22) P(t > T%(¢)) = exp(—ae) (1 —/ ¢ @ —/ ¢ (1 e ) dr) .
2 0

t/52 Tr

w

ﬁ
=<
w

Ase — 0,

fl/r oo 8\/5
dr = dr +o(e —— 4 o(e),
/Qt/22 2t/e? \/_ ( ) \/Z ( )

Ne}



and with change of variable s = %5%

2t/€2 e_l/r a2€ r
1—e 1 dr =¢ / < ) ds
0 vrs ( V2ms3
2

t

:50 _ds—l—()

by monotone convergence. Combining these with e = 1 — ae + o(¢), we deduce from
(3.22) that

2
\/§ t1—e %

3.23 Pt >T" =l—-¢la+— + o(e
323 (t> 1) ( St [ e ds) o)
which yields (3.18).

Obviously, the inequality 1 — e~
t1—e % b2 d a2\t
s = )

V Vs 0 2V2ms V2T

Moreover, we we will show that

< s for s > 0 implies

(3.24)

0425

b1 —e 2d ‘O"‘[ d o,
3.25 s = | / / _2 s < o
(3:25) ) Vs e Tlelmm

which then together with (3.24) gives the second inequality in (3.13).
Thus, to finish the proof, it remains to establish (3.25). Indeed, noting that

9 [l gopoo
—/ (/ e’ /2d3> dr = |af,
7t 0

we see that (3.25) is equivalent to

2

Two changes of variables give

[2 [leVi/ o, a2 [t 1 ( LN RS )
—s2/2 . _

— e ds | dr = — —e 2 du.

7Tt/o (/o ) 221t Jo Vu \Jo Vv

A first integration by parts choosing 2(y/u — /) as primitive of 1//u yields

Nﬁ/ ( \F;Ud”)d“:%/{f%eaz du — \/—/ e du
(1)

_L ot
e 2 du-— 1—e 2

=l 7 we

a23

t 1 %2
A second integration by parts shows that the right hand side is equal to -z ds.
o V2ms3
Therefore, (3.26) holds and hence (3.25) as well. O

10



Remark 3.1. We proved that

V2 1 —e” ajs
Vi(t, - o L+ ——=+
(3.27) = 2max(0, ) + —/ < e/ ds) dr
mt || v/t r

where the last equality follows from (3.25) and the observation that [ [* e~/ dsdr = 1.
This implies that for all @ > 1

/2 "2 (0 00 Y
||V¢( )H@Doo Qmax O Cl/ —e za / ( 1) (/ o <4a 1) ds) dr
‘0‘|\/ r
/2 r?(a—1) ®© 2(-1)
Qmax 0, a _e W § 4 (/ e da ds) dr
0
ta2
— e’ﬁ.
a—1 \/ t

2

—4

20’ 2m a2
IV (¢, llopco < 2max(0, ) + - Z \/%e‘Tt

e‘a
4\

Combined with the Lemmas 3.2 and 3.3, this gives estimate (1.3) of Remark 1.1.

Finally, to estimate the constant « in (3.12), we shall use the Laplacian comparison
theorem to bound Ap,p, from above. See [4, 9] for the corresponding lower bound estimate.

< 2max(0, o) +

In the case when 4 < ta?, taking a = o yields
Q

and in particular

IVY(L/A, )llop,co < 2max(0, ) + 2The 2%,

Theorem 3.5. Let 0,k € R be such that Iygp > —6 and Ricp > —(d — 1)k. Fort >0 let

cos(v—kt) + \/ij sin(v—kt), ifk <0,
ht) =41+ 6t if k=0,
cosh(vVkt) + \% sinh(VE ), if k> 0.

Let h='(0) be the first zero of h (where h='(0) := oo if h(t) > 0 for allt > 0). Then for any
z € D\ cut(D) such that pyp(z) < h™*(0), there holds

/

(3.28) Bpap(a) < (d = 1) (pop ().
In particular, if 0,k > 0 we have
(3.29) Apop(r) < (d—1)(0+VE), x€ D\ cut(D).

11



Proof. The proof of (3.28) is adapted from [10, Theorem 1.2.2] where the corresponding
Hessian upper bound is presented. For fixed z € D \ cut(D), let p be the orthogonal
projection of x on dM, which is the unique point on 9D such that dist(z,p) = p 1= pyp ().
Then

V(s) == exp,(sN), s€0,p],
is the minimal geodesic in D linking p and z. Let Xy(0) = N(p), and {X;(0)}1<icqa—1 be an
orthonormal basis of T,0D. For 0 <@ < d—1, let

Xi(5) = /fpsrn Xi(0), 5 € [0, ),

be the parallel transport of X;(0) along the geodesic v. Moreover, for any 1 < i < d— 1, let
{Ji(s)}sepo,p be the Jacobi field along vy such that J(p) = X;(p) and

(J:(0),U) = —Top(J;(0),U), U € T,dD.

By the second variational formula (see e.g. page 321 in [2]), we have

d—1
Bpap() = 3 Hessy,, (X5, X0)(pp()
= =S Tp((0), Ji(0))
d:l Pop (%) .

(3.30) + Z/O <|Ji(3)|2 — (R(Xo(s), Ji(s)) Xo(s), Ji(s))> ds
where R is the curvature tensor. Define

Ji(s) = A (s s T { —

JZ( ) h(ﬁaD(x)) Xl( )7 € [07:08D( )]7 0 < g d L.
Then J;(pyp(2)) = Ji(pyp(x)) = X, and by Iop > —6,

* - 0 - - )
(Ji(0), Ji(0)) = W(pap (@) > —Iop(Ji(0), Ji(0)), 1<i<d-1

Hence, by the index lemma (see the first displayed formula on page 322 in [2]), and using
the lower bound conditions on Iyp and Ricp, we deduce from (3.30) that

Apyp(r) < — ZHaD(Jl(o), 7.(0))
a1 Pop(®) , . 3 )
£ X[ (M - (RO T Xa(s) A0 ds
1 PaD(ff) , 5 . ) N ) ) )
< —h(PaD(x))Q(_ (tr]IaD)(p)-l-/O K (s)? — h(s)? Ric(Xo(s), Xo(s)) } d )
d—1 Pap () o ) )
<W(—9+/0 {h(s) + kh(s) }d)

!/

= (=) (),

12



where in the last step we used the facts that (hh')(0) = 6 and h” = kh, and the latter implies
(W)? + kh* = (hh') — hh" + kh* = (hK')".
Thus (3.28) holds. When 6,k > 0, we have h~'(0) = oo and

R (t)  Vksinh(vVkt) + 6 cosh(Vkt)

h(t) cosh(Vkt) + \% sinh(v/kt)
Vk cosh(Vkt) + 0 cosh(Vkt) B
S cosh(v/kt) =Vk+e

Then (3.29) follows from (3.28). O

We are now ready to prove Theorem 3.1.
Proof of Theorem 3.1. By Theorem 3.5 with k = 22 condition (3.12) holds for a as given
in (3.1). Applying Lemmas 3.2, 3.3 and Proposition 3.4 with t = s = %

IV6llee < 2 (VAF K 16100 + [98llo, )
2

< ||¢||W{M+e(a+%+m =)

The result follows by substitution. O]

, we obtain
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