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Abstract— In this paper, a quadrotor path-planning 

problem while avoiding obstacles, in different shapes and 

sizes, is considered. The quadrotor is assumed to pass by 

a set of scattered points or regions defined according to 

the desired mission following the shortest path. The 

problem is solved by using a two-scale proposed 

algorithm. In the first scale, multi-directional optimal 

Rapidly-exploring Random Trees (RRT) based 

algorithm is used to define the shortest paths from each 

point to its neighbors. By means of the inter-costs 

provides by the first-scale algorithm, in the second scale, 

the overall shortest path is obtained by solving the 

Traveling Salesman Problem (TSP) using Genetic 

Algorithms (GA). The effectiveness of the proposed 

algorithm is verified with numerical simulations. 1 

I. INTRODUCTION 

Nowadays, quadrotors have been efficiently employed in 

military as well as in civil missions and especially in cases 

that represent a real risk for humans as for instance: traffic 

accidents, fire emergencies, natural disasters, Nuclear- 

Biological-Chemical (NPC) contaminations, etc. In such 

events, the inspection as well as the coverage missions of 

damaged areas are usually long processes that involve large 

staff and wide sophisticated equipment. Moreover, these 

critical missions that cannot be ensured by ground mobile 

robot are solved easily using quadrotor bringing a notable 

benefit. Thus, it has to cover (inspect) a given set of points 

or regions of interest (either a POI or ROI), and then sends 

the collected information to the ground control station for 

deep processing and analysis. So, the challenge is to achieve 

such mission by following the shortest path that ensures the 

link between all the POIs (ROIs) while avoiding the 

obstacles.  

In the last decades, coverage problems have attracted the 

interest of researchers particularly for the mobile robots. 

Furthermore, involving quadrotors in such scenarios is 

always under current investigating where many research 

fields are requested especially obstacle avoidance and path 
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planning. Numerous path planning methods, in the robotic 

field, have been extensively studied such as potential field 

methods [1], as well as cell decomposition methods [2][3]. 

Moreover, sampling-based search methods such as: 

Expansive Space Trees (ESTs), Probabilistic Roadmap 

Methods (PRM) [4] or Rapidly exploring Random Trees 

(RRT) have been used to find collision-free trajectories in 

cluttered environments [5][6].  

RRT based approach is very promising and efficient to 

single-query motion planning problems in constrained 

workspace [5]. However, only a feasible solution is obtained 

and no optimal solution is insured. Therefore, an alternative 

optimal RRT (RRT*) is proposed in order to tackle this 

problem by introducing incremental rewiring of the graph 

[7]. New states are considered as replacement parents for 

existing nearby states in the tree. However, this is 

inconsistent with its nature, single-query, and so becomes 

very expensive especially in high dimensions. In addition, 

for multi-directional path planning problem, this technique 

requires a huge memory to store the complete nodes. 

Recently, an extended algorithm has been proposed that 

retains the same probabilistic guarantees on optimality and 

completeness as the RRT* while reducing the required 

memory for storing nodes in the tree. This technique is 

called Fixed Nodes RRT* (RRT*FN) [8].  

Many published papers consider Point-To-Point optimal 

path planning. However, some scenarios as for instance the 

coverage and inspection missions involve what we call 

Point-To-Points path planning problem. Therefore, in this 

paper, we contribute by introducing a 2D optimal strategy in 

constrained workspace using a holonomic quadrotor UAV. 

The workspace is considered as a set of Points Of Interest 

(POIs) (resp. Regions of Interest (ROIs)) cluttered by 

obstacles of different natures and shapes as for instance: 

radar detection areas, forbidden areas, hazardous zones and 

physical obstacles. Our strategy is composed of two scales:  

(1) Multi-directional RRT*FN based algorithm is 

developed to compute the inter-costs from each POI to its 

neighbors following the optimal path considering 

obstacles avoidance. 

(2) Traveling Salesman Problem (TSP) is resolved via 

genetic algorithms (GA) to compute the overall shortest 
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route that allows the quadrotor to visit all the POIs once 

and then returns to the starting point.  

The efficiency of the approach is demonstrated by numerical 

simulations.  

The remaining of the paper is organized as follows: the 

problem formulation is presented in Section II. Then, the 

algorithms are introduced in Section III. The application of 

the proposed algorithm as the simulation results are shown 

in Section IV. Finally, some concluding remarks are made in 

the last section. 

II. PROBLEM STATEMENT 

The work takes into consideration some simplifying 

assumptions that are:  

(A1) There is no wind or at least its effect is neglected. 

(A2) The onboard energy is sufficient to accomplish the 

mission without returning to the starting point. 

The covered area is represented as a discretized planar 

map where some critical points are considered as POIs 

according to the mission of the quadrotor, the nature of the 

area and the specifications fixed by the user. Thus, to 

accomplish a mission, the holonomic quadrotor has to pass 

through all the defined POIs on the planar map following the 

shortest path while avoiding the obstacles.  

Remark 1: In fact, the quadrotor at each POI covers a 

region (ROI) where its size is defined according to the range 

of the used sensor ( ) and its altitude from the ground ( ). 

Usually, the each POI represents a center of ROI.  

Remark 2: Assume that the overall mechanical structure of 

the quadrotor is enclosed by a fictive circle of radius  . 

Therefore, if we enlarge all the obstacles by a radius  , then 

the quadrotor can be considered as a flying point (see Fig. 

1).  

Let      be the overall state space of the path 

planning problem. Let       be the resulting set of 

admissible or feasible states considered as connected space 

domain. Therefore,              represents the set of 

forbidden states in collision with obstacles or no-fly zones. 

         
 
    may be a non-connected space domain 

where   denotes the number of sub-connected obstacles or 

non-fly zones.  

Let          be the initial location and   

                     be the unordered disjoint 

locations of the POIs. Each point belongs to a partition of 

feasible states called ROI. In other words,    

                            represents the set of 

ROIs. 

Let              
         

   

               be a feasible path and 

               
         

   

        be the set of all nontrivial feasible 

paths that joins a point    by a point   . 

The optimal path planning problem is then decomposed 

in two scales: 

 Scale 1 

 The first scale is the optimality inter-points. In other words, 

we seek to find an optimal path from point    to point   , 

                     and    . 

This optimal planning problem is then defined as the 

search for the paths    
   that minimizes a given cost 

function,            , while connecting    to    through 

the free space.  

   
                                       

                                                                            (1) 

         ,           and    . 

where     is the set of non-negative real numbers.  

Let              
         

   

 be the cost of an optimal path    
  from 

   to    where         and    
     

 . 

The solution of such problem leads to a matrix called 

inter-cost matrix         Notice that this matrix is 

symmetrical where the diagonal elements are null (    

           ).  

The solution of this problem is complex and requires a 

multi-directional based path planning technique. Therefore, 

we propose a new multi-directional optimal RRT based 

algorithm. The path planning algorithm returns a global 

tree         consisting of        sub-trees. From these 

trees we find          
    shortest path    

   with the 

minimal costs    . 

The cost quantities of the optimal paths can be 

interpreted as a travel distance, travel time or the number of 

nodes... As the quadrotor is considered, flying in holonomic 

way, the Euclidean distance between nodes is suitable as a 

metric of optimality. However, this cannot measure the true 

distance between two states for a non-holonomic-like 

navigation way.  

 Scale 2 

Herein, we seek to determine the minimum distance 

circuit starting from     passing through all points 
             once and only once and then turn back to the 

starting point. The objective is to find a permutation   of the 

sequences:               that minimizes the sum of 

distances, 

             
   
   +                                                (2) 



  

where the inter-distances           are defined from the first 

scale problem. Notice that the sequences    are chosen from 

the set of POIs  . 

This problem is well-known as Traveling Salesman Problem 

(TSP) and can be solved using Genetic Algorithms (GA).  

 
Fig. 1. Optimal path planning problem with obstacles 

avoidance in 2D map using quadrotor. 

III. ALGORITHMS DESCRIPTION 

As stated in the previous section, our approach is composed 

of two distinct scales. The first scale is used to obtain the 

inter-costs allowing the second scale to find the overall 

optimal path. 

A. First scale RRT based algorithm 
For this first scale, we use the RRT-based approach. 

This latter performs efficient searches even in high 

dimensional and very constrained spaces.  For the sake of 

clarity, we explain the basic RRT based path algorithm. It 

grows a tree of feasible trajectories from the initial state 

   and returns a collision-free trajectory that reaches the goal 

           . This basic algorithm attempts to find a first 

feasible solution as quickly as possible. Explicitly, from the 

initial state   , at each iteration, a random sample       that 

belongs to the free workspace       is chosen (line 7). The 

main routines are:  

-  Nearest function (line 8): finds the nearest node 

         in the tree to      . 

- Steer function (line 9): finds, in the free domain, 

the single reachable state      located at a random 

distance    from         , which is closest to 

     . 

 If the path from the          to      is collision free (line 

10),      is added to the tree   as a child of          (line 

13). The algorithm holds until iteration        or when a first 

path is found (see a part of Algorithm 1).  

Using RRT, no optimal solution is ensured due to the fact 

that no metric is used to measure the optimality of the 

trajectories. Therefore, RRT* algorithm is introduced in [7] 

with theoretical guarantees of optimality. RRT* converges to 

the optimal solution as the number of samples reaches 

infinity. This is by incrementally rewiring the tree as lower 

cost trajectories become available with the addition of new 

nodes to the tree. RRT* uses additional functionalities 

compared to RRT: 

- Cost function: provides the total cost from the 

initial state to a node in the tree.  

- Rewiring procedure: rewires the local 

neighborhood of the newly added node such that 

the cost to the initial state decreases.  

Instead to considering the nearest node as the parent 

of     , we take a set of nodes       in the local 

neighborhood, of radius   , of      . Then ChooseParent 

routine selects the best parent for     .       is connected to 

the parent, which minimizes the total cost from the initial 

state as first instance where  RRT* optimizes the  complete 

trajectory. As the second instant of optimization, the local 

neighborhood of       is optimized with the ReWire 

routine. If the assignment of       as the parent node of the 

nodes in       decreases the total cost from     to       

     , then the ReConnect function removes the edge 

between        and its parent node and creates an edge 

between        and     , the new parent node. For more 

details about the RRT* algorithm and the additional 

routines, the reader may refer to [7].  

Because there is no prior limits to the number of nodes in 

the tree generated by the RRT* algorithm, the multi-

directional RRT* consumes many computational capacities 

where supplementary memory is required to store the added 

nodes. The number of nodes can be fixed to alleviate this 

problem. Therefore, an extension of RRT*, called RRT* 

Fixed Nodes (RRT*FN) that employs a node removal 

procedure from the skeleton of the RRT* is used. The 

philosophy of the strategy comes from the fact that: If a node 

does not have children, it also means that it is not on a path 

reaching the goal state. This approach is summarized by 

Algorithm 1 where the main rules are: 

1- The tree is grown as the RRT* until a maximum 

number of nodes   is reached where the algorithm 

must be restarted if a feasible path to the goal 

region is not reached.  

2- A new node is added, if and only if there exists, at 

least, one node in the tree with one or no child (is 

deleted from the tree) and the cost to the present 

state from the initial state has decreased.  

3- In the case of multiple nodes present without 

children, one of them is selected randomly.  

The main functionality of this algorithm besides those 

ensured by RRT* is the removal procedure. We distinguish 

ordinary and forced removal functions that are: 

ReWire function (line 14):  If a node in       (line 11) is 

the only child of another node in       and the cumulative 

path cost to this child node is lower through      , then the 

child node is reconnected as a child to      (line 42) and the 

parent is deleted (line 40).  

ForcedRemoval function (line 15): There are cases, 

where a node cannot be added since there is no node with 

only child to remove in      . In order to alleviate this 

situation, a global ForcedRemoval searches the whole tree 

for nodes without children and removes one randomly. For 

more details about the algorithm the reader may refer to [8]. 
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Remark  3: RRT* and RRT*FN do not end when the goal 

region is reached, but the algorithms still run for the number 

of iterations assumed for the convergence. This is done to 

improve the path’s total length.  

Algorithm 1  RRT*FN  path planner 

Function:   = RRT*FN(        ,        )  

  1:    InitializeTree(); 

  3: repeat  

  4:   If   NodesAdded( ) then  

  5 :           

  6:   end if 

  7:          RandomState          

  8:            Nearest(       ) 

  9:         Steer(              ) 

  10:  If ObstacleFree(                then 

  11:         Neighbors(      ) 

  12:        ChooseParent(                   ) 

  13 :    InsertNode(         ,  ) 

  14:     ReWire (                 ) 

  15 :    ForcedRemoval (       ) 

  16:  end if 

  17:  If NoRemovalPerformed(), then 

  18 :      RestoreTree() 

  19: until             

  20 : Return   

Function:    =ChooseParent(                    )  

  21:                ; 

  22:       Cost(        )         

  23: for             do 

  24:       Steer(          ) 

  25:   If ObstacleFree(        ) and        , then 

  26:         Cost(     )         

  27:     If     Cost(    ) and         then 

  28:                  

  29:               
  30:   end if 

  31:  end if 

  32: end for 

  33 : Return       
Function:   =ReWire (             ,     )  

  34: for                   do 

  35:       Steer(          ) 

  36:   If ObstacleFree(       ) and         , and 

  37:     Cost(    )        Cost(     ) then 

  38:     If OnlyChild(Parent(     )) and  

  39:          NodesAdded( )  then 

  40:       RemoveNode(Parent(     )) 

  41:     end if 

  42:       ReConnect (            ) 

  43:   end if 

  44: end for 

  45: Return    
Finally, the multi-directional RRT*FN searches the 

optimal paths from each point to its neighbors (Point-To-

Points problem). At each iteration, Algorithm 2 grows the 

same tree as the Algorithm 1 to find the optimal paths from 

one starting point to multiple goal points located in multiple 

disjoint regions. However, the tree still grows until all the 

goal regions are reached where the algorithm must be 

restarted even if one feasible path to one goal state is not 

reached (line 22). The algorithm returns a complete tree as 

well as a vector of costs, from the starting point to the goal 

points (line 24). 

Algorithm 2  Multi-RRT*FN  path planner 

Function:          = Multi-RRT*FN(        ,    )  

  1:    InitializeTree(); 

  2:           

  3: repeat  

  4:   If   NodesAdded( ) then  

  5 :           

  6:   end if 

  7:          RandomState          

  8:            Nearest(       ) 

  9:       Steer(              ) 

  10:  If ObstacleFree(      then 

  11:         Neighbors(      ) 

  12:        ChooseParent(                   ) 

  13 :    InsertNode(         ,  ) 

  14:     ReWire (                 ) 

  15 :    ForcedRemoval(       ) 

  16:  end if 

  17:  If NoRemovalPerformed(), then 

  18 :      RestoreTree() 

  19:         ReachedROI( ) 

  20:                         

  21: until             

  22: If          , then 

  23: Go to line 4 

  24:   CostDist(      ) 

  24 : Return  ,      

 
B. Second scale GA-TSP algorithm 

As said in Section  II, this paper addresses an optimal 

path planning problem for a quadrotor that has to pass by a 

finite number of points and then return to the initial point. 

The locations of POIs are known a priori in a bounded two-

dimensional space. This problem is well-known as TSP NP-

hard optimization problem where a broad range of 

algorithms and solutions are employed as for instance [9] 

[10]. Herein, a heuristic algorithm based on Genetic 

Algorithms (GA) is proposed to deal with this problem 

under the name TSP-GA (see Algorithm 3).  It uses the inter-

costs   provided by Algorithm 2 as input. PopEvaluation 

computes the fitness function for each member of the 

population (line 10). Then new individuals of the population 

are created using mutation to add randomization to the 

process, similar to that of the natural genome 

(GeneticOperator) (line 12). Finally, BestRoute points out 

the total optimal cost    as well as the optimal order of 

points   (line 11).  



  

Algorithm 3 GA-TSP optimal path 

Function:         = GA-TSP(                   ,   )  

 

%Scale one 

 

  1:              

  2 :            = Multi-RRT*FN(        ,    ) 

  3:              

  4: for      to       do  
  5:                 = Multi-RRT*FN(        , 

         ) 

  6:                         

  7: end for 

 

%Scale two 

 

  8: InitializePop(  ) 

  9: for      to        do  
  10:   PopEvaluation(    ) 

  11:          BestRoute() 

  12:   GeneticOperator() 

  13: end for  

  14: Return    . 

 
IV. RESULTS AND DISCUSSION 

In this section, 2D RRT based motion planning strategies, 

using a holonomic quadrotor, are implemented for the sake 

of validation. The workspace considered in this case of study 

is described as a 2D bounded map 

                             with two non-

connected static obstacles. In fact, these obstacles are 

enlarged by a distance           Therefore, the resulting 

fictive obstacles are :                   
                                       . 
Thus             .  

Scenario 1: In this first scenario, we assess the performance 

and the efficiency of the RRT based algorithms, namely 

RRT* and RRT*FN, through a deep comparison. Thus, the 

quadrotor starts from an initial state:         
            towards the goal state             

         . Herein,       represents the unique POI, 

where                  represents the center of the ROI  

      delimited by a circle of radius       . The 

parameters used in the algorithms are: 

- Max of iterations:            

- Max of nodes:        

- Radius of local neighborhoods:         

The obtained results are summarized in Table 1 for the 

overall strategies where the corresponding paths are depicted 

in Fig. 2.  

Both RRT* and RRT*FN converge towards an optimal 

path even though the rate of convergence is slower for the 

RRT*FN where the final solution improves with respect to 

the number of iterations (see Table 1). We observe that the 

trees look denser, in the case of RRT* than the case of 

RRT*FN (see Fig. 2 (a) and Fig. 2(b)).  We note that the 

required memory increases linearly as iterations increase in 

the case of RRT* (6743 nodes are generated). It adds nodes 

to improve the path without removing procedural. This latter 

makes the RRT*FN requiring much less memory (fixed 

memory i.e. a fixed number of nodes M= 3000). Before the 

maximum number of nodes is reached, both techniques 

behave similarly to each other. Then, RRT*FN still 

optimizes the path by adding better nodes and removing the 

ones with no children or one child. Moreover, the RRT*FN 

algorithm is able to get close to the optimal solution within 

reasonable computation time. 

 
(a) RRT*                        (b) RRT*FN 

Fig. 2. RRT based path planning. 
Table 1 : Summary of comparative analysis. 

 RRT* RRT*FN 

Path cost (m) 43.4329 43.9561 

Run time (sec) 19.6595 23.5364 

Tree density 

(Number of nodes) 
6743 3000 

Optimality Yes Yes 

Scenario 2: In this second scenario, we show the result from 

the application of the multi-directional RRT*FN (see 

Algorithms 2).  Using the same parameters as those 

mentioned in Scenario 1, the algorithm finds all the optimal 

paths from the starting state                     to 

the POIs                                     
               . These POIs represent the centers of 

ROIs                  that are delimited by circles of 

radius       . The obtained results are displayed in Fig. 

3. 

 
Fig. 3.  Multi-RRT*FN based path planning.  

We observe that the algorithm grows a tree from the 

starting point (one root) and finds multiple optimal paths in 

the same tree. 
Scenario 3: Considering the same map and the same set of 

POIs as in the previous scenario, the quadrotor has to go 

through all the points and then return to the starting point by 



  

following the shortest path. To achieve this objective, 

Algorithm 3 is used incorporating the multi-directional 

RRT*FN algorithm. This latter (first scale) allows obtaining 

the inter-costs of the optimal paths.  In this particular 

example, four trees are grown where: 

Tree 1: starting point:          goal points:             

Tree 2: starting point:          goal points:          

Tree 3: starting point:         goal points:       

Tree 4: starting point:         goal points:    

Once, the inter-costs for the set of points   are obtained, 

we start computing the shortest route that connects all the 

points. To do this, we use the second scale of Algorithm 3 by 

setting up the following conditions: 

-  GA population size:    60  

- Max of iterations           

Fig. 4 (a) shows the order of points that ensures the shortest 

path while the planned path is shown in Fig. 4 (b).  

As shown in Fig. 4, good results are obtained. The global 

path, of cost 117.03 m, contains five sub-optimal paths 

where their costs are:           ,           ,  

           ,           ,           .  

In fact, for high dimension problems, the GA does not 

guarantee to find the shortest path, although it approaches it. 

However, the use of exact techniques renders the 

convergence to the optimal path very slow and takes very 

large time.  

 
(a) TSP solution                (b) Shortest path 

Fig. 4.  Shortest path using GA-TSP algorithm.  

V. CONCLUSION & FUTURE IMPROVEMENTS 
 

We have presented an efficient path planning algorithm for 

VTOL quadrotors flying in 2D workspace while avoiding 

static obstacles. The algorithm is executed in two stages: the 

first one is a RRT based algorithm that uses removal 

procedures to maintain a fixed number of nodes, which 

limits the size of memory. This algorithm allows finding 

optimal paths from one point to their neighbors. The second 

stage allows connecting these points following the shortest 

path using GA. The efficiency of the algorithm is shown 

through numerical simulations.   

The proposed algorithm may be employed for coverage 

scenario where the first step is to generate a discrete map 

composed of a collection of vertices and edges that 

constitute some geometrical shapes that represent the ROIs 

and covering the whole map. Then, from these ROIs in the 

discretized map, we define the set of POIs.  The coverage 

problem is then solved by first executing the first scale of 

Algorithm 3 in order to obtain the matrix of costs and second 

a search to determine in which order the ROIs should be 

covered using the second scale of Algorithm 3. 

Regarding future work many expansions in this paper 

can be made: 

- The limited onboard energy can be considered with 

respect to the long missions. This pushes to 

consider the well-known Vehicle Routing Problem 

(VRP) or by involving multi-quadrotors in 

formation. 
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