
HAL Id: hal-01625850
https://hal.science/hal-01625850

Submitted on 27 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Two-scale geometric path planning of quadrotor with
obstacle avoidance: First step toward coverage algorithm

Yasser Bouzid, Yasmina Bestaoui, Houria Siguerdidjane

To cite this version:
Yasser Bouzid, Yasmina Bestaoui, Houria Siguerdidjane. Two-scale geometric path planning of quadro-
tor with obstacle avoidance: First step toward coverage algorithm. 11th International Workshop on
Robot Motion and Control (RoMoCo 2017), Jul 2017, Wasowo, Poland. pp.166–171, �10.1109/Ro-
MoCo.2017.8003909�. �hal-01625850�

https://hal.science/hal-01625850
https://hal.archives-ouvertes.fr

Abstract— In this paper, a quadrotor path-planning

problem while avoiding obstacles, in different shapes and

sizes, is considered. The quadrotor is assumed to pass by

a set of scattered points or regions defined according to

the desired mission following the shortest path. The

problem is solved by using a two-scale proposed

algorithm. In the first scale, multi-directional optimal

Rapidly-exploring Random Trees (RRT) based

algorithm is used to define the shortest paths from each

point to its neighbors. By means of the inter-costs

provides by the first-scale algorithm, in the second scale,

the overall shortest path is obtained by solving the

Traveling Salesman Problem (TSP) using Genetic

Algorithms (GA). The effectiveness of the proposed

algorithm is verified with numerical simulations. 1

I. INTRODUCTION

Nowadays, quadrotors have been efficiently employed in

military as well as in civil missions and especially in cases

that represent a real risk for humans as for instance: traffic

accidents, fire emergencies, natural disasters, Nuclear-

Biological-Chemical (NPC) contaminations, etc. In such

events, the inspection as well as the coverage missions of

damaged areas are usually long processes that involve large

staff and wide sophisticated equipment. Moreover, these

critical missions that cannot be ensured by ground mobile

robot are solved easily using quadrotor bringing a notable

benefit. Thus, it has to cover (inspect) a given set of points

or regions of interest (either a POI or ROI), and then sends

the collected information to the ground control station for

deep processing and analysis. So, the challenge is to achieve

such mission by following the shortest path that ensures the

link between all the POIs (ROIs) while avoiding the

obstacles.

In the last decades, coverage problems have attracted the

interest of researchers particularly for the mobile robots.

Furthermore, involving quadrotors in such scenarios is

always under current investigating where many research

fields are requested especially obstacle avoidance and path

Y. Bouzid, Y. Bestaoui are with IBISC, Université d’Evry, Université Paris-
Saclay, Evry, France; H. Siguerdidjane is with L2S, CentraleSupélec,

Université Paris-Saclay, Gif sur yvette, France

(Emails:yasseremp@gmail.com, yasmina.bestaoui@ufrst.univ-evry.fr and
Houria.Siguerdidjane@centralesupelec.fr).

planning. Numerous path planning methods, in the robotic

field, have been extensively studied such as potential field

methods [1], as well as cell decomposition methods [2][3].

Moreover, sampling-based search methods such as:

Expansive Space Trees (ESTs), Probabilistic Roadmap

Methods (PRM) [4] or Rapidly exploring Random Trees

(RRT) have been used to find collision-free trajectories in

cluttered environments [5][6].

RRT based approach is very promising and efficient to

single-query motion planning problems in constrained

workspace [5]. However, only a feasible solution is obtained

and no optimal solution is insured. Therefore, an alternative

optimal RRT (RRT*) is proposed in order to tackle this

problem by introducing incremental rewiring of the graph

[7]. New states are considered as replacement parents for

existing nearby states in the tree. However, this is

inconsistent with its nature, single-query, and so becomes

very expensive especially in high dimensions. In addition,

for multi-directional path planning problem, this technique

requires a huge memory to store the complete nodes.

Recently, an extended algorithm has been proposed that

retains the same probabilistic guarantees on optimality and

completeness as the RRT* while reducing the required

memory for storing nodes in the tree. This technique is

called Fixed Nodes RRT* (RRT*FN) [8].

Many published papers consider Point-To-Point optimal

path planning. However, some scenarios as for instance the

coverage and inspection missions involve what we call

Point-To-Points path planning problem. Therefore, in this

paper, we contribute by introducing a 2D optimal strategy in

constrained workspace using a holonomic quadrotor UAV.

The workspace is considered as a set of Points Of Interest

(POIs) (resp. Regions of Interest (ROIs)) cluttered by

obstacles of different natures and shapes as for instance:

radar detection areas, forbidden areas, hazardous zones and

physical obstacles. Our strategy is composed of two scales:

(1) Multi-directional RRT*FN based algorithm is

developed to compute the inter-costs from each POI to its

neighbors following the optimal path considering

obstacles avoidance.

(2) Traveling Salesman Problem (TSP) is resolved via

genetic algorithms (GA) to compute the overall shortest

Y. Bouzid*, Y. Bestaoui, H. Siguerdidjane

Two-scale geometric path planning of quadrotor

with obstacle avoidance: first step toward coverage algorithm

mailto:yasmina.bestaoui@ufrst.univ-evry.fr
mailto:Houria.Siguerdidjane@centralesupelec.fr

route that allows the quadrotor to visit all the POIs once

and then returns to the starting point.

The efficiency of the approach is demonstrated by numerical

simulations.

The remaining of the paper is organized as follows: the

problem formulation is presented in Section II. Then, the

algorithms are introduced in Section III. The application of

the proposed algorithm as the simulation results are shown

in Section IV. Finally, some concluding remarks are made in

the last section.

II. PROBLEM STATEMENT

The work takes into consideration some simplifying

assumptions that are:

(A1) There is no wind or at least its effect is neglected.

(A2) The onboard energy is sufficient to accomplish the

mission without returning to the starting point.

The covered area is represented as a discretized planar

map where some critical points are considered as POIs

according to the mission of the quadrotor, the nature of the

area and the specifications fixed by the user. Thus, to

accomplish a mission, the holonomic quadrotor has to pass

through all the defined POIs on the planar map following the

shortest path while avoiding the obstacles.

Remark 1: In fact, the quadrotor at each POI covers a

region (ROI) where its size is defined according to the range

of the used sensor () and its altitude from the ground ().

Usually, the each POI represents a center of ROI.

Remark 2: Assume that the overall mechanical structure of

the quadrotor is enclosed by a fictive circle of radius .

Therefore, if we enlarge all the obstacles by a radius , then

the quadrotor can be considered as a flying point (see Fig.

1).

Let be the overall state space of the path

planning problem. Let be the resulting set of

admissible or feasible states considered as connected space

domain. Therefore, represents the set of

forbidden states in collision with obstacles or no-fly zones.

 may be a non-connected space domain

where denotes the number of sub-connected obstacles or

non-fly zones.

Let be the initial location and

 be the unordered disjoint

locations of the POIs. Each point belongs to a partition of

feasible states called ROI. In other words,

 represents the set of

ROIs.

Let

 be a feasible path and

 be the set of all nontrivial feasible

paths that joins a point by a point .

The optimal path planning problem is then decomposed

in two scales:

 Scale 1

 The first scale is the optimality inter-points. In other words,

we seek to find an optimal path from point to point ,

 and .

This optimal planning problem is then defined as the

search for the paths
 that minimizes a given cost

function, , while connecting to through

the free space.

 (1)

 , and .

where is the set of non-negative real numbers.

Let

 be the cost of an optimal path
 from

 to where and

 .

The solution of such problem leads to a matrix called

inter-cost matrix Notice that this matrix is

symmetrical where the diagonal elements are null (

).

The solution of this problem is complex and requires a

multi-directional based path planning technique. Therefore,

we propose a new multi-directional optimal RRT based

algorithm. The path planning algorithm returns a global

tree consisting of sub-trees. From these

trees we find
 shortest path

 with the

minimal costs .

The cost quantities of the optimal paths can be

interpreted as a travel distance, travel time or the number of

nodes... As the quadrotor is considered, flying in holonomic

way, the Euclidean distance between nodes is suitable as a

metric of optimality. However, this cannot measure the true

distance between two states for a non-holonomic-like

navigation way.

 Scale 2

Herein, we seek to determine the minimum distance

circuit starting from passing through all points
 once and only once and then turn back to the

starting point. The objective is to find a permutation of the

sequences: that minimizes the sum of

distances,

 + (2)

where the inter-distances are defined from the first

scale problem. Notice that the sequences are chosen from

the set of POIs .

This problem is well-known as Traveling Salesman Problem

(TSP) and can be solved using Genetic Algorithms (GA).

Fig. 1. Optimal path planning problem with obstacles

avoidance in 2D map using quadrotor.

III. ALGORITHMS DESCRIPTION

As stated in the previous section, our approach is composed

of two distinct scales. The first scale is used to obtain the

inter-costs allowing the second scale to find the overall

optimal path.

A. First scale RRT based algorithm
For this first scale, we use the RRT-based approach.

This latter performs efficient searches even in high

dimensional and very constrained spaces. For the sake of

clarity, we explain the basic RRT based path algorithm. It

grows a tree of feasible trajectories from the initial state

 and returns a collision-free trajectory that reaches the goal

 . This basic algorithm attempts to find a first

feasible solution as quickly as possible. Explicitly, from the

initial state , at each iteration, a random sample that

belongs to the free workspace is chosen (line 7). The

main routines are:

- Nearest function (line 8): finds the nearest node

 in the tree to .

- Steer function (line 9): finds, in the free domain,

the single reachable state located at a random

distance from , which is closest to

 .

 If the path from the to is collision free (line

10), is added to the tree as a child of (line

13). The algorithm holds until iteration or when a first

path is found (see a part of Algorithm 1).

Using RRT, no optimal solution is ensured due to the fact

that no metric is used to measure the optimality of the

trajectories. Therefore, RRT* algorithm is introduced in [7]

with theoretical guarantees of optimality. RRT* converges to

the optimal solution as the number of samples reaches

infinity. This is by incrementally rewiring the tree as lower

cost trajectories become available with the addition of new

nodes to the tree. RRT* uses additional functionalities

compared to RRT:

- Cost function: provides the total cost from the

initial state to a node in the tree.

- Rewiring procedure: rewires the local

neighborhood of the newly added node such that

the cost to the initial state decreases.

Instead to considering the nearest node as the parent

of , we take a set of nodes in the local

neighborhood, of radius , of . Then ChooseParent

routine selects the best parent for . is connected to

the parent, which minimizes the total cost from the initial

state as first instance where RRT* optimizes the complete

trajectory. As the second instant of optimization, the local

neighborhood of is optimized with the ReWire

routine. If the assignment of as the parent node of the

nodes in decreases the total cost from to

 , then the ReConnect function removes the edge

between and its parent node and creates an edge

between and , the new parent node. For more

details about the RRT* algorithm and the additional

routines, the reader may refer to [7].

Because there is no prior limits to the number of nodes in

the tree generated by the RRT* algorithm, the multi-

directional RRT* consumes many computational capacities

where supplementary memory is required to store the added

nodes. The number of nodes can be fixed to alleviate this

problem. Therefore, an extension of RRT*, called RRT*

Fixed Nodes (RRT*FN) that employs a node removal

procedure from the skeleton of the RRT* is used. The

philosophy of the strategy comes from the fact that: If a node

does not have children, it also means that it is not on a path

reaching the goal state. This approach is summarized by

Algorithm 1 where the main rules are:

1- The tree is grown as the RRT* until a maximum

number of nodes is reached where the algorithm

must be restarted if a feasible path to the goal

region is not reached.

2- A new node is added, if and only if there exists, at

least, one node in the tree with one or no child (is

deleted from the tree) and the cost to the present

state from the initial state has decreased.

3- In the case of multiple nodes present without

children, one of them is selected randomly.

The main functionality of this algorithm besides those

ensured by RRT* is the removal procedure. We distinguish

ordinary and forced removal functions that are:

ReWire function (line 14): If a node in (line 11) is

the only child of another node in and the cumulative

path cost to this child node is lower through , then the

child node is reconnected as a child to (line 42) and the

parent is deleted (line 40).

ForcedRemoval function (line 15): There are cases,

where a node cannot be added since there is no node with

only child to remove in . In order to alleviate this

situation, a global ForcedRemoval searches the whole tree

for nodes without children and removes one randomly. For

more details about the algorithm the reader may refer to [8].

 Optimal path

Fictive obstacle

Obstacle

Remark 3: RRT* and RRT*FN do not end when the goal

region is reached, but the algorithms still run for the number

of iterations assumed for the convergence. This is done to

improve the path’s total length.

Algorithm 1 RRT*FN path planner

Function: = RRT*FN(,)

 1: InitializeTree();

 3: repeat

 4: If NodesAdded() then

 5 :

 6: end if

 7: RandomState

 8: Nearest()

 9: Steer()

 10: If ObstacleFree(then

 11: Neighbors()

 12: ChooseParent()

 13 : InsertNode(,)

 14: ReWire ()

 15 : ForcedRemoval ()

 16: end if

 17: If NoRemovalPerformed(), then

 18 : RestoreTree()

 19: until

 20 : Return

Function: =ChooseParent()

 21: ;

 22: Cost()

 23: for do

 24: Steer()

 25: If ObstacleFree() and , then

 26: Cost()

 27: If Cost() and then

 28:

 29:
 30: end if

 31: end if

 32: end for

 33 : Return
Function: =ReWire (,)

 34: for do

 35: Steer()

 36: If ObstacleFree() and , and

 37: Cost() Cost() then

 38: If OnlyChild(Parent()) and

 39: NodesAdded() then

 40: RemoveNode(Parent())

 41: end if

 42: ReConnect ()

 43: end if

 44: end for

 45: Return
Finally, the multi-directional RRT*FN searches the

optimal paths from each point to its neighbors (Point-To-

Points problem). At each iteration, Algorithm 2 grows the

same tree as the Algorithm 1 to find the optimal paths from

one starting point to multiple goal points located in multiple

disjoint regions. However, the tree still grows until all the

goal regions are reached where the algorithm must be

restarted even if one feasible path to one goal state is not

reached (line 22). The algorithm returns a complete tree as

well as a vector of costs, from the starting point to the goal

points (line 24).

Algorithm 2 Multi-RRT*FN path planner

Function: = Multi-RRT*FN(,)

 1: InitializeTree();

 2:

 3: repeat

 4: If NodesAdded() then

 5 :

 6: end if

 7: RandomState

 8: Nearest()

 9: Steer()

 10: If ObstacleFree(then

 11: Neighbors()

 12: ChooseParent()

 13 : InsertNode(,)

 14: ReWire ()

 15 : ForcedRemoval()

 16: end if

 17: If NoRemovalPerformed(), then

 18 : RestoreTree()

 19: ReachedROI()

 20:

 21: until

 22: If , then

 23: Go to line 4

 24: CostDist()

 24 : Return ,

B. Second scale GA-TSP algorithm

As said in Section II, this paper addresses an optimal

path planning problem for a quadrotor that has to pass by a

finite number of points and then return to the initial point.

The locations of POIs are known a priori in a bounded two-

dimensional space. This problem is well-known as TSP NP-

hard optimization problem where a broad range of

algorithms and solutions are employed as for instance [9]

[10]. Herein, a heuristic algorithm based on Genetic

Algorithms (GA) is proposed to deal with this problem

under the name TSP-GA (see Algorithm 3). It uses the inter-

costs provided by Algorithm 2 as input. PopEvaluation

computes the fitness function for each member of the

population (line 10). Then new individuals of the population

are created using mutation to add randomization to the

process, similar to that of the natural genome

(GeneticOperator) (line 12). Finally, BestRoute points out

the total optimal cost as well as the optimal order of

points (line 11).

Algorithm 3 GA-TSP optimal path

Function: = GA-TSP(,)

%Scale one

 1:

 2 : = Multi-RRT*FN(,)

 3:

 4: for to do
 5: = Multi-RRT*FN(,

)

 6:

 7: end for

%Scale two

 8: InitializePop()

 9: for to do
 10: PopEvaluation()

 11: BestRoute()

 12: GeneticOperator()

 13: end for

 14: Return .

IV. RESULTS AND DISCUSSION

In this section, 2D RRT based motion planning strategies,

using a holonomic quadrotor, are implemented for the sake

of validation. The workspace considered in this case of study

is described as a 2D bounded map

 with two non-

connected static obstacles. In fact, these obstacles are

enlarged by a distance Therefore, the resulting

fictive obstacles are :
 .
Thus .

Scenario 1: In this first scenario, we assess the performance

and the efficiency of the RRT based algorithms, namely

RRT* and RRT*FN, through a deep comparison. Thus, the

quadrotor starts from an initial state:
 towards the goal state

 . Herein, represents the unique POI,

where represents the center of the ROI

 delimited by a circle of radius . The

parameters used in the algorithms are:

- Max of iterations:

- Max of nodes:

- Radius of local neighborhoods:

The obtained results are summarized in Table 1 for the

overall strategies where the corresponding paths are depicted

in Fig. 2.

Both RRT* and RRT*FN converge towards an optimal

path even though the rate of convergence is slower for the

RRT*FN where the final solution improves with respect to

the number of iterations (see Table 1). We observe that the

trees look denser, in the case of RRT* than the case of

RRT*FN (see Fig. 2 (a) and Fig. 2(b)). We note that the

required memory increases linearly as iterations increase in

the case of RRT* (6743 nodes are generated). It adds nodes

to improve the path without removing procedural. This latter

makes the RRT*FN requiring much less memory (fixed

memory i.e. a fixed number of nodes M= 3000). Before the

maximum number of nodes is reached, both techniques

behave similarly to each other. Then, RRT*FN still

optimizes the path by adding better nodes and removing the

ones with no children or one child. Moreover, the RRT*FN

algorithm is able to get close to the optimal solution within

reasonable computation time.

(a) RRT* (b) RRT*FN

Fig. 2. RRT based path planning.
Table 1 : Summary of comparative analysis.

 RRT* RRT*FN

Path cost (m) 43.4329 43.9561

Run time (sec) 19.6595 23.5364

Tree density

(Number of nodes)
6743 3000

Optimality Yes Yes

Scenario 2: In this second scenario, we show the result from

the application of the multi-directional RRT*FN (see

Algorithms 2). Using the same parameters as those

mentioned in Scenario 1, the algorithm finds all the optimal

paths from the starting state to

the POIs
 . These POIs represent the centers of

ROIs that are delimited by circles of

radius . The obtained results are displayed in Fig.

3.

Fig. 3. Multi-RRT*FN based path planning.

We observe that the algorithm grows a tree from the

starting point (one root) and finds multiple optimal paths in

the same tree.
Scenario 3: Considering the same map and the same set of

POIs as in the previous scenario, the quadrotor has to go

through all the points and then return to the starting point by

following the shortest path. To achieve this objective,

Algorithm 3 is used incorporating the multi-directional

RRT*FN algorithm. This latter (first scale) allows obtaining

the inter-costs of the optimal paths. In this particular

example, four trees are grown where:

Tree 1: starting point: goal points:

Tree 2: starting point: goal points:

Tree 3: starting point: goal points:

Tree 4: starting point: goal points:

Once, the inter-costs for the set of points are obtained,

we start computing the shortest route that connects all the

points. To do this, we use the second scale of Algorithm 3 by

setting up the following conditions:

- GA population size: 60

- Max of iterations

Fig. 4 (a) shows the order of points that ensures the shortest

path while the planned path is shown in Fig. 4 (b).

As shown in Fig. 4, good results are obtained. The global

path, of cost 117.03 m, contains five sub-optimal paths

where their costs are: , ,

 , , .

In fact, for high dimension problems, the GA does not

guarantee to find the shortest path, although it approaches it.

However, the use of exact techniques renders the

convergence to the optimal path very slow and takes very

large time.

(a) TSP solution (b) Shortest path

Fig. 4. Shortest path using GA-TSP algorithm.

V. CONCLUSION & FUTURE IMPROVEMENTS

We have presented an efficient path planning algorithm for

VTOL quadrotors flying in 2D workspace while avoiding

static obstacles. The algorithm is executed in two stages: the

first one is a RRT based algorithm that uses removal

procedures to maintain a fixed number of nodes, which

limits the size of memory. This algorithm allows finding

optimal paths from one point to their neighbors. The second

stage allows connecting these points following the shortest

path using GA. The efficiency of the algorithm is shown

through numerical simulations.

The proposed algorithm may be employed for coverage

scenario where the first step is to generate a discrete map

composed of a collection of vertices and edges that

constitute some geometrical shapes that represent the ROIs

and covering the whole map. Then, from these ROIs in the

discretized map, we define the set of POIs. The coverage

problem is then solved by first executing the first scale of

Algorithm 3 in order to obtain the matrix of costs and second

a search to determine in which order the ROIs should be

covered using the second scale of Algorithm 3.

Regarding future work many expansions in this paper

can be made:

- The limited onboard energy can be considered with

respect to the long missions. This pushes to

consider the well-known Vehicle Routing Problem

(VRP) or by involving multi-quadrotors in

formation.

References
[1] R. Daily and D. M. Bevly, “Harmonic potential field path

planning for high speed vehicles,” in 2008 American Control

Conference, 2008, pp. 4609–4614.

[2] C. Katrakazas, M. Quddus, W.-H. Chen, and L. Deka, “Real-

time motion planning methods for autonomous on-road

driving: State-of-the-art and future research directions,”

Transportation Research Part C: Emerging

Technologies, vol. 60, pp. 416–442, Nov. 2015.

[3] J. Carsten, D. Ferguson, and A. Stentz, “3D Field D:

Improved Path Planning and Replanning in Three

Dimensions,” in 2006 IEEE/RSJ International Conference on

Intelligent Robots and Systems, 2006, pp. 3381–3386.

[4] L. E. Kavraki, P. Svestka, J. C. Latombe, and M. H.

Overmars, “Probabilistic roadmaps for path planning in high-

dimensional configuration spaces,” IEEE Transactions on

Robotics and Automation, vol. 12, no. 4, pp. 566–580, Aug.

1996.

[5] “Planning Algorithms / Motion Planning.” [Online].

Available: http://planning.cs.uiuc.edu/. [Accessed: 07-

Jan-2017].

[6] P. Pharpatara, R. Pepy, B. Hérissé, and Y. Bestaoui, “Missile

trajectory shaping using sampling-based path planning,” in

2013 IEEE/RSJ International Conference on Intelligent

Robots and Systems, 2013, pp. 2533–2538.

[7] C. Karaman, E. F. “optimal Kinodynamic, C. Link, S.

Karaman, and E. Frazzoli, “Optimal Kinodynamic Motion

Planning using Incremental Sampling-Based Methods,” in in

IEEE Conference on Decision and Control, 2010.

[8] O. Adiyatov and H. A. Varol, “Rapidly-exploring random tree

based memory efficient motion planning,” in 2013 IEEE

International Conference on Mechatronics and Automation,

2013, pp. 354–359.

[9] M. Mi, X. Huifeng, Z. Ming, and G. Yu, “An Improved

Differential Evolution Algorithm for TSP Problem,” in 2010

International Conference on Intelligent Computation

Technology and Automation, 2010, vol. 1, pp. 544–547.

[10] X. s Yan, H. m Liu, J. Yan, and Q. h Wu, “A Fast

Evolutionary Algorithm for Traveling Salesman Problem,” in

Third International Conference on Natural Computation

(ICNC 2007), 2007, vol. 4, pp. 85–90.

-20 -10 0 10 20
-20

-10

0

10

20

x[m]

y
[m

] p
4

p
2

p
3

p
1

p
0

