
HAL Id: hal-01625856
https://hal.science/hal-01625856

Submitted on 29 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MUST : Mutable State Transfer
Kévin Rauscher, Sylvain Cherrier, Thomas Pape, Yacine Ghamri-Doudane

To cite this version:
Kévin Rauscher, Sylvain Cherrier, Thomas Pape, Yacine Ghamri-Doudane. MUST : Mutable State
Transfer. IEEE Global Information Infrastructure and Networking Symposium (GIIS), Oct 2017,
Saint Pierre, Réunion. �hal-01625856�

https://hal.science/hal-01625856
https://hal.archives-ouvertes.fr


MUST : Mutable State Transfer

Kévin Rauscher∗, Sylvain Cherrier∗, Thomas Pape∗, Yacine M. Ghamri-Doudane†
∗ Université Paris-Est , Laboratoire d’Informatique Gaspard Monge (CNRS : UMR8049)

† L3i Lab, University of La Rochelle, La Rochelle, France.

Abstract—In new internet applications, up-to-date informa-
tion is vital. Users ask for a constant flow of information.
New technologies offer a myriad of data sources but these
information rapidly become obsolete. Social networks and
Internet of Thing, whose importance never stopped growing
in the past decade, are excellent examples of applications
where up-to-date data is both key and volatile. Sensors can
change values in a mater of seconds. With the WebSocket
protocol, W3C is offering a solution for real-time applications
for developers. However the protocol itself relies on the use of
sub-protocols to function, most of which are message oriented.
MUST is a full-duplex and object or state oriented sub-
protocol. Its similarities with HTTP makes it familiar and easy
to use for web development. And it is aimed to be object-
oriented architecture friendly.

Keywords-Resource Oriented Protocols; Asynchronous Mes-
saging; Full Duplex Communication

I. INTRODUCTION

With its spread, the Internet has evolved to be more and
more dynamic and social thus creating an increasing amount
of content alteration sources, be it user inputs, sensors values
evolutions or any other connected media. Any response
being sent over the internet representing an instant result
of a time and situation related computation, its validity is
ephemeral. This tends to make information more and more
volatile. Data might be rendered obsolete only a few instants
after being sent. In a system where instantaneous and up-to-
date are keys, it begs the question of how to conciliate the
ever-moving nature of information and user’s or system’s
eagerness for up-to-date content.

Around 2007, what is now called the Web 2.0 by some,
whether true revolution or pure marketing, have been created
to tackle some of these new problems. These solutions aimed
to handle some form of user interactivity, elevating interfaces
from pure snapshot to more dynamic systems. However,
these technologies mostly focus on a more local scope,
allowing data to evolve between interactions with servers.
Thus the question of data obsolescence remains so long as
you consider it as coming from a more global perspective.

Data alterations considered in this article are not local,
thus knowledge of these modifications is only available on
the server side. HTTP based solutions meet difficulty when
trying to solve this problem due to its client-server nature.
As HTTP is unable to initiate a communication, between
user requests, an information can be considered as being in
an uncertain state. It may or may not be obsolete. A few

solutions have been found to tackle with this issue such as
Long-Polling or Server-Sent-Events. While they can solve
the problem at hand, they also encounter other difficulties,
like browser or framework support.

In this context, WebSocket [17] is a protocol created to
bring a solution to the need of full-duplex standardized
communication channels. However WebSocket is merely an
applicative transport layer and, as other transport protocols,
rely on the use of another protocol, standardized or not,
to format the data transfer. On this day 17 SubProtocols
have been registered like existing protocols adapted to
WebSockets such as XMPP [13], MQTT [9] or SOAP [1].

While not adapted "as is" in full-duplex communications,
HTTP is a foundation of the modern Web. We believe that
its massive adoption is due to its relative simplicity and its
object or resource oriented paradigm. Thus, in our research
for a full-duplex protocol adapted to classic and simple web
interfaces usage, we fixed ourselves three constraints :

• Ease of use and implementation
• Resource oriented and RESTful [6]
• Full-Duplex

As our research for a protocol meeting these prerequisites
failed, we decided to propose a protocol which would follow
these guidelines as much as possible.

Our objective is to provide a protocol aimed to access,
modify and listen for changes in representational states.
MUST is a protocol heavily inspired by HTTP structure.
In fact, MUST can be considered as an asynchronous and
extended HTTP with JSON formatted messages. MUST has
been designed to be used as a tool for pretty usual web
application with relatively volatile data. Thus, large data
transfer is out of our scope, so are constrained network
and platforms. With this in mind, we designed it to be easy
to implement an familiar to most developers thanks to it’s
HTTP lineage.

This paper is organised as follow: Section II presents
related works and some background for our solution. Sec-
tion III describes the constraints and advantages an asyn-
chronous architecture provides. Section IV explains how
the server-side notifications are handled. Finally, concluding
remarks end this paper in Section V.

II. RELATED WORK AND BACKGROUND

WebSocket (RFC 6455[5]) is a solution that provides
bi-directional communications for WebSites. As the inter-



actions increase between the client and the server, the
requesting approach used by HTTP suffers the lack of reac-
tivity. AJAX (Asynchronous Javascript and XML) [7] was
introduced in order to solve that issue. But the bidirectional
communications provided by Websockets offer a better so-
lution. Herwing et al. [8] show that Websockets leverage the
network usage, providing reactivity and a smaller traffic. For
example, this decrease can benefit WSAN (Wireless Sensors
and Actuators Networks) because of their energy constraint.

The problem is that Websockets are only a technical
solution for implementing bidirectional communications,
but does not fulfill the application needs. Doukas et al.
propose COMPOSE [4], a Mobile Software Development
Kit that aims to link all kinds of technical solutions such
as MQTT [9] and Websocket. Betz et al. have described a
gateway [3] that translates REST to Websockets.

In the field of the Internet of Things, according to Jung
et al. [10], CoAP [15] and MQTT are privileged in order
to fit with the constraints of WSAN. The main issue with
Websocket in this area is the lack of a complete implemen-
tation.

As said above, Websocket offers a bidirectional commu-
nication, but is not an application protocol. To embed them,
Websocket needs the definition of a sub-protocol [17] The
content of each application message has to be described
in a sub-protocol of Websockets to be supported. Some of
the well-known application protocols are already or nearly
standardized: XMPP [16], or (draft) CoAP [14].

Karagiannis et al. have shown in their survey [11] the
interest for the CoAP protocol in the IoT because of its
mimic of the well spread REST protocol [6]. They also
recommend MQTT because of its lightness.

But MQTT is a protocol that aims to exchange messages.
Thus, each client has to implement the logic corresponding
to the semantic associated with the received message. In
the message approach, there is an imbalance of processing
between both participants. The transmitter is in charge of
sending the data. The receiver receives them, and has to
analyze them. In a REST approach, the server sends a
representation of the resource (for the web) or object (in
the case of IoT) in its current state. It hides the data
processing, which can be the result of multiple interactions,
with multiple stakeholders. This introduces a unique point
of processing in the global interaction, and a common point
of view for each client.

Kovatsch et al. present a tool that represents each ob-
ject as their states, using for that purpose both REST
and CoAP [12]. By following the reasoning described by
Herwing et al. [8], to offer one sub-protocol allying represen-
tation of a resource and assets of websockets (bidirectional,
keep alive) allows to relieve the exchanges while respecting
the well installed protocols.

Figure 1. While synchronous protocols can associate request and response
by using order as a reference, asynchronous protocols are inherently unable
to do so this way.

III. ASYNCHRONISM IN MUST

A. Synchronous Architectures

A vast majority of communications in Web Applications
are handled by synchronous protocols like HTTP or SOAP.
They are efficient ways of transferring data in simple
request-response architecture and also adapt to many soft-
ware architectures. However, troubles emerge when data’s
lifespan shortens. In many fields, up-to-date information
plays a major role.

With the emergence of new technologies, sources of data
modifications have increased significantly. Users play a far
more central role in web contents. With the internet of
things, smart objects start to do too. A concrete example of
highly volatile data could be sensors, where values can vary
significantly in only a few seconds and thus make previously
sent values obsolete very rapidly.

Synchronous protocols relies on the simple assumption
that request and response are alternated. In the application
layer, this often means that methods sending request are
either blocking or using some sort of threaded tool such
as Promises or Futures structures. The main advantage of
this type of architecture is its simplicity. However, it also
strongly enforces the client-request paradigm, typical in
synchronous protocols.

Troubles arise when you load data at an either fixed or
user controlled rate. In our Internet of Thing example, a
sensor state could be modified only a few instants after a
response. In a synchronous protocol, there is no way for the
server to update it.

B. Asynchronous Architectures

While pretty efficient, synchronous structures have two
major downsides. First the time consumed waiting for the
response is unused network time which can become a serious



problem for either high latency networks or when requesting
slow computations. However tools and work around exist to
mitigate these effects. Second is the inability, by design, of
the server to initiate a communication.

On the other hand, asynchronous protocols are able to
send requests at any rate. However, this also requires the
protocol to be able to associate response back to the original
request. Thus, similarly to XMPP message structure or
HTTP/2 [2] stream id, MUST requests include a unique
numeric id. MUST server then simply rewrites the request ID
in the response message to allow clients to regroup requests
and responses.

While the overhead in network transfers created by our ar-
chitecture is a downside, it is, firstly, a relatively small over-
head compared to many applicative solutions like headers or
cookies. Secondly MUST target non-constrained networks,
which tend to even more mitigate the importance of this
factor. Moreover, being able to send requests at any given
rate grant the application layer with an increased flexibility
on the use of it’s network resources.

IV. RESOURCE ORIENTED ARCHITECTURE

A. Message oriented protocols

While related to the HTTP client-server architecture,
WebSockets offer a full duplex communications. This kind
of infrastructure is often associated with messaging protocols
where there is no hierarchy between participants. Thus,
this is no surprise if WebSockets SubProtocols list includes
XMPP, MQTT and STOMP which are all message oriented.
Message oriented protocols, as their name might indicate,
are mostly focused on messages rather than on the meaning
of their content. By focusing on messages, they offer a great
flexibility of their usage as users are able to give message’s
payloads meaning humanly or programmatically.

While it is possible to create message oriented structures
in Web applications, development required are significantly
more complex and not necessarily easy to conciliate with a
proper MVC architecture. In a complete message oriented
Web application, the client-side code will directly receive
messages. Then the message will be processed and a new
state will be deduced from it directly inside the client-side
code meaning that most of the business logic will have to
be embedded in the client code. This is hardly applicable to
standard use cases which are mostly focused on display.

Thus, in our opinion, message oriented protocols are hard
to use in standard Web applications. They are too complex to
set up and require far too much adaptation of existing code
or coding patterns. Note that the most spread Web protocols,
HTTP and SOAP for example, are resource oriented.

B. Resources Identification

The WebSocket protocol handshake might be interpreted
by HTTP servers, but it is an independent TCP-based
protocol. In its scope, connections are endpoints identified

Figure 2. Comparison of PubSub, REST and MUST with 1 resource and 4
clients. PubSub mechanism sends asynchronous messages, and each client
needs to rebuild its own version of the ressource. In our example, the client
C3 is in a incoherent state. REST is a solution to send a valid representation
of the resource state, but in a synchronous way. Clients need to query the
resource, are blocked while waiting for the response, and are not aware
of resource modification. MUST provides a non blocking mechanism that
exchange a full representation of the resource state.

only by the couple IP and port. This is sufficient for data
transport and, in facts, message based infrastructure do not
necessarily require more to identify message’s recipients.
Resource oriented protocols rely on a higher granularity.

While a recipient can be determined only by the endpoint
to which data should be sent in a message oriented architec-
ture, the recipient will then have to use the message payload
to determine the action it is supposed to do. Resource
oriented architectures, and in particular RESTful ones, rely
on a higher granularity for resource identifications. HTTP,
for example, uses uniformed resource identifiers.

As MUST main goal is to be familiar, like in HTTP, it
uses a single string as a unique name for its resources. While
in the REST nomenclature, uniformed resource identifier
structure is specified, MUST does not enforce the naming
of resources.



C. Resource Manipulation

In message oriented architectures, the payload of a mes-
sage will determine the action expected to be taken. But in
resource oriented, operations have to be defined for each
resource. MUST uses HTTP methods to define operation
possible on a resource.

However MUST is aimed to be a bidirectional protocol.
While HTTP methods are adapted to a request-response
architecture, MUST is asynchronous and thus not bound to
the same constraints. As the order in request and response
is irrelevant, a single request can receive multiple responses.
MUST extends HTTP methods with SUBSCRIBE and UN-
SUBSCRIBE. Subscribing to a resource is a way of keeping
its state up-to-date. Server first replies with standard status
codes and, after the initial request and response, server keeps
replying to this specific request with the new 210 UPDATED
status code.

This asymmetry in MUST allow clients to keep data up-
to-date while bringing minimal constraints on server-side
or client-side architecture. Most existing software code can
completely use MUST without major modifications.

V. CONCLUSION

The wide-spread of HTTP as the common platform for the
existing use of the Internet and its extension to new fields
(i.e. the Internet of Things) lead to its constant adaptation to
solve new issues. The dynamicity of the exchanges produced
by new usages is addressed by the bi-directional commu-
nication offered by Websockets. A list of sub-protocols
gives Websockets the ability to transport already existing
application protocol. But these sub-protocols are mainly
messages oriented. The need for a resource oriented solution
(such as REST) is needed for Websockets.

This paper describes MUST (Mutable State Transfer).
MUST is both an asynchronous and resource oriented Web-
Socket sub-protocol. Thus, it is tailored to represent volatile
object states. Internet of Thing monitoring is an example
of application for which it is aimed. Moreover, its resource
oriented nature makes underlying concepts really easy to
grasp for current and new web developers. Javascript and
Play (Java) implementations of the protocol are available on
GitHub.

REFERENCES

[1] Soap version 1.2 (w3c). http://www.w3.org/2002/07/
soap-translation/soap12-part0.html.

[2] M. Belshe, M. Thomson, and R. Peon. Hypertext transfer
protocol version 2 (http/2). 2015.

[3] T. Betz, L. Cabac, and M. Wester-Ebbinghaus. Gateway
architecture for web-based agent services. In Multiagent
System Technologies, pages 165–172. Springer, 2011.

[4] C. Doukas, L. Capra, F. Antonelli, E. Jaupaj, A. Tamilin,
and I. Carreras. Providing generic support for iot and
m2m for mobile devices. In Computing & Communication
Technologies-Research, Innovation, and Vision for the Future
(RIVF), 2015 IEEE RIVF International Conference on, pages
192–197. IEEE, 2015.

[5] I. Fette and A. Melnikov. The websocket protocol (no. rfc
6455). 2011.

[6] R. T. Fielding and R. N. Taylor. Principled design of the
modern web architecture. ACM Trans. Internet Technol.,
2:115–150, May 2002.

[7] J. J. Garrett et al. Ajax: A new approach to web applications.
2005.

[8] V. Herwig, R. Fischer, and P. Braun. Assessment of rest and
websocket in regards to their energy consumption for mobile
applications. In Intelligent Data Acquisition and Advanced
Computing Systems: Technology and Applications (IDAACS),
2015 IEEE 8th International Conference on, volume 1, pages
342–347. IEEE, 2015.

[9] U. Hunkeler, H. Truong, and A. Stanford-Clark. Mqtt-s-
a publish/subscribe protocol for wireless sensor networks.
In Communication Systems Software and Middleware and
Workshops, 2008. COMSWARE 2008. 3rd International Con-
ference on, pages 791–798. IEEE.

[10] M. Jung, J. H. Kim, H. W. Wi, S. Kim, and M. Kovatsch.
Things-to-cloud communication: technology overview and
design considerations. 2015.

[11] V. Karagiannis, P. Chatzimisios, F. Vazquez-Gallego, and
J. Alonso-Zarate. A survey on application layer protocols
for the internet of things. Transaction on IoT and Cloud
Computing, 3(1):11–17, 2015.

[12] M. Kovatsch, Y. N. Hassan, and S. Mayer. Practical semantics
for the internet of things: Physical states, device mashups,
and open questions. In Internet of Things (IOT), 2015 5th
International Conference on the, pages 54–61. IEEE, 2015.

[13] P. Saint-Andre. Extensible messaging and presence protocol
(xmpp): Core. 2011.

[14] T. Savolainen, K. Hartke, and B. Silverajan. Coap over
websockets (ietf draft. 2015.

[15] Z. Shelby, B. Frank, and D. Sturek. Constrained appli-
cation protocol (coap). An online version is available at
http://www.ietf.org/id/draft-ietf-core-coap-18.txt, 2010.

[16] L. Stout, J. Moffitt, and E. Cestari. An extensible messaging
and presence protocol (xmpp) subprotocol for websocket (no.
rfc 7395). Technical report, 2014.

[17] V. Wang, F. Salim, and P. Moskovits. The websocket api.
In The Definitive Guide to HTML5 WebSocket, pages 13–32.
Springer, 2013.


