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Abstract: we consider the extremal problem of best approximation to some function f in L2(I), with
I a subset of the circle, by the trace of a Hardy function whose modulus is bounded pointwise by some
gauge function on the complementary subset.

1 Introduction

If D is a simply connected plane domain with rectifiable boundary ∂D, a holomorphic function f in
the Smirnov class E1(D) can be recovered from its boundary values by the Cauchy formula. When the
boundary values are only known on a strict subset I of ∂D having positive linear measure, they still
define f uniquely but the recovery cannot be achieved in closed form. In fact, recovery becomes then
a special case of a classical ill-posed issue, namely the Cauchy problem for the Laplace equation. This
issue is quite important in physics and engineering [26, 2, 30, 21].
Following an original idea of Carleman, one approach to the recovery of f from its knowledge on I is to
introduce an auxiliary “quenching” function ϕ, holomorphic and bounded in D, such that |ϕ| ≡ 1 a.e. on
∂D \ I and |ϕ| > 1 in D; such a function is easily constructed by solving a Dirichlet problem for log |ϕ|.
In [20], it was proven by Goluzin and Krylov that

f(z) = lim
n→∞

fn(z), where fn(z)
∆
=

1

2iπ

∫
I

(
ϕ(ξ)

ϕ(z)

)n
f(ξ)

ξ − z
dξ, z ∈ D, (1)

the convergence being locally uniform in D. Cauchy integrals like those defining fn in (1) are called
Carleman’s formulas. More precisely, for w an outer function (see definitions below), we call an expression
of the form

gw =
1

2iπ

∫
I

w(ξ)

w(z)

f(ξ)

ξ − z
dξ (2)

a Carleman formula for f , which produces an analytic function gw to approximate f in some way.
Expression (2) may also be viewed as a (complex) normalized Cauchy transform.
On the unit disk D where Ep(D) coincides with the Hardy class Hp, Patil proved that if f ∈ Hp with
1 < p <∞, then the convergence in (1) actually holds in Hp [31].
Two questions arise naturally, namely what is the meaning of fn for fixed n, and what is its asymptotic
behaviour if f ∈ Lp(I) is not the trace of a Hardy function? On D, when f ∈ L2(I) and ϕ is a quenching
function with constant modulus a.e. on I, it was proven in [7] that the restriction (fn)|I is closest to f
in L2(I)-norm among all g ∈ H2 such that ‖g‖L2(T\I) ≤ ‖fn‖L2(T\I), where T denotes the unit circle.
Also, the results of the present paper entail that if ϕ is any holomorphic function which is bounded on
D together with its inverse, and if the boundary of I in T has linear measure 0, then (fn)|I is closest to
f in weighted L2(|ϕ|I |2n, I)-norm among all g ∈ H2 such that |g| ≤ |fn| a.e. on T \ I. These extremal
properties of fn are all the more remarkable than Carleman’s formulas were originally introduced without
reference to optimization. They are, however, implicit in that the constraint on T \ I depends on |fn|
itself. To move on firmer ground, we make a slight twist and we rather investigate the following extremal
problem. Let I ⊂ T be a subset of positive Lebesgue measure and set J = T \ I for the complementary
subset. The question that we raise is :

Given f ∈ L2(I) and M ∈ L2(J), M ≥ 0, find g0 ∈ H2 such that |g0(eiθ)| ≤M(eiθ) a.e. on J and

‖f − g0‖L2(I) = min
g∈H2

|g|≤M a.e. on J

‖f − g‖L2(I) . (3)
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This should be compared with the so-called bounded extremal problems studied in [3, 8, 7] for 1 ≤ p ≤ ∞:

BEP
(
Lp(I), Lp(J)

)
:

Given f ∈ Lp(I), ψ ∈ Lp(J) and a constant C > 0, find g0 ∈ Hp such that ‖g0 − ψ‖Lp(J) ≤ C and

‖f − g0‖Lp(I) = min
g∈Hp

‖g−ψ‖Lp(J)≤C

‖f − g‖Lp(I) . (4)

Note that in (3), we did not introduce a reference function ψ on J as in (4). While it is straightforward
to handle such a generalization when ψ is the trace on J of a H2-function, the general case holds further
difficulties which left here for further research.
When I is of full measure, both problem (3) and BEP

(
Lp(I), Lp(J)

)
reduce to classical extremal problems,

see e.g. [17, 19]. Therefore we limit our discussion to the case where J has positive measure.
The first reference dealing with bounded extremal problems seems to be [24], where BEP

(
L2(I), L2(J)

)
is studied when f = 0 and I an interval, on the half-plane rather than the disk. The case ψ = 0 is solved
in [3] using Toeplitz operators, and the general version of BEP

(
L2(I), L2(J)

)
is taken up in [7] where

the link with Carleman’s formulas is pointed at. Error rates when C goes large and I is an arc can be
found in [6], and an extension to the case where additional interpolation conditions are imposed in D
is carried out in [28]. Existence and uniqueness results for BEP

(
Lp(I), Lp(J)

)
in the range 1 ≤ p < ∞

are also presented in [7]. Reformulations of BEP
(
Lp(I), Lp(J)

)
in an abstract setting involving Hilbert

or smooth Banach spaces were carried out in [27, 13, 36, 14], leading to the construction of backward
minimal vectors and hyperinvariant subspaces for certain classes of operators that need not be compact
nor quasinilpotent, thereby generalizing [4]. Versions of BEP

(
L2(I), L2(J)

)
where the constraint bears

on the imaginary part rather than the modulus, which is useful among other things to approach inverse
Dirichlet-Neumann problems, are presented in [22]. Problem BEP

(
L∞(I), L∞(J)

)
was studied in [8, 9],

together with its meromorphic generalization and related completion issues.
An initial incentive to study such problems lies with engineering issues, more precisely with linear system
identification and design. This motivation is explicit in [24], and further discussed in [3, 8, 9, 35, 6],
the results of which have been effective to identify hyperfrequency filters [5]. This connection is more
transparent on the half plane, where f represents the so-called transfer-function of a linear dynamical
system which is measured pointwise in a frequency band I of the imaginary axis, using harmonic identi-
fication techniques. Recall that a linear dynamical system is just a convolution operator on R (identified
with the time axis), and that its transfer function is the Fourier-Laplace transform of its kernel [16]. By
the Paley-Wiener and the Hausdorff-Young theorems, the causality and the stability of the system from
Lr(R) to Ls(R) imply that f belongs to the Hardy class Hp of the right half plane with 1/p = 1/r− 1/s,
as soon as the latter is less than or equal to 1/2. Because f can only be estimated up to modelling and
measurement errors, one is led to approximate the data on I by a Hp function while controlling its devi-
ation from some reference behaviour ψ outside I, which is precisely the analog of (4) on the half-plane.
This problem can be mapped to BEP

(
Lp(I), Lp(J)

)
via the isometry g 7→ (1 +w)−2/pg((w− 1)/(w+ 1))

from Hp onto Hp. More on the relations between Hardy spaces, system identification and control can be
found in [18, 30, 29]. Note that it is indeed essential here to bound the behaviour of g0 on J , for traces
of Hardy functions are dense in Lp(I) (in C(I) if p = ∞) so that BEP

(
Lp(I), Lp(J)

)
has no solution if

C =∞ unless f is already the trace of a Hardy function. In practice, since modelling and measurement
errors will prevent this from ever happening, the error ‖f − g‖Lp(I) can be made arbitrarily small at the
cost of ‖g‖Lp(J) becoming arbitrarily large, which is a version in this context of the classical trade-off
between precision and robustess. Motivated by the fact that the transfer function sometimes has to
meet uniform bounds for physical reasons (for instance it should be less than 1 in modulus when dealing
with passive systems), BEP

(
Lp(I), Lp(J)

)
-like problems with a pointwise constraint on the modulus of

the approximant were considered in [34], when the approximated function f and the constraint M are
assumed to be continuous on I and T, respectively.
The present paper seems to be first to deal with a mixed situation, where an integral criterion is minimized
on I under a pointwise constraint on J . Beyond the noteworthy connection with Carleman’s formulas
already mentioned, one motivation to study mixed norms stems again from system identification. Indeed,
the L2 norm on I has a probabilistic interpretation as the variance of the output when the input of the
system is a noise whose spectrum is uniformly distributed in the bandwidth; more general spectra can
also be handled by weighting the L2-norm in (3) with a boundedly invertible weight, which is but a
small modification. If one requires in addition that the system to be identified is passive at higher
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frequencies, as is the case for instance with microwave circuits, one is led to consider problem (3) with
M ≡ 1. A quantitative study of problems like (3) seems also relevant to estimate the growth of orthogonal
polynomials, including for weights outside the Steklov class, see the discussion in [15].
Problem (3) is considerably more difficult to investigate than BEP

(
L2(I), L2(J)

)
, due to the fact that

pointwise evaluation is not smooth –actually not even defined– in L2(J), and the analysis depends in a
crucial manner on the multiplicative structure of Hardy functions. Beyond existence and uniqueness, our
results hold under the extra-assumption that the boundary of I has measure zero. We do not know the
extend to which this assumption can be relaxed.
The organization of the paper is as follows. In section 2 we set up some notation and recall standard
properties of Hp-spaces and conjugate functions. Section 3 deals with existence and uniqueness issues,
along with saturation of the constraint. In section 4 we establish an analog, in the present nonsmooth
and infinite-dimensional context, of the familiar critical point equation from convex analysis. It gives
rise in Section 5 to a dual formulation of the problem which makes connection with Carleman’s formulas
and turns it into an unconstrained concave maximization issue. We express the derivative under mild
assumptions which may be used to design an ascent algorithm.

2 Notations and preliminaries

Let T be the unit circle endowed with the normalized Lebesgue measure `, and I a subset of T such that
`(I) > 0 with complementary subset J = T \ I. To avoid dealing with trivial instances of problem (3)
we assume throughout that `(J) > 0.
If h1 (resp. h2) is a function defined on a set containing I (resp. J), we use the notation h1 ∨ h2 for the
concatenated function, defined on the whole of T, which is h1 on I and h2 on J .

For E ⊂ T, we let ∂E and
◦
E denote respectively the boundary and the interior of E when viewed as a

subset of T; we also write χE for the characteristic function of E and h|E to mean the restriction to E of
a function h defined on a set containing E.
When 1 ≤ p ≤ ∞, we write Lp(E) for the familiar Lebesgue space of (equivalence classes of a.e. coinciding)
complex-valued measurable functions on E with finite Lp norm, and we indicate by LpR(E) the real
subspace of real-valued functions. Likewise C(E) stands for the space of complex-valued continuous
functions on E, while CR(E) indicates real-valued continuous functions. The norm on Lp(E) is denoted
by ‖ ‖Lp(E), and if h is defined on a set containing E we write for simplicity ‖h‖Lp(E) to mean ‖h|E‖Lp(E).
When E is compact the norm on C(E) is the sup norm.
Recall that the Hardy space Hp is the closed subspace of Lp(T) consisting of functions whose Fourier
coefficients of strictly negative index do vanish. These are the nontangential limits of functions analytic
in the unit disk D having uniformly bounded Lp means over all circles centered at 0 of radius less than 1.
The correspondence is one-to-one and, using this identification, we alternatively regard members of Hp

as holomorphic functions in the variable z ∈ D. This extension is obtained from the values on T through
a Cauchy as well as a Poisson integral [33, ch. 17, thm 11], namely if g ∈ Hp then :

g(z) =
1

2 i π

∫
T

g(ξ)

ξ − z
dξ , and also g(z) =

1

2π

∫
T

Re

{
eiθ + z

eiθ − z

}
g(eiθ) dθ , z ∈ D. (5)

Because of this Poisson representation, g(reiθ) converges to g(eiθ) in Lp(T) as soon as 1 ≤ p < ∞.
Moreover, (5) entails that, for 1 ≤ p ≤ ∞, a Hardy function g is uniquely determined, up to a purely
imaginary constant, by its real part h on T :

g(z) = iImg(0) +
1

2π

∫
T

eiθ + z

eiθ − z
h(eiθ) dθ , z ∈ D. (6)

The integral in the right-hand side of (6) is the Riesz-Herglotz transform of h and, whenever h ∈ L1
R(T),

it defines a holomorphic function in D which is real at 0 and whose nontangential limit exists a.e. on T
with real part equal to h. However, only if 1 < p < ∞ is it guaranteed that g ∈ Hp when h ∈ LpR(T).

In fact, the Riesz-Herglotz transform assumes the form h(eiθ) + ih̃(eiθ) a.e. on T, where the real-valued

function h̃ is said to be conjugate to h, and the property that h̃ ∈ LpR(T) whenever h ∈ LpR(T) holds true

for 1 < p <∞ but not for p = 1 nor p =∞. The map h→ h̃ is called the conjugation operator, and for
1 < p <∞ it is bounded LpR(T)→ LpR(T) by a theorem of M. Riesz [19, chap. III, thm 2.3]; in this range

3



of exponents, we will denote its norm by Kp. It follows easily from Parseval’s relation that K2 = 1, but
it is rather subtle that Kp = tan(π/(2p)) for 1 < p ≤ 2 while Kp = cot(π/(2p)) for 2 ≤ p <∞ [32].

A sufficient condition for h̃ to be in L1(T) is that h belongs to the the so-called Zygmund class L log+ L,
consisting of measurable functions φ such that φ log+ |φ| ∈ L1(T) where we put log+ t = log t if t ≥ 1 and
0 otherwise. More precisely, if we denote by mh the distribution function of h defined on R+ with values
in [0, 1] according to the formula

mh(τ) = ` ({ξ ∈ T; |h(ξ)| > τ}) ,

and if we further introduce the non-increasing rearrangement of h given by

h∗(t) = inf{τ ; mh(τ) ≤ t}, t ≥ 0,

it turns out that h ∈ L log+ L if and only if the quantity

‖h‖L log+ L
∆
=

∫ 1

0

h∗(t) log(1/t) dt (7)

is finite [10, lem. 6.2.], which makes L log+ L into a Banach function space. Then, it is a theorem of
Zygmund [10, cor. 6.9.] that

‖h̃‖L1(T) ≤ C0‖h‖L log+ L (8)

for some universal constant C0. A partial converse, due to M. Riesz, asserts that if a real-valued h is
bounded from below and if moreover h̃ ∈ L1(T), then h ∈ L log+ L [10, cor. 6.10].

We mentioned already that h̃ needs not be bounded if h ∈ L∞R (T). In this case all one can say in general

is that h̃ has bounded mean oscillation, meaning that h̃ ∈ L1(T) and

‖h̃‖BMO
∆
= sup

E

1

`(E)

∫
E

|h̃− h̃E | dθ <∞, with h̃E
∆
=

1

`(E)

∫
E

h̃ dθ,

where the supremum is taken over all subarcs E ⊂ T. Actually [19, chap. VI, thm 1.5], there is a universal
constant C1 such that

‖h̃‖BMO ≤ C1‖h‖L∞(T). (9)

The subspace of L1(T) consisting of functions whose BMO-norm is finite is called BMO for short. Notice
that ‖ ‖BMO is a genuine norm modulo additive constants only. A theorem of F. John and L. Nirenberg
[19, ch. VI, thm. 2.1] asserts there are positive constants C, c, such that, for each real-valued ϕ ∈ BMO,
every arc E ⊂ T, and any x > 0,

` ({t ∈ E : |ϕ(t)− ϕE | > x})
`(E)

≤ C exp

(
−cx

‖ϕ‖BMO

)
. (10)

Conversely, if (10) holds for some finite A > 0 in place of ‖ϕ‖BMO, every arc E and any x > 0, then
ϕ ∈ BMO and A ∼ ‖ϕ‖BMO. The John-Nirenberg theorem easily implies that BMO ⊂ Lp for all
p <∞. The space of H1-functions whose boundary values lie in BMO will be denoted by BMOA, and
BMOA/C is a Banach space equipped with the BMO-norm. Clearly BMOA ⊂ Hp for 1 ≤ p < ∞,

and h+ ih̃ ∈ BMOA whenever h ∈ L∞(T). A sufficient condition for the boundedness of h̃ is that h be
Dini-continuous; recall that a function h defined on T is said to be Dini-continuous if ωh(t)/t ∈ L1([0, π]),
where

ωh(t) = sup
|θ1−θ2|≤t

∣∣h(eiθ1)− h(eiθ2)∣∣ , t ∈ [0, π],

is the modulus of continuity of h. Specifically [19, chap. III, thm 1.3], it holds that

ωh̃(ρ) ≤ C2

(∫ ρ

0

ωh(t)

t
dt + ρ

∫ π

ρ

ωh(t)

t2
dt

)
(11)

where C2 is a constant independent of f . From (11) it follows easily that h̃ is continuous if h is Dini-
continuous, and moreover that

‖h̃‖L∞(T) ≤ ωh̃(π) ≤ C2

∫ π

0

ωh(t)

t
dt, (12)
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where the first inequality comes from the fact that h̃ is continuous on T and therefore vanishes at some
point since it has zero-mean.
We turn to multiplicative properties of Hardy functions. It is well-known (see e.g. [17, 19, 23]) that a
nonzero f ∈ Hp can be uniquely factored as f = jw where

w(z) = exp

{
1

2π

∫ 2π

0

eiθ + z

eiθ − z
log |f(eiθ)| dθ

}
(13)

belongs to Hp and is called the outer factor of f , while j ∈ H∞ has modulus 1 a.e. on T and is called
the inner factor of f . The latter may be further decomposed as j = bSµ, where

b(z) = eiθ0zk
∏
zl 6=0

−z̄l
|zl|

z − zl
1− z̄lz

(14)

is the Blaschke product, with order k ≥ 0 at the origin, associated to the sequence zl ∈ D \ {0} and to
the constant eiθ0 ∈ T, while

Sµ(z) = exp

{
− 1

2π

∫ 2π

0

eiθ + z

eiθ − z
dµ(θ)

}
(15)

is the singular inner factor associated with µ, a positive measure on T which is singular with respect to
Lebesgue measure. The zl are of course the zeros of f in D \ {0}, counted with their multiplicities, while
k is the order of the zero at 0. If there are infinitely many zeros, the convergence of the product b(z) in D
is ensured by the condition

∑
l(1− |zl|) <∞ which holds automatically when f ∈ Hp \ {0}. If there are

only finitely many zl, we say that (14) is a finite Blaschke product; note that a finite Blaschke product
may alternatively be defined as a rational function of the form q/qR, where q is an algebraic polynomial
whose roots lie in D and qR indicates the reciprocal polynomial given by qR(z) = znq(1/z̄) if n is the
degree of q. The integer n is also called the degree of the Blaschke product.
That w(z) in (13) is well-defined rests on the fact that log |f | ∈ L1 if f ∈ H1 \{0}; this also entails that a
Hp function cannot vanish on a subset of strictly positive Lebesgue measure on T unless it is identically
zero. For simplicity, we often say that a function is outer (resp. inner) if it is equal to its outer (resp.
inner) factor.
Intimately related to Hardy functions is the Nevanlinna class N+ consisting of holomorphic functions in
D that can be factored as jE, where j is an inner function and E an outer function of the form

E(z) = exp

{
1

2π

∫ 2π

0

eiθ + z

eiθ − z
log ρ(eiθ) dθ

}
, (16)

with ρ a positive function such that log ρ ∈ L1(T) (although ρ itself need not be summable). Such a
function again has nontangential limits of modulus ρ a.e. on T that serve as a definition of its boundary
values. The Nevanlinna class will be instrumental to us in that N+ ∩ Lp(T) = Hp, see for example [17,
thm 2.11] or [19, 5.8, ch.II]. Thus, formula (16) defines a Hp-function if and only if ρ ∈ Lp(T). A useful
consequence is that, whenever g1 ∈ Hp1 and g2 ∈ Hp2 , we have g1g2 ∈ Hp3 if, and only if g1g2 ∈ Lp3 . In
particular g1g2 ∈ Hp3 if 1/p1 + 1/p2 = 1/p3.
It is a classical fact [19, ch. II, sec. 1] that a function f holomorphic in the unit disk belongs to Hp if,
and only |f |p, which is subharmonic in D, has a harmonic majorant there. This makes for a conformally
invariant definition of Hardy spaces over general domains in C. In this connection, the Hardy space H̄p

of C \ D can be given a treatment parallel to Hp using the conformal map z 7→ 1/z. Specifically, H̄p

consists of Lp functions whose Fourier coefficients of strictly positive index do vanish; these are, a.e. on T,
the complex conjugates of Hp-functions, and they can also be viewed as nontangential limits of functions
analytic in C\D having uniformly bounded Lp means over all circles centered at 0 of radius bigger than 1.
We also set BMOA = H̄1 ∩BMO. We further single out the subspace H̄p

0 of H̄p, consisting of functions
vanishing at infinity or, equivalently, having vanishing mean on T. Thus, a function belongs to H̄p

0 if,

and only if, it is a.e. on T of the form e−iθg(eiθ) for some g ∈ Hp. For G ∈ H̄p
0 , the Cauchy formula

assumes the form :

G(z) =
1

2 i π

∫
T

G(ξ)

z − ξ
dξ , z ∈ C \ D. (17)
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If E is a measurable subset of T, we set

< f, g >E=
1

2π

∫
E

f(eiθ)g(eiθ) dθ (18)

whenever f ∈ Lp(E) and g ∈ Lq(E) with 1/p+ 1/q = 1. If f and g are defined on a set containing E, we
often write for simplicity < f, g >E to mean < f|E , g|E >.
The duality product < , >T makes Hp and H̄q

0 orthogonal to each other, and reduces to the familiar
scalar product on L2(T)× L2(T). We note in particular the orthogonal decomposition :

L2(T) = H2 ⊕ H̄2
0 . (19)

For f ∈ C(T) and ν ∈M, the space of complex Borel measures on T, we set

ν.f =

∫
T
f(eiθ) dν(θ) (20)

and this pairing induces an isometric isomorphism between M (endowed with the norm of the total
variation) and the dual of C(T) [33, thm 6.19]. If we let A ⊂ H∞ designate the disk algebra of functions
analytic in D and continuous on D, and if A0 indicates those functions in A vanishing at zero, it is easy
to see that A0 is the orthogonal space under (20) to those measures whose Fourier coefficients of strictly
negative index do vanish. Now, it is a fundamental theorem by F. and M. Riesz that such measures
assume the form dν(θ) = g(eiθ) dθ with g ∈ H1, so the Hahn-Banach theorem implies that H1 is dual
via (20) to the quotient space C(T)/A0 [19, chap. IV, sec. 1]. Equivalently, H̄1

0 is dual to C(T)/A under
the pairing arising from the line integral :

(ḟ , F ) =
1

2iπ

∫
T
f(ξ)F (ξ) dξ , (21)

where F belongs to H̄1
0 and ḟ indicates the equivalence class of f ∈ C(T) modulo A. This entails that,

contrary to L1(T), the spaces H1 and H̄1
0 enjoy a weak-* compactness property of their unit ball.

Finally, we define the analytic and anti-analytic projections P+ and P− on Fourier series by :

P+

( ∞∑
n=−∞

ane
inθ

)
=

∞∑
n=0

ane
inθ, P−

( ∞∑
n=−∞

ane
inθ

)
=

−1∑
n=−∞

ane
inθ .

Equivalent to the M. Riesz theorem is the fact that P+ : Lp → Hp and P− : Lp → H̄p
0 are bounded for

1 < p <∞, in which case they coincide with the Cauchy projections:

P+(h)(z) =
1

2iπ

∫
T

h(ξ)

ξ − z
dξ, z ∈ D, P−(h)(s) =

1

2iπ

∫
T

h(ξ)

s− ξ
dξ, s ∈ C \ D. (22)

When restricted to L2(T), the projections P+ and P− are just the orthogonal projections onto H2 and
H̄2

0 respectively. Likewise P+ : L∞ → BMOA and P− : L∞ → BMOA are also bounded.
Although P±(h) needs not be the Fourier series of a function when h is merely in L1(T), it is nevertheless
Abel summable almost everywhere to a function lying in Ls(T) for 0 < s < 1, and it can still be interpreted
as the trace of an analytic function in the Hardy space of exponent s that we did not introduce [17, cor. to
thm 3.2]. To us it will be sufficient, when h ∈ L1, to regard P±(f) as the Fourier series of a distribution.
We record for further reference the following elementary fact :

Lemma 1 Let v ∈ L1(J) be such that P+(0 ∨ v) ∈ L2(T). Then, whenever g ∈ H2 is such that
g ∈ L2(I) ∨ L∞(J), it holds that

< P+(0 ∨ v) , g >T =< v , g >J .

Proof.
Since P+(0 ∨ v) ∈ L2(T) by hypothesis, we may define u ∈ L1(T) by the formula :

u = (0 ∨ v)−P+(0 ∨ v) ,
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and by the very definition of u all its Fourier coefficients of non-negative index do vanish hence u ∈ H̄1
0 .

Clearly u|I ∈ L2(I) and consequently, if g ∈ H2 is such that g ∈ L2(I) ∨ L∞(J), we have upon checking
summability on I and J separately that ug ∈ H̄1

0 . Therefore we get :

< v , g >J = < vg , 1 >J = < (0 ∨ v) g , 1 >T = < ug , 1 >T + < P+(0 ∨ v) g , 1 >T

= < P+(0 ∨ v) g , 1 >T = < P+(0 ∨ v) , g >T
(23)

where the next-to-last equality uses that the mean of the H̄1
0 -function ug is zero.

3 A bounded extremal problem and its well posedness

We first reduce problem (3) to a standard form where M ≡ 1. As the log-modulus of a nonzero Hardy
function is integrable, we will safely assume that logM ∈ L1(J) for otherwise the zero function is the
only candidate approximant. Then, letting wM be the outer function with modulus 1 on I and M on
J , we have that g belongs to H2 and satisfies |g| ≤ M a.e. on J if, and only if g/wM lies in H2 and
satisfies g/wM ≤ 1 a.e. on J ; it is so because g/wM lies by construction in the Nevanlinna class N+

whose intersection with L2(T) is H2. Altogether, upon replacing f by f/wM and g by g/wM , we see
that Problem (3) is equivalent to the following special case which is the one we shall really work with :

Normalized Problem
Given f ∈ L2(I), find g0 ∈ H2 such that |g0(eiθ)| ≤ 1 a.e. on J and

‖f − g0‖L2(I) = min
g∈H2

|g|≤1 a.e. on J

‖f − g‖L2(I) . (24)

We begin with a basic existence and uniqueness result :

Theorem 1 Problem (24) has a unique solution g0, and necessarily ‖g0‖L2(I) ≤ ‖f‖L2(I). Moreover
‖g0‖L∞(J) = 1 unless f = g|I for some g ∈ H2 such that ‖g‖L∞(J) < 1.

Corollary 1 Problem (3) has a unique solution.

Proof of Theorem 1.
Define a convex subset of L2(I) by C ∆

= {g|I ; g ∈ H2, ‖g‖L∞(J) ≤ 1}. We claim that C is closed. Indeed,
let {gn} be a sequence in H2, with ‖gn‖L∞(J) ≤ 1, that converges in L2(I) to some φ. Clearly {gn} is
bounded in L2(T), therefore some subsequence gkn converges weakly to g ∈ H2. Since |gkn | ≤ 1 on J , we
may assume upon refining the subsequence further that it converges weak-* in L∞(J) to a limit which
can be none but g|J . By weak-* compactness of balls in L∞(J), we get ‖g‖L∞(J) ≤ 1, hence g|I ∈ C. But
gkn |I a fortiori converges weakly to g|I in L2(I), thus φ = g|I ∈ C as claimed. By standard properties of

the projection on a non-empty closed convex set in a Hilbert space (note that 0 ∈ C), we deduce that the
solution g0 to (24) uniquely exists, and is characterized by the variational inequality [12, thm V.2.]:

g0|I ∈ C and Re < f − g0 , φ− g0 >I ≤ 0, ∀φ ∈ C. (25)

Using φ = 0 in (25) and applying the Schwarz inequality yields ‖g0‖L2(I) ≤ ‖f‖L2(I).
Assume finally that ‖g0‖L∞(J) < 1. Given h ∈ H∞, g0 + th is a candidate approximant for small t ∈ R
hence the map t 7→ ‖f−g0− th‖2L2(I) has a minimum at t = 0. Differentiating under the integral sign and
equating the derivative to zero yields 2Re < f − g0, h >I= 0 whence < f − g0, h >I= 0 upon replacing h
by ih. Letting h = eikθ for k ∈ N we see that (f − g0) ∨ 0 lies in H̄2

0 , hence it is identically zero because
it vanishes on J . Thus f = g0|I as was to be shown.

Theorem 1 entails that the constraint ‖g‖L∞(J) ≤ 1 in Problem (24) is saturated (meaning it is an
equality) unless f = g0|I . If the boundary of I has measure zero, more in fact is true :

Theorem 2 Assume that `(∂I) = 0 and let g0 be the solution to Problem (24). Then |g0| = 1 a.e. on J
unless f = g|I for some g ∈ H2 such that ‖g‖L∞(J) ≤ 1.
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It would be interesting to know how much the assumption `(∂I) = 0 can be relaxed in the above statement.
Reducing Problem (3) to Problem (24) as before, we obtain as a corollary :

Corollary 2 Assume that `(∂I) = 0 and let g0 be the solution to Problem (3). If logM ∈ L1(J), then
|g0(eiθ)| = M(eiθ) a.e. on J unless f = g|I for some g ∈ H2 such that |g(eiθ)| ≤M(eiθ) a.e. on J .

To prove Theorem 2 we establish three lemmas, the second of which will be of later use in the paper.

Lemma 2 Let E ⊂ T be infinite and K1 ⊂ T be a compact set such that E ∩ K1 = ∅. If we define a
collection R of rational functions in the variable z by

R = { c0 + i

n∑
k=1

ck
ei ψk + z

ei ψk − z
; c0 , ck ∈ R , ei ψk ∈ E , 1 ≤ k ≤ n, n ∈ N } , (26)

then R|K1
is uniformly dense in CR(K1).

Proof.
It is elementary to check that members of R are real-valued a.e. on T. Also, it is enough to assume that
E consists of a sequence {eiψk}k∈N that converges in T to some eiψ∞ . We work over the real axis where
computations are slightly simpler, and for this we consider the Möbius transform :

ϕ(z) = i
eiψ∞ + z

eiψ∞ − z
,

that maps T onto R ∪ {∞} with ϕ(eiψ∞) =∞. Set K2 = ϕ(K1), and note that it is compact in R since
eiψ∞ /∈ K1. Let RR denote the collection of all functions r ◦ ϕ−1 as r ranges over R. We are now left
to prove that the restrictions to K2 of functions in RR are uniformly dense in CR(K2). For this, we put
tk = ϕ(eiψk) and, denoting by t = ϕ−1(z) the independent variable in R, we compute from (26) that

RR = {a0 +

n∑
k=1

bk
t− tk

, a0 , bk ∈ R , 1 ≤ k ≤ n , n ∈ N },

that is to say RR is the set of real rational functions bounded at infinity, each pole of which is simple and
coincides with some tk. Thus if PR,n stands for the space of real polynomials of degree at most n, we get

RR =

{
pn(t)∏n

k=1(t− tk)
, pn ∈ PR,n, 1 ≤ k ≤ n, n ∈ N

}
,

where the empty product is 1. We claim that to each ε > 0 and p ∈ PR,n there exists r ∈ RR such that

||r − p||L∞(K2) ≤ ε,

and this will achieve the proof since PR,n is dense in CR(K2) by the Stone-Weierstrass theorem. To
establish the claim, let U be a neighborhood of 0 in Rn such that

∀(x1 . . . xn) ∈ U,
∣∣∣∣1− 1∏n

k=1(1− xk)

∣∣∣∣ ≤ ε

1 + ||p||L∞(K2)
.

Next, pick n distinct numbers tk1 , . . . , tkn so large in modulus that t/tkj ∈ U for t ∈ K2 and 1 ≤ j ≤ n;
this is certainly possible since K2 is compact whereas |tk| tends to ∞ because eiψk → eiψ∞ . Finally, set

r(t) =
p(t)∏n

j=1(1− t
tkj

)
.

Clearly r belongs to RR, and

||p− r||L∞(K2) ≤ ||p||L∞(K2)

∥∥∥∥∥∥1− 1∏n
j=1(1− t

tkj
)

∥∥∥∥∥∥
L∞(K2)

≤ ε

as claimed.
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Lemma 3 Let f ∈ L2(I) and g0 be the solution to problem (24). For h a real-valued Dini-continuous

function on T supported on the interior
◦
I of I, let

b(z) =
1

2π

∫
I

eit + z

eit − z
h(eit) dt , z ∈ D, (27)

be the Riesz-Herglotz transform of h. Then b is continuous on D, and moreover

Re < (f − g0) g0 , b >I= 0 . (28)

Proof.
It follows from (11) that b continuous on D. For λ ∈ R, consider the function

ωλ(z) = expλ b(z) , z ∈ D,

which is the outer function in H∞ whose modulus is equal to expλh. Since |ωλ| = 1 on J , the function
g0 ωλ is a candidate approximant in problem (24) thus λ→ ‖f−g0 ωλ‖2L2(I) reaches a minimum at λ = 0.
By the boundedness of b, we may differentiate this function with respect to λ under the integral sign,
and equating the derivative to 0 at λ = 0 yields (28).

Lemma 4 Let f ∈ L2(I) and g0 be the solution to Problem (24). Then (f − g0) g0 has real mean on I :

Re < (f − g0) g0 , i >I= 0. (29)

Proof.
For each α ∈ [−π, π], the function g0 e

iα belongs to H2 and is a candidate approximant in (24) since it
has the same modulus as g0. Hence the function α→ ‖f − g0 e

iα‖L2(I) reaches a minimum at α = 0, and
differentiating under the integral sign yields (29).

Proof of Theorem 2.

Since ∂J = ∂I has measure zero, it is equivalent to show that |g0| = 1 a.e. on
◦
J . Let

E = {eiθ ∈
◦
J , |g0(eiθ)| < 1} ,

and assume for a contradiction that `(E) > 0. By countable additivity, there is ε > 0 such that

Eε = {eiθ ∈
◦
J , |g0(eiθ)| ≤ 1− ε}

has strictly positive measure. Hence by inner regularity of Lebesgue measure, there is a compact set

K ⊂ Eε such that `(K) > 0, and since K ⊂
◦
J it is at distance η > 0 from I. For λ ∈ R and F a

measurable subset of K, let wλ,F be the outer function whose modulus is expλ on F , and 1 on T \ F .
By definition wλ,F (z) = exp {λAF (z)}, where

AF (z) =
1

2π

∫
F

eit + z

eit − z
dt , z ∈ D (30)

is the Riesz-Herglotz transform of χF . For λ < log(1/(1 − ε)) the function g0 wλ,F belongs to H2 and
satisfies |g0 wλ,F | ≤ 1 a.e. on J so that, by definition of g0, the function λ→ ‖f − g0 wλ,F ‖L2(I) reaches

a minimum at λ = 0. From (30), we see that AF is uniformly bounded on I because |eit − eiθ| ≥ η > 0
whenever eit ∈ F and eiθ ∈ I. Therefore we may differentiate under the integral sign to compute the
derivative of ‖f − g0 wλ,F ‖2L2(I) with respect to λ, which gives us

−2Re < f − g0 exp{λAF } , g0AF exp{λAF } >I .

Since the latter must vanish at λ = 0 we obtain

Re < f − g0 , g0AF >I= Re < (f − g0) g0 , AF >I= 0 . (31)
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Let eit0 be a density point of K and Il denote the arc centered at eit0 of length l, so that `(Il ∩K)/l→ 1
as l→ 0. In particular `(Il ∩K) 6= 0 for sufficiently small l. Noting that∣∣∣∣eit + eiθ

eit − eiθ
− eit0 + eiθ

eit0 − eiθ

∣∣∣∣ ≤ 2l/η2 for eit ∈ Il ∩K, eiθ ∈ I, (32)

and observing that (f − g0)g0 ∈ L1(I), we get from (31)-(32) that

Re < (f − g0)g0 ,
eit0 + eiθ

eit0 − eiθ
>I= lim

l→0
Re < (f − g0) g0 ,

2π

`(Il ∩K)
AIl∩K >I= 0 . (33)

Thus, if we let DK denote the set of density points of K, we may recap (33) and (29) by saying that
(f − g0) g0 is orthogonal to the real vector space

SK = {i c0 +

n∑
k=1

ck
ei φk + z

ei φk − z
, c0 , ck ∈ R , ei φk ∈ DK , 1 ≤ k ≤ n, n ∈ N }

for the real scalar product Re < , >I . Since `(∂I) = 0 we can replace I by Ī in this product :

Re < (f − g0) g0, r >Ī = 0 , ∀ r ∈ SK . (34)

As `(K) > 0 and almost every point of K is a density point by Lebesgue’s theorem [33, sec. 7.12], the set

DK is certainly infinite. Moreover, since K ⊂
◦
J , we have that I ∩DK = ∅. Now, Lemma 2 with E = DK

and K1 = I implies in view of (34) that

Re < (f − g0) g0 , iφ >Ī = 0 , ∀φ ∈ CR(Ī), (35)

which entails that (f −g0) g0 is real-valued a.e. on Ī. In particular, if h is a Dini-continuous real function

supported on
◦
I, (35) holds with φ = h̃|Ī . Hence by Lemma 3 (where I may be replaced by Ī), we get

that
< (f − g0) g0 , h >Ī= 0. (36)

However, by regularization, Dini-continuous functions are uniformly dense in the space of continuous

functions with compact support on
◦
I [25, chap. 1, prop. 8]. Therefore (36) in fact holds for every

continuous h supported on
◦
I. Consequently (f − g0) g0 must vanish a.e. on

◦
I thus also on I. Hence,

either g0 = f a.e. on I or g0 = 0 on a set of positive measure, in which case g0 = 0. In any case, by
Theorem 1, f is the trace on I of a H2-function with modulus at most 1 on J .

We now consider the continuity of the solution to problem (24) with respect to the data.

Theorem 3 Let f ∈ L2(I) and g0 be the solution to problem (24). Assume that f{n} converges to f in

L2(I) as n→∞, and let g
{n}
0 indicate the corresponding solution to problem (24). Then g

{n}
0 |I converges

to g0|I in L2(I) and g
{n}
0 |J converges weak-* to g0|J in L∞(J). If moreover `(∂I) = 0 and f is not the

trace on I of a H2-function less than 1 in modulus a.e. on J , then g
{n}
0 converges to g0 in L2(T).

Proof. By definition ‖g{n}0 ‖L∞(J) ≤ 1, and by Theorem 1 ‖g{n}0 ‖L2(I) ≤ ‖f{n}‖L2(I), hence g
{n}
0 is a

bounded sequence in H2. Let g∞ be a weak accumulation point and g
{kn}
0 a subsequence converging

weakly to g∞ in H2; a fortiori g
{kn}
0 |I converges weakly to g∞|I in L2(I). By weak (resp. weak-*)

compactness of balls in L2(I) (resp. L∞(J)), we get |g∞| ≤ 1 a.e. on J and

‖f − g∞‖L2(I) ≤ lim inf
n→∞

‖f{kn} − g{kn}0 ‖L2(I).

In particular g∞ is a candidate approximant, so one has inequalities :

‖f − g0‖L2(I) ≤ ‖f − g∞‖L2(I) ≤ lim inf
n→∞

‖f{kn} − g{kn}0 ‖L2(I) ≤ lim sup
n→∞

‖f{kn} − g{kn}0 ‖L2(I). (37)
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If one of these were strict, there would exist ε > 0 such that

‖f − g0‖L2(I) + ε ≤ ‖f{kn} − g{kn}0 ‖L2(I) (38)

for infinitely many n. But ‖f − f{kn}‖L2(I) < ε/2 for large n, thus (38) yields

‖f{kn} − g0‖L2(I) + ε/2 ≤ ‖f{kn} − g{kn}0 ‖L2(I)

contradicting the definition of g
{kn}
0 . Therefore equality holds throughout in (37), whence g∞ = g0 by

the uniqueness part of Theorem 1. Equality in (37) is also to the effect that

lim
n→∞

f{kn} − g{kn}0 = f − g0 in L2(I)

because the norm of the weak limit is not less than the limit of the norms. Refining kn if necessary, we

can assume in addition that g
{kn}
0 |J converges weak-* to some h in L∞(J), and since we already know

that it converges weakly to g0|J in L2(J) we get h = g0|J . Finally if `(∂I) = 0, we deduce from Theorem

2 that |g0| = 1 a.e. on J hence g
{kn}
0 |J converges to g0|J in L2(J), again because the norm of the weak

limit is not less than the limit of the norms. Altogether we have shown that any sequence meeting the
assumptions contains a subsequence satisfying the conclusions, which is enough to prove the theorem.

To conclude this section, we show that if f has more summability than required, then so does g0.

Proposition 1 Assume that f ∈ Lp(I) for some finite p > 2. If g0 denotes the solution to problem (24)
and if `(∂I) = 0, then g0 ∈ Hp and ‖g0‖Lp(I) ≤ (1 +Kp/2)‖f‖Lp(I).

Proof. Let h be a Dini-continuous real-valued function supported in
◦
I, and b his Riesz-Herglotz transform.

Since b has real part h on T, Lemma 3 gives us

< |g0|2 , h >I = Re < fg0 , b >I . (39)

Using Hölder’s inequality in (39) and observing that ‖g0‖L2(I) ≤ ‖f‖L2(I) ≤ ‖f‖Lp(I) in view of Theorem
1 and the fact that p > 2 while `(I) < 1, we obtain∣∣< |g0|2 , h >I

∣∣ ≤ ‖f‖Lp(I) ‖g0‖L2(I) ‖b‖Ls(I) ≤ ‖f‖2Lp(I) ‖b‖Ls0 (I), 1/p+ 1/2 + 1/s0 = 1.

Thus, because the conjugation operator has norm Ks0 on Ls0(T) while h is supported on I, we get a
fortiori ∣∣< |g0|2 , h >I

∣∣ ≤ (1 +Ks0)‖f‖2Lp(I) ‖h‖Ls0 (I). (40)

Now, Dini-continuous functions supported on
◦
I are dense in Ls0(

◦
I), hence also in Ls0(I) as `(∂I) = 0.

Therefore (40) implies by duality

‖g0‖Lp1 (I) ≤ (1 +Ks0)1/2‖f‖Lp(I), 1/p1 = (1/p+ 1/2)/2. (41)

Hölder’s inequality in (39), using this time (41) instead of ‖g0‖L2(I) ≤ ‖f‖Lp(I), strengthens (40) to∣∣< |g0|2 , h >I
∣∣ ≤ (1 +Ks0)1/2(1 +Ks1)‖f‖2Lp(I) ‖h‖Ls1 (I), 1/p+ 1/p1 + 1/s1 = 1,

which gives us by duality

‖g0‖Lp2 (I) ≤ (1 +Ks0)1/4 (1 +Ks1)1/2 ‖f‖Lp(I), 1/p2 = (1/p+ 1/p1)/2.

Set 1/pk = (1/p+ 1/pk−1)/2 and 1/p+ 1/pk + 1/sk = 1. Iterating this reasoning yields by induction

‖g0‖Lpk (I) ≤ ‖f‖Lp(I) Πk−1
j=0 (1 +Ksj )1/2k−j

. (42)

As k goes large pk increases to p and Ksk = Kpk+1/2 decreases to Kp/2. Hence the product on the right
of (42) becomes arbitrarily close to 1 +Kp/2, and the result now follows on letting k → +∞.

In problem (24), it would be interesting to know whether g0 ∈ BMOA when f ∈ L∞(I) and `(∂I) = 0.
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4 The critical point equation

In any convex minimization problem, the solution is characterized by a variational inequality saying
that the criterium increases with admissible increments of the variable. If the problem is smooth,
infinitesimal increments span a half-space whose boundary hyperplane is tangent to the admissible set,
and the variational inequality becomes an equality asserting that the derivative of the objective function
is zero on that hyperplane. This equality, sometimes called a critical point equation, expresses that the
gradient of the objective function in the ambient space is a vector lying orthogonal to the constraint; this
vector is an implicit parameter of the critical point equation, known as a Lagrange parameter.
In problem (24) the variational inequality is (25), and the non-smoothness of the L∞-norm makes it a
priori unclear whether a critical point equation exists. It turns out that it does, at least when `(∂I) = 0.

Theorem 4 Assume that f ∈ L2(I) is not the trace on I of a H2-function of modulus less than or equal
to 1 a.e on J , and suppose further that `(∂I) = 0. Then, g0 ∈ H2 is the solution to problem (24) if, and
only if, the following two conditions hold :

(i) |g0(eiθ)| = 1 for a.e. eiθ ∈ J ,

(ii) there exists a non-negative function λ ∈ L1
R(J) such that,

(g0|I − f) ∨ λ g0|J ∈ H̄1
0 . (43)

Moreover, if f ∈ Lp(I) for some p such that 2 < p <∞, then λ ∈ Lp(J).

Remark: note that (43) is equivalent to saying that (g0|I − f) ∨ λ g0|J ∈ L
1(T) and

P+

(
(g0|I − f) ∨ λ g0|J

)
= 0 (44)

which is the critical point equation proper, with Lagrange parameter λ. Observe that log λ ∈ L1(J),
otherwise the H̄1

0 -function (g0|I − f) ∨ (λ g0|J ) would be zero hence f = g0|I , contrary to the hypothesis.
To prove Theorem 4, we need two lemmas the first of which stands somewhat dual to Lemma 3 :

Lemma 5 Let f ∈ L2(I) and g0 be the solution to problem (24). If h is a non-negative function in

L∞(T) which is supported on
◦
J , and if

a(z) =
1

2π

∫
J

eiθ + z

eiθ − z
h(eiθ) dθ , z ∈ D, (45)

denotes its Riesz-Herglotz transform, then a is continuous on I and we have that

Re < (f − g0) g0 , a >I ≥ 0 . (46)

Proof. Since h is supported in
◦
J , it is clear from the definition that a is continuous on I. For t ∈ R, let

us put
wt(z) = exp t a(z) , z ∈ D,

which is the outer function in H∞ with modulus exp{t h}. As h ≥ 0, the function g0 wt is a candidate
approximant in problem (24) when t ≤ 0. Since t → ‖f − g0 wt‖2L2(I) can be differentiated with respect
to t under the integral sign by the boundedness of a on I, its derivative at t = 0 must be non-positive by
the minimizing property of g0. But this derivative is just −2Re < (f − g0) g0 , a >I .

Our second preparatory result is of technical nature :
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Lemma 6 Assume that f ∈ L2(I) and let g0 be the solution to problem (24). If f 6= g0|I and `(∂I) = 0,

then there exists a unique λ ∈ L1
R(J) such that

(g0|I − f) g0|I ∨ λ ∈ H̄
1
0 . (47)

Necessarily λ ≥ 0 a.e. on J , and if f ∈ L∞(I) then λ ∈ Lp(J) for 1 < p < ∞. If f{n} ∈ L∞(I)

converges to f in L2(I) while g
{n}
0 is the corresponding solution to problem (24), and if we write by (47)(

g0
{n}
|I − f{n}

)
g0
{n}
|I ∨ λ{n} ∈ H̄1

0 , with λ{n} ∈ L1
R(J), (48)

then the sequence of concatenated functions in (48) converges weak-* in H̄1
0 to the function (47).

Proof. The uniqueness of λ is clear because if λ1 ∈ L1
R(J) satisfies (47), then 0 ∨ (λ− λ1) ∈ H̄1

0 so that
λ = λ1. To prove the existence of λ, assume first that f ∈ L∞(I) and fix p ∈ (2,∞). By proposition 1
and Hölder’s inequality, we know that (g0 − f) g0 ∈ Lp(I). For h a real-valued function in Lq(J) where
1/q = 1− 1/p, let a be the Riesz-Herglotz transform of 0 ∨ h given by (45) and put

L(h) = Re < (f − g0) g0 , a >I . (49)

As 0 ∨ h vanishes on I by construction, it is clear that

L(h) = Re < (f − g0) g0 , 0̃ ∨ h >I ,

and since the conjugation operator is bounded by Kq on LqR(T), we obtain from Hlder’s inequality

|L(h)| ≤ Kq ‖(f − g0) g0‖Lp(I) ‖h‖Lq(J) .

Thus L is a continuous linear form on LqR(J) and there exists λ ∈ LpR(J) such that

L(h) =< λ , h >J , h ∈ Lq(J). (50)

By Lemma 5, L is a positive functional on bounded functions supported on
◦
J . Hence λ ≥ 0 a.e. on

◦
J

thus also on J since `(∂J) = `(∂I) = 0. As Re a = h and λ is real-valued, equation (50) gives us

L(h) = Re < λ , a >J , h ∈ Lq(J), (51)

and therefore, substracting (49) from (51), we get

Re < (g0|I − f) g0|I ∨ λ , a >T = 0 (52)

whenever a is the Riesz-Herglotz transform of some h ∈ LqR(J).
By regularization Dini-continuous functions are dense in continuous functions with compact support in
◦
I, so they are dense in Lq(I) since `(∂I) = 0. Hence it follows from Lemma 3 and the boundedness of
the conjugation operator in LqR(T) that

Re < (g0 − f) g0 , b >I= 0 . (53)

whenever b is the Riesz-Herglotz transform of some φ ∈ LqR(I). As λ is real-valued and Re b = 0 a.e. on
J , we may rewrite (53) in the form

Re < (g0|I − f) g0|I ∨ λ , b >T = 0. (54)

Now, by (6), every Hq-function is the sum of three terms : a pure imaginary constant, the Riesz-Herglotz
transform of φ ∨ 0 for some φ ∈ LqR(I), and the Riesz-Herglotz transform of 0 ∨ h for some h ∈ LqR(J).
Therefore by (54), (52), (29) and the realness of λ, we obtain

Re < (g0|I − f) g0|I ∨ λ , g >T = 0 , ∀g ∈ Hq.

Changing g into ig we see that the real part is superfluous and letting g(eiθ) = eikθ for k ∈ N we get

(g0|I − f) g0|I ∨ λ ∈ H̄
p
0 . (55)
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If f is now an arbitrary function in L2(I) and f{n}, g
{n}
0 are as indicated in the statement of the lemma,

we know from (55), since f{n} ∈ L∞(I), that there is a unique λ{n} meeting (48). By Theorem 3 we

have that g
{n}
0 → g0 in H2, hence by the Schwarz inequality

lim
n→∞

∥∥∥(g{n}0 − f{n}
)
g
{n}
0 − (g0 − f) g0

∥∥∥
L1(I)

= 0. (56)

Besides, since λ{n} ≥ 0 and the mean on T of a H̄1
0 -function is zero, (48) implies∥∥∥λ{n}∥∥∥

L1(J)
=

∫
J

λ{n}(t) dt =

∫
I

(
f{n} − g{n}0

)
g
{n}
0 (t) dt ≤

∥∥∥(g{n}0 − f{n}
)
g
{n}
0

∥∥∥
L1(I)

,

and in view of (56) we deduce that
∥∥λ{n}∥∥

L1(J)
is bounded independently of n. Consequently the sequence(

g
{n}
0 |I − f

{n}
)
g
{n}
0 |I ∨ λ

{n} (57)

has a weak-* convergent subsequence to some F in H̄1
0 , regarding the latter as dual to C(T)/A under

the pairing < , >T. Checking this convergence on continuous functions supported on the interior of I,

we conclude from (56) that F|◦
I

= (g0|I − f) g0|I a.e. on
◦
I thus also on I. Therefore if we let λ = F|J ,

we meet (47). Checking the same convergence on positive functions supported on
◦
J , we deduce since

λ{n} ≥ 0 that F|J is non-negative. Finally, since F is determined by its trace (g0|I − f) g0|I on I, there

is a unique weak-* accumulation point of the bounded sequence (57) which is thus convergent.

Proof of Theorem 4.
To prove sufficiency, assume that g0 ∈ H2 satisfies (i)− (ii), and let u ∈ H2 be such that ‖u‖L∞(J) ≤ 1.
From (44) we get

P+

(
0 ∨ λ g0|J

)
= P+

(
(f − g0|I ) ∨ 0

)
∈ H2,

thus applying Lemma 1 with v = λ g0|J and g = u− g0, we obtain

< λg0 , u− g0 >J = − < P+

(
(f − g0|I ) ∨ 0

)
, u− g0 >T = − < f − g0 , u− g0 >I . (58)

Since Re < λg0 , u− g0 >J= Re < λ , uḡ0 − 1 >J is non-negative because λ ≥ 0 and Re(uḡ0) ≤ |u| ≤ 1,
we see from (58) that (25) is met.
Proving necessity is a little harder. For this, let g0 solve problem (24) and observe from Theorem 2 that
(i) holds. Thus we are left to prove (ii); in fact, we will show that the function λ from Lemma 6 meets
(43).
Assume first that f ∈ L∞(I). From Proposition 1 we get in particular g0 ∈ H4, and by Lemma 6 there
is λ ≥ 0 in L2

R(J) such that (47) holds with H̄1
0 replaced by H̄2

0 . Using (i), we may rewrite this as(
(g0|I − f) ∨ λ g0|j

)
g0 = F, F ∈ H̄2

0 . (59)

Let g0 = jw be the inner-outer factorization of g0. We will show that F ∈ j̄H̄2
0 , and this will achieve the

proof when f ∈ L∞(I). Indeed, dividing (59) by ḡ0 then yields

(g0|I − f) ∨ λ g0|j ∈ w̄−1H̄2
0 (60)

which means that the concatenated function in (60) is of the form e−iθg(eiθ)/w(eiθ) for some g ∈ H2.
However, g/w belongs to the Nevanlinna class N+ by definition, and it also lies in L2(T) because so does
the function on the left-hand side of (60) (recall |g0| = 1 a.e. on J). Hence g/w ∈ H2, implying that

e−iθg(eiθ)/w(eiθ) ∈ H̄2
0 ⊂ H̄1

0 , as desired.
Let j = bSµ where b is the Blaschke product defined by (14) and Sµ the singular inner factor defined
by (15). To prove that F ∈ j̄H̄2

0 , it is enough by uniqueness of the inner-outer factorization to establish
separately that F ∈ b̄H̄2

0 and F ∈ S̄µH̄2
0 . To establish the former, it is sufficient to show that F ∈ b̄1H̄2

0

whenever b1 is a finite Blaschke product dividing b, i.e. such that b = b1b2 with b2 a Blaschke product.
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Pick such a b1 and put for simplicity γ0 = b2Sµw, so that g0 = b1γ0. We can write b1 = q/qR, where q is

an algebraic polynomial and qR = znq(1/z̄) its reciprocal. We may assume that q is monic and deg q > 0:

q(z) = zn + αn−1z
n−1 + αn−2z

n−2 + . . .+ α0 , for some n ∈ N \ {0}.

When the set of monic polynomials of degree n gets identified with Cn, taking as coordinates all the
coefficients except the leading one, the subset Ω of those polynomials whose roots lie in D is open. Now,
if Q ∈ Ω and bQ = Q/QR denotes the associated Blaschke product, the function g = bQγ0 is a candidate
approximant in Problem (24) since |g| = |g0| on T, thus the map

Q→ ‖f − γ0 bQ‖2L2(I) (61)

reaches a minimum on Ω at Q = q. Let us write a generic Q ∈ Ω as

Q(z) = zn + an−1z
n−1 + an−2z

n−2 + . . .+ a0.

Because bQ(eiθ) is a rational function in the variables aj whose denominator is locally uniformly bounded
away from 0 on T, we may differentiate (61) under the integral sign with respect to Re aj , Im aj . Since
q is a minimum point, equating these partial derivatives to zero at (al) = (αl) yields

−2Re < (f − g0) γ0 ,

(
xj
∂bQ(eiθ)

∂Re aj
+ yj

∂bQ(eiθ)

∂Im aj

)∣∣∣al = αl
0≤l≤n−1

>I= 0 , ∀xj , yj ∈ R

for every j ∈ {0, . . . , n− 1}. After a short computation, this gives us

Re < (f − g0) γ0 ,
(xj + iyj)e

ijθ

qR(eiθ)
− (xj − iyj)ei(n−j)θq(eiθ)

(qR(eiθ))
2 >I = 0 , ∀xj , yj ∈ R ,

where the second argument in the above scalar product is a function of eiθ ∈ I. Multiplying both
arguments of this product by the unimodular function b1(eiθ) = qR/q(eiθ) does not affect its value, thus

Re < (f − g0) g0 ,
(xj + iyj)e

ijθ

q(eiθ)
− (xj − iyj)ei(n−j)θ

qR(eiθ)
>I = 0 , ∀xj , yj ∈ R . (62)

In another connection, by the very definition of qR, we have that

ei(n−j)θ

qR(eiθ)
=

ei(n−j)θ

einθq(eiθ)
=

(
eijθ

q(eiθ)

)
hence the second argument of < , >I in (62) is pure imaginary on T, and since λ is real a.e. on J

Re < λ ,
(xj + iyj)e

ijθ

q(eiθ)
− (xj − iyj)ei(n−j)θ

qR(eiθ)
>J = 0 , ∀xj , yj ∈ R . (63)

Therefore, substracting (62) from (63), we obtain from (i) and (59) that

Re < F ,
(xj + iyj)e

ijθ

q(eiθ)
− (xj − iyj)ei(n−j)θ

qR(eiθ)
>T = 0 , ∀xj , yj ∈ R . (64)

The roots of qR are reflected from those of q across T, thus lie outside D. Hence ei(n−j)θ/qR(eiθ) ∈ H2,
and since F ∈ H̄2

0 we see from (19) that (64) simplifies to

Re < F ,
(xj + iyj)e

ijθ

q(eiθ)
>T = 0 , ∀xj , yj ∈ R .

As xj + iyj is an arbitrary complex number, the symbol “Re” is redundant in this equation, therefore
< F , eijθ/q(eiθ) >T= 0 for all j ∈ {0, . . . , n− 1} and combining linearly these n equations gives us

< F ,
p(eiθ)

q(eiθ)
>T = 0 , ∀p ∈ Pn−1 , (65)
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where Pn−1 is the space of algebraic polynomials of degree at most n− 1. Now, it is elementary that

b̄1H̄
2
0 =

qR

q
H̄2

0 =

(
Pn−1

q

)⊥
in H̄2

0 , (66)

and consequently from (65) and (66), we see that F ∈ b̄1H̄2
0 as desired.

We turn to the proof that F ∈ S̄µH̄2
0 , assuming that µ is not the zero measure otherwise it is trivial. We

need introduce the inner divisors of Sµ which, by uniqueness of the inner-outer factorization, are just the
singular factors Sµ0

where µ0 is a positive measure on T such that µ − µ0 is still positive. Pick such a
µ0, and set β0 = bSµ−µ0w so that g0 = Sµ0β0. For a ∈ D, consider the function

ja(z) =
Sµ0

(z) + a

1 + āSµ0(z)
, z ∈ D.

It is elementary to check that ja is inner, so that β0ja is a candidate approximant in problem (24) because
|β0ja| = |g0| a.e. on T. Therefore the map

a→ ‖f − β0 ja‖2L2(I) (67)

reaches a minimum on D at a = 0. Since

∂ja(z)

∂Re a
=

1

1 + āSµ0
(z)
− Sµ0

(z)(Sµ0
(z) + a)

(1 + āSµ0(z))
2 ,

∂ja(z)

∂Im a
=

i

1 + āSµ0
(z)

+
iSµ0

(z)(Sµ0
(z) + a)

(1 + āSµ0(z))
2 ,

are bounded for z ∈ T, locally uniformly with respect to a ∈ D, we may differentiate (67) under the
integral sign with respect to Re a and Im a, and equating both partial derivatives to zero at a = 0 yields

Re < (f − g0)β0 , (x+ iy)− (x− iy)S2
µ0
>I = 0 , ∀x , y ∈ R .

Multiplying both arguments of < , >I by the unimodular function Sµ0 we get

Re < (f − g0) g0 , (x+ iy)Sµ0 − (x− iy)Sµ0 >I = 0 , ∀x , y ∈ R . (68)

In another connection, as (x+ iy)Sµ0 − (x− iy)Sµ0 is pure imaginary on T while λ is real-valued,

Re < λ , (x+ iy)Sµ0 − (x− iy)Sµ0 >J = 0 , ∀x , y ∈ R . (69)

Substracting (68) from (69), we deduce from (i) and (59) that

Re < F , (x+ iy)Sµ0 − (x− iy)Sµ0 >T = 0 , ∀x , y ∈ R.

Since F ∈ H̄2
0 while Sµ0 ∈ H2, this simplifies to

Re < F , (x+ iy)Sµ0) >T = 0 , ∀x , y ∈ R .

But x+ iy is arbitrary in C, so the symbol “Re” is redundant in the above equation and we obtain

< F , Sµ0) >T = 0. (70)

Put F (eiθ) = e−iθg(eiθ) with g ∈ H2, and take conjugates in (70) after multiplying both arguments by
eiθ:

< g , e−iθSµ0
>T = 0. (71)

As Sµ is a nontrivial singular inner factor, it follows from [1, cor. 6.1.] that the closed linear span of the
functions P+(e−iθSµ0

) when Sµ0
ranges over all inner divisors of Sµ is equal to (SµH

2)⊥ in H2. Hence
(71) implies that g ∈ SµH2, and therefore F ∈ Sµ H̄2

0 as announced.
Having completed the proof of necessity when f ∈ L∞(I), we now remove this restriction. Let f ∈ L2(I)
and f{n} ∈ L∞(I) converge to f in L2(I). Adding to f{n} a small L2(I)-function that goes to zero with
n if necessary, we may assume that f{n} /∈ H2

|I . With the notations of Lemma 6, let us put for simplicity

F {n}
∆
=
(
g0
{n}
|I − f{n}

)
g0
{n}
|I ∨ λ{n}, F

∆
=
(
g0|I − f

)
g0|I ∨ λ. (72)
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By the first part of the proof, we can write

F {n} = ḡ
{n}
0 G{n} , where G{n}

∆
=
(

(g0
{n}
|I − f{n}) ∨ λ{n} g0

{n}
|J

)
∈ H̄1

0 . (73)

Note that ‖G{n}‖L1(T) is bounded since ‖f{n} − g
{n}
0 ‖L2(I) ≤ ‖f{n}‖L2(I) (for the zero function is a

candidate approximant) and ‖λ{n}g{n}0 ‖L1(J) = ‖λ{n}‖L1(J) is bounded by Lemma 6. Thus, extracting

a subsequence if necessary, we may assume that G{n} converges weak-* to some G ∈ H̄1
0 , and then

G{n}(z)→ G(z) for fixed z ∈ C\D by (17). Moreover, still from Lemma 6, we know that F {n} converges
to F weak-* in H̄1

0 , so we get by (17) again that F {n}(z)→ F (z) for fixed z ∈ C \D. Finally Theorem 3

entails that g
{n}
0 → g0 in H̄2, hence using (17) once more we get that ḡ

{n}
0 (z)→ ḡ0(z) for fixed z ∈ C\D.

Altogether, in view of (73), we obtain:

F (z) = lim
n→∞

F {n}(z) = ḡ0(z)G(z) , z ∈ C \ D ,

showing that F/ḡ0 = G ∈ H̄1
0 . By (i) and the definition (72) of F , this yields (43) and achieves the proof.

Using Theorem 4 it is easy to characterize the solution to problem (3). For this, we write L1(M2dθ, J)
to mean those functions h on J such that hM2 ∈ L1(J).

Corollary 3 Assume that M ∈ L2(J) is non-negative with logM ∈ L1(J), and that f ∈ L2(I) is not the
trace on I of an H2-function of modulus less than or equal to M a.e on J ; suppose further that `(∂I) = 0.
Then, for g0 ∈ H2 to be the solution to problem (3), it is necessary and sufficient that the following two
properties hold :

(i) |g0(eiθ)| = M(eiθ) for a.e. eiθ ∈ J ,

(ii) there exists a non-negative measurable function λ ∈ L1(M2dθ, J), such that :

(g0|I − f) ∨ λ g0|J ∈ w̄−1
M H̄1

0 , (74)

where wM designates the outer function with modulus 1 a.e. on I and modulus M a.e. on J . In particular
if 1/M ∈ L∞(J) (more generally if λM ∈ L1(J)), then (74) amounts to :

(g0|I − f) ∨ λ g0|J ∈ H̄1
0 . (75)

Proof. Clearly (i) is equivalent to |g0/wM | = 1 a.e. on J , and since |wM |2 = 1∨M2 we see on multiplying
(74) by w̄M that it is equivalent to(

g0|I
wM
− f

wM

)
∨
(
λM2

) g0|J
wM

∈ H̄1
0 .

The conclusion now follows from Theorem 4 and the reduction of problem (3) to problem (24) given in
section 3. If λM ∈ L1(J) so does λg0|J by (i), and the function (74) lies in e−ıθN+ ∩ L1(T) = H̄1

0 .
Relation (75) can be recast as a spectral equation for a Toeplitz operator, which should be compared with
those in [3, 8] that form the basis of a constructive approach to BEP

(
L2(I), L2(J)

)
. There, λ is a constant

and the operators involved are continuous. In our case we consider the Toeplitz operator φ0∨(λ−1) having
symbol 0 ∨ (λ− 1), with values in H2 and domain D = {g ∈ H2; λg|J ∈ L1(J), P+(0 ∨ λg|J ) ∈ H2}:

φ0∨(λ−1)(g) = P+

(
0 ∨ (λ− 1)g|J

)
.

By Beurling’s theorem [19, chap. II, cor. 7.3] φ0∨(λ−1) is densely defined, for D contains wρH
2 where wρ

is the outer function with modulus 1 ∨min(1, 1/λ). Note also that I + φ0∨(λ−1) is injective, because if
g|I ∨ λg|J ∈ H̄2

0 for some g ∈ D we may multiply it by ḡ to obtain a H̄1
0 -function h which is real-valued

on T and thus identically zero by Poisson representation of h(1/z̄) ∈ eiθH1.
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Corollary 4 Let M ∈ L2(J) be non-negative and 1/M ∈ L∞(J). Assume f ∈ L2(I) is not the trace on
I of a H2-function of modulus less than or equal to M a.e on J ; suppose further that `(∂I) = 0. If g0 is
the solution to problem (3) and λ is as in (74), then

g0 =
(
I + φ0∨(λ−1)

)−1
P+(f ∨ 0) . (76)

Proof. From (75) we see that λg0|J ∈ L
1(J) and that P+(0 ∨ λg0|J ) = P+((f − g0|I ) ∨ 0) ∈ H2, hence

g0 ∈ D. Using that g0 = P+(g0), we now obtain (76) on rewriting (75) as

P+

(
g0 + 0 ∨ (λ− 1)g0|J − f ∨ 0

)
= 0,

Further smoothness properties of λM2 ∈ L1(J) follow from the next representation formula.

Proposition 2 Let M ∈ L2(J) be non-negative with logM ∈ L1(J), and assume that f ∈ L2(I) is
not the trace on I of an H2-function of modulus less than or equal to M a.e. on J . Suppose also that
`(∂I) = 0. If g0 denotes the solution to problem (3) and λ ∈ L1(M2dθ, J) is the non-negative function

such that (74) holds, then λM2 extends across
◦
J to a holomorphic function F on C \ I satisfying

F (1/z̄) = F (z), z ∈ C \ I. (77)

Moreover, we have the Herglotz-type representation :

F (z) = − 1

2iπ

∫
I

eiθ + z

eiθ − z
Im
{
f(eiθ) g0(eiθ)

}
dθ , z ∈ C \ I. (78)

Proof. By (i) of Corollary 3 we know that |g0| = M a.e. on J , hence multiplying (74) by ḡ0 we get(
|g0|I |

2 − f ḡ0|I

)
∨ λM2 ∈ e−iθN

+ ∩ L1(T) = H̄1
0 . (79)

Call F the concatenated function on the left of (79), so that H(z) = i F (1/z̄) lies in H1 and vanishes
at zero since it has zero mean on T. Clearly H has real part −Imf ḡ0|I ∨0 on T, so the Riesz-Herglotz
representation (6) yields :

i F (1/z̄) = H(z) = − 1

2π

∫
I

eiθ + z

eiθ − z
Im
{
f(eiθ) g0(eiθ)

}
dθ , z ∈ D ,

and upon conjugating and changing z into 1/z̄ we obtain (78) for z ∈ C \ D. As the right-hand side

extends analytically to D across
◦
J by reflection, (77) follows.

The interpretation of λ as a Lagrange parameter is justified by the duality relation below. For convenience,
we write L1

+(M2dθ, J) for the set of non-negative functions in L1(M2dθ, J) whose logarithm lies in L1(J).

Proposition 3 Assume that M ∈ L2(J) is non-negative with logM ∈ L1(J), and that f ∈ L2(I) is not
the trace on I of an H2-function of modulus less than or equal to M a.e on J . Suppose further that
`(∂I) = 0, and let g0 ∈ H2 be the solution to Problem 3 with λ as in (74). Then, it holds that

‖f − g0‖2L2(I) = supµ∈L1
+(M2dθ,J) infg∈H2

(
‖f − g‖2L2(I) +

∫
J
µ (|g|2 −M2) dθ

)
= infg∈H2 supµ∈L1

+(M2dθ,J)

(
‖f − g‖2L2(I) +

∫
J
µ (|g|2 −M2) dθ

)
.

(80)

Moreover, the sup inf and the inf sup in (80) are attained for g = g0 and µ = λ.

Proof. Let A, B respectively denote the sup inf and the inf sup in (80). Setting g = g0 for each µ, we get
‖f − g0‖2L2(I) ≥ A from Corollary 3-(i). For the reverse inequality, we fix µ = λ and we show that

min
g∈H2

‖f − g‖2L2(I) +

∫
J

λ (|g|2 −M2) dθ
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is attained at g0. Clearly, it is enough to minimize over those g ∈ H2 such that λ|g|2 ∈ L1(J). Pick such
a g, and for t ∈ R let gt = g0 + t(g − g0). The function

Ψ(t) = ‖f − gt‖2L2(I) +

∫
J

λ (|gt|2 −M2) dθ,

is convex and continuously differentiable on R. Differentiating under the integral sign, we get

Ψ′(t) = 2Re (< gt − f, g − g0 >I + < λgt, g − g0 >J) ,

and in particular

Ψ′(0) = 2Re
(
< (g0|I − f) ∨ λg0|J , g − g0 >T

)
= 2Re

(
<
(
(g0|I − f) ∨ λg0|J

)
(g − g0) , 1 >T

)
. (81)

Now (g0 − f) ∨ λg0 ∈ e−iθN+ by (74), and since g − g0 ∈ H2 it also holds that g − g0 ∈ N+. Therefore(
(g0|I − f) ∨ λg0|J

)
(g − g0) ∈ e−iθN+,

and since it belongs to L1(T) because λ1/2g0|J and λ1/2g|J both lie in L2(J), we deduce that it is also

in H̄1
0 . Consequently it has zero mean on T, and we see from (81) that Ψ′(0) = 0, hence Ψ meets a

minimum at 0 by convexity. Expressing that ‖f − g0‖2L2(I) = Ψ(0) ≤ Ψ(1) for each g ∈ H2 such that

λ|g|2 ∈ L1(J) leads us to ‖f − g0‖2L2(I) ≤ A, as desired. Thus we have proven the first equality in (80)
and we have also shown it is attained for g = g0 and µ = λ.
To establish that ‖f − g0‖2L2(I) = B, observe first that

sup
µ∈L1

+(M2dθ,J)

(
‖f − g‖2L2(I) +

∫
J

µ (|g|2 −M2) dθ
)

= +∞

unless |g| ≤ M a.e. on J ; indeed if |g| > M on a set E ⊂ J of strictly positive measure, we can set
µ = ρχE + ε for fixed ε > 0 and arbitrarily large ρ. Therefore we may restrict the minimization in the
second line of (80) to those g such that |g| ≤ M a.e. on J . For such g the supremum is ‖f − g‖2L2(I),
for the integral term is nonpositive and we can pick µ to be a positive but arbitrary small function. As
g0 minimizes g 7→ ‖f − g‖2L2(I) by definition, and since the integral term is always 0 if we put g = g0 by

Corollary 3-(i), we may set g = g0 and µ = λ to attain the inf sup. This achieves the proof.
Note that Proposition 3 would still hold if we dropped the log-integrability requirement in the definition
of L1

+(M2dθ, J), for the latter was never needed in the proof. However, this requirement conveniently
restricts the maximization space in (80) to a class of µ for which one can form the outer function wµ,
and this will be of use in what follows.

5 The dual functional and Carleman’s formulas

For M ∈ L2(J) a non-negative function such that logM ∈ L1(J) and f ∈ L2(I) which is not the trace on
I of a H2-function of modulus less than or equal to M a.e. on J , we denote by ΦM the dual functional
of problem (3) which acts on L1

+(M2dθ, J) as follows (compare [11, sec. 4.3]):

ΦM (µ) = inf
g∈H2

(
‖f − g‖2L2(I) +

∫
J

µ (|g|2 −M2) dθ
)
, µ ∈ L1

+(M2dθ, J). (82)

As an infimum of affine functions, ΦM is concave and upper semi-continuous with respect to µ ∈
L1

+(M2dθ, J), when endowed with the natural norm (i.e. the L1 -norm on J with weight M2). Note that
the extra-condition logµ ∈ L1(J) makes L1

+(M2dθ, J) non-complete. In view of (80), solving problem
(3) amounts to maximize ΦM over the convex set L1

+(M2dθ, J). As we shall see momentarily, the true
nature of Carleman-type formulas in this context is that they solve for g0 in (74) as a function of f and
λ, and more generally for the optimal g in (82), whenever the inf is attained (cf. Proposition 4).

Theorem 5 Let M ∈ L2(J) be non-negative with logM ∈ L1(J), and assume that f ∈ L2(I) is not the
trace on I of a H2-function of modulus less than or equal to M a.e. on J . Suppose that `(∂I) = 0, and
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let g0 be the solution to problem (3) with λ ∈ L1(M2dθ, J) the non-negative function such that (74) holds.
Write wλ1/2 for the outer function with modulus λ1/2 a.e. on J and modulus 1 a.e. on I. Then

g0(z) =
1

2iπ wλ1/2(z)

∫
I

wλ1/2(ξ) f(ξ)

ξ − z
dξ, z ∈ D. (83)

Conversely, if λ is a positive function on J such that log λ ∈ L1(J) and if g0 defined by (83) lies in H2,
then g0 is the solution to problem (3) where M = |g0||J . In this case λ is the function appearing in (74).

Proof. Assume g0 is the solution to problem (3) so that (i) and (ii) of Corollary 3 hold. Dividing (74)
by w̄λ1/2 and using that |wλ1/2 |2 = 1 ∨ λ, we deduce

wλ1/2(g0 − (f ∨ 0)) ∈ w̄−1
λ1/2 w̄

−1
M H̄1

0 .

Since λ ∈ L1(M2dθ, J), the left-hand side lies in L2(T) and therefore it belongs to H̄2
0 because the

right-hand side is in e−iθN+ by construction. In particular

P+ (wλ1/2(g0 − (f ∨ 0))) = 0. (84)

But wλ1/2g0 ∈ H2 because it clearly belongs to N+ ∩ L2(T), so that (84) implies:

wλ1/2g0 = P+(wλ1/2g0) = P+ (wλ1/2(f ∨ 0)) .

Now, (83) follows from this and (22). Conversely, assume that g0 defined by (83) lies in H2 and set
M = |g0||J . Since fwλ1/2 ∈ L2(I), we see from (83) and (22) that g0wλ1/2 ∈ H2 and that

g0wλ1/2 = P+ (fwλ1/2 ∨ 0)

which implies (84). Thus wλ1/2(g0 − (f ∨ 0)) ∈ H̄2
0 and multiplying by w̄M w̄λ1/2 ∈ H̄2 yields

w̄M |wλ1/2 |2 (g0 − (f ∨ 0)) = w̄M
(
(g0|I − f) ∨ λg0|J

)
∈ H̄1

0

from which (74) follows. As (i) of Corollary 3 is met by definition, g0 indeed solves for problem (3).

Theorem 5 justifies one assertion made in the introduction. Namely if w is outer, we may write it as
wIwJ where wI (resp. wJ) has modulus 1 on I (resp. J). Then, expression (2) coincides with formula
(83) if f gets replaced by fwI , g0 by gwwI , and wλ1/2 by wJ . So, if w is invertible in H∞, it follows from
the theorem that gw is a best approximant to f in L2(|w|2Idθ, I) among those H2 functions not exceeding
|gw| in modulus, pointwise on J .
Next, we compute the dual functional ΦM (µ) introduced in (82).

Proposition 4 Let M ∈ L2(J) be non-negative with logM ∈ L1(J), and assume that f ∈ L2(I) is not
the trace on I of an H2-function of modulus less than or equal to M a.e. on J . Suppose further that
`(∂I) = 0 and let µ ∈ L1

+(M2dθ, J). Write wµ1/2 for the outer function with modulus µ1/2 a.e. on J and
modulus 1 a.e. on I. Then, the function ΦM (µ) defined by (82) can be expressed as

ΦM (µ) =
∥∥P− (fwµ1/2 ∨ 0

)∥∥2

L2(T)
−
∥∥∥µ1/2M

∥∥∥2

L2(J)
. (85)

Moreover, if we set

gµ(z) =
1

2iπ wµ1/2(z)

∫
I

wµ1/2(ξ) f(ξ)

ξ − z
dξ, z ∈ D, (86)

then the infimum in the right-hand side of (82) is attained at g = gµ, whenever the latter belongs to H2.

Proof. Assume first that µ is such that gµ ∈ H2; this holds in particular when 1/µ ∈ L∞(J), because
then 1/wµ1/2 ∈ H∞ while (22) shows that the integral in (86) lies in H2. From Theorem 5 it follows that
gµ is the solution to problem (3) where M gets replaced by |gµ|, and µ plays the role of λ in (74). Hence
Proposition 3 implies that gµ is an infimizer of

inf
g∈H2

(
‖f − g‖2L2(I) +

∫
J

µ (|g|2 − |gµ|2) dθ
)
,
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and since µ is kept fixed gµ is clearly also an infimizer of

inf
g∈H2

(
‖f − g‖2L2(I) +

∫
J

µ (|g|2 −M2) dθ
)

which is but the right-hand side of (82). This proves the second assertion of the proposition.
By (86)) and (22), taking into account that |wµ1/2 | = 1 ∨ µ1/2, what precedes can be reformulated as

ΦM (µ) = ‖f − gµ‖2L2(I) +
∫
J
µ (|gµ|2 −M2) dθ

=
∥∥(wµ1/2f ∨ 0)− wµ1/2gµ

∥∥2

L2(T)
−
∫
J
µM2 dθ

=
∥∥∥PH̄2

0

(
fwµ1/2 ∨ 0

)∥∥∥2

L2(T)
−
∥∥µ1/2M

∥∥2

L2(J)
.

This proves (85) when gµ ∈ H2. To get it in general, we apply what we just did to the sequence
µn = µ+ 1/n, observing that gµn

∈ H2 because 1/µn ∈ L∞(J). By monotone convergence we obtain

lim
n→∞

∥∥∥µ1/2
n M − µ1/2M

∥∥∥
L2(J)

= 0. (87)

Moreover, as logµn decreases to logµ, we certainly have on putting log−(x) = max{− log x, 0} and
log+(x) = max{log x, 0} that

log− µn ≤ log− µ ≤ | logµ| ∈ L1(J),
log+ µn ≤ log+

(
µnM

2
)

+
∣∣logM2

∣∣ ≤ ∣∣µnM2 − 1
∣∣+ 2| logM |

≤ (µ+ 1)M2 + 1 + 2| logM | ∈ L1(J),

and therefore, by dominated convergence as applied to logµn = log+ µn − log− µn, we obtain

lim
n→∞

exp

{
1

4π

∫
J

eit + z

eit − z
logµndt

}
= exp

{
1

4π

∫
J

eit + z

eit − z
logµdt

}
, z ∈

◦
I .

In other words, w
µ

1/2
n

converges pointwise to wµ1/2 on
◦
I and therefore almost everywhere on I since

`(∂I) = 0. Thus, appealing to dominated convergence once more, we get

lim
n→∞

∥∥∥fwµ1/2
n
− fwµ1/2

∥∥∥
L2(I)

= 0, (88)

and from (87), (88), and (85) which is known to hold with µ replaced by µn, we see that

lim
n→∞

ΦM (µn) =
∥∥P− (fwµ1/2 ∨ 0

)∥∥2

L2(T)
−
∥∥∥µ1/2M

∥∥∥2

L2(J)
. (89)

In another connection, it is plain that

lim sup
n→∞

ΦM (µn) ≤ ΦM (µ) ≤ lim inf
n→∞

ΦM (µn), (90)

where the first inequality comes from (87) and the upper semi-continuity of ΦM in L1
+(M2dθ, J) while

the second inequality is obvious from (82), (87), and the fact that µ ≤ µn. Now (85) follows from (89)
and (90).

We mentioned early in Section 3 that problem (3) reduces to the case where M ≡ 1. If moreover
f ∈ L∞(I) and we let Af∨0 : H2 → H̄2

0 denote the Hankel operator with symbol f ∨ 0 defined by
Af∨0(u) = P−((f ∨ 0)u), Proposition 4 yields a formula for the value of the criterion which may be
compared with the Nehari theorem (see e.g. [29, Thm. 1.3.2]):

Corollary 5 When f ∈ L∞(I) \H2
|I and `(∂I) = 0, the squared value of problem (24) is:

sup
u∈H2, |u|I |≡1

(
‖Af∨0(u)‖2L2(T) − ‖u‖

2
L2(T) + `(I)

)
. (91)
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Proof. This is straightforward from (85) and the first half of (80), except that the maximization bears
on outer u only. However, since for every inner function Θ it holds that

‖P−((f ∨ 0)Θu)‖2 = ‖P−(Θ(P−((f ∨ 0)u))‖2 ≤ ‖Θ(P−((f ∨ 0)u)‖2 = ‖P−((f ∨ 0)u)‖2,

maximizing over all u ∈ H2 having modulus 1 a.e. on I does not increase the value of the problem.

Being concave on the convex set L1
+(M2dθ, J), the functional ΦM has a directional derivative at every

point in each admissible direction. Here, a direction h is said to be admissible at µ ∈ L1
+(M2dθ, J) if

µ + th ∈ L1
+(M2dθ, J) as soon as t ≥ 0 is small enough. From a constructive viewpoint, computing

this derivative is important when designing ascent algorithms to maximize ΦM and thus numerically
solve for problem (3). It also sheds light on the role of λ as a “pointwise” Lagrange multiplier. The
next proposition does such a computation, under mild assumptions on f , in those directions h such that
h/µ ∈ L∞(J). Note, since µ 6= 0 a.e. (for logµ ∈ L1(J)), that such directions are dense in the set of all
admissible directions, hence this result allows one indeed to find a direction of ascent for ΦM .

Proposition 5 Assumptions and notations being as in Proposition 4, suppose in addition that |f | ∈ Lp(I)
for some p > 2. Let further h be a real function on J such that ‖h/µ‖L∞(J) < 1. Then µ + h ∈
L1

+(M2dθ, J) and h ∈ L1(M2dθ, J). Moreover, defining gµ as in (86), it holds that h|gµ|2 ∈ L1(J) and
that ∣∣∣∣ΦM (µ+ h)− ΦM (µ)−

∫
J

h(|gµ|2 −M2) dθ

∣∣∣∣ = o
(
‖h/µ‖L∞(J)

)
, (92)

where the function oK is a little “o” of its argument near 0, uniformly with respect to µ.

Proof. Clearly µ + h = µ(1 + h/µ) ∈ L1
+(M2dθ, J) whenever ‖h/µ‖L∞(J) < 1, which in turn entails

h ∈ L1(M2dθ, J). Using (22), we may rewrite (86) in the following form:

wµ1/2gµ = P+(fwµ1/2 ∨ 0), (93)

and since |wµ1/2 | = 1 on I we get that wµ1/2gµ ∈ H2 with norm at most ‖f‖L2(I) because P+ is a
contraction in L2(T). As |wµ1/2 |2 = µ on J , we thus have that h|gµ|J |2 = (h/µ)|wµ1/2gµ|2|J ∈ L

1(J) with

norm bounded by ‖f‖2L2(I) when ‖h/µ‖L∞(J) < 1. In particular, the integral in the left-hand side of (92)

is well-defined. Next, multiplying the H̄2
0 -function wµ1/2gµ − (wµ1/2f ∨ 0) = −P−(wµ1/2f ∨ 0) by the

H̄2-function wµ1/2gµ (compare (84)) yields that

(|gµ|I |
2 − fḡµ|I ) ∨ µ|gµ|J |

2 ∈ H̄1
0 ,

with norm at most ‖f‖2L2(I). Therefore the conjugate function of (|gµ|I |
2 − Re(f̄gµ|I )) ∨ µ|gµ|J |

2 lies in

L1(T), and by Zygmund’s theorem so does the conjugate function of |f |2∨0 since the latter is nonnegative
and lies in Lp/2(T) by assumption, thus a fortiori in H1 because p > 2. Adding up yields

˜︷ ︸︸ ︷(
|gµ|2|I + |f |2

2
+
|gµ|I − f |2

2

)
∨ µ|gµ|2|J ∈ L

1(T),

with norm bounded by some constant C(f) depending only on f , and since the function under brace is
positive it lies in L log+ L with norm bounded by some constant C ′(f), thanks to the M. Riesz theorem
(cf. (8) and the remark thereafter). A fortiori then,∣∣P−(fwµ1/2 |I ∨ 0)

∣∣2 =
∣∣(fwµ1/2 |I ∨ 0)− wµ1/2gµ

∣∣2 = |gµ|I − f |
2 ∨ µ|gµ|2|J ∈ L log+ L (94)

with norm bounded by C ′′(f), where we used (93) again. Let us write

w(µ+h)1/2(z) = wµ1/2(z) exp

{
1

4π

∫
J

eiθ + z

eiθ − z
log(1 + h/µ)(eiθ) dθ

}
= wµ1/2(z) e∆h(z),

where we have put for simplicity

∆h(z) =
1

4π

∫
J

eiθ + z

eiθ − z
log(1 + h/µ)(eiθ) dθ, z ∈ D. (95)
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Note that ∆h ∈ BMOA and e∆h ∈ H∞ since log(1 + h/µ) ∈ L∞(J) for ‖h/µ‖L∞(J) < 1. Now, it is
straightforward that∥∥P− (fw(µ+h)1/2 ∨ 0

)∥∥2

L2(T)
−

∥∥P− (fwµ1/2 ∨ 0
)∥∥2

L2(T)
=
∥∥P− (fwµ1/2(e∆h − 1) ∨ 0

)∥∥2

L2(T)

+ 2Re < P−
(
fwµ1/2 ∨ 0

)
,P−

(
fwµ1/2(e∆h − 1) ∨ 0

)
>T,

(96)

and our next goal is to prove that∣∣∣∣2Re < P−
(
fwµ1/2 ∨ 0

)
, P−

(
fwµ1/2(e∆h − 1) ∨ 0

)
>T −

∫
J

h|gµ|2 dθ
∣∣∣∣ = o

(
‖h/µ‖L∞(J)

)
. (97)

For this, since P+ + P− = id (the identity operator), we observe from (19) that

< P−
(
fwµ1/2 ∨ 0

)
, P−

(
fwµ1/2(e∆h − 1) ∨ 0

)
>T = < P−

(
fwµ1/2 ∨ 0

)
, (e∆h − 1)(fwµ1/2 ∨ 0) >T

=< P−
(
fwµ1/2 ∨ 0

)
, (e∆h − 1)P−

(
fwµ1/2 ∨ 0

)
>T = <

∣∣P− (fwµ1/2 ∨ 0
)∣∣2 , e∆h − 1 >T

where we used in the second equality that (e∆h − 1)P+

(
fwµ1/2 ∨ 0

)
∈ H2 for e∆h − 1 ∈ H∞. Besides,

P−
(
fwµ1/2 ∨ 0

)
+ P+

(
fwµ1/2 ∨ 0

)
= 0 a.e. on J,

which implies in view of (93) that∫
J

h|gµ|2 =

∫
J

h

µ

∣∣P+

(
fwµ1/2 ∨ 0

)∣∣2 =<
∣∣P− (fwµ1/2 ∨ 0

)∣∣2 , 0 ∨ h/µ >T .

Altogether, the expression inside absolute values on the left-hand side of (97) is therefore equal to

<
∣∣P− (fwµ1/2 ∨ 0

)∣∣2 , Re
(
2(e∆h − 1)− (0 ∨ h/µ)

)
>T .

By (95), it holds on T that 2∆h = 0 ∨ log(1 + h/µ) + iϕ where ϕ denotes the conjugate function of
0 ∨ log(1 + h/µ). Thus, the quantity above can be rewritten as Q1 +Q2 with

Q1
∆
= 2 <

∣∣P− (fwµ1/2 ∨ 0
)∣∣2 , (cos(ϕ/2)− 1)

(
1 ∨ (1 + h/µ)1/2

)
>T,

Q2
∆
= 2 <

∣∣P− (fwµ1/2 ∨ 0
)∣∣2 , (1 + h/µ)1/2 − 1− h/(2µ) >J .

We prove separately that both Q1 and Q2 are o
(
‖h/µ‖L∞(J)

)
; hereafter, we use the same symbol o for

different functions as this causes no confusion. On the one hand, there is an absolute constant C such
that

∣∣(1 + h/µ)1/2 − 1− h/(2µ)
∣∣ < C‖h/µ‖2L∞(J) for ‖h/µ‖L∞(J) < 1, therefore

|Q2| ≤ 2C‖f‖2L2(T)‖h/µ‖
2
L∞(J) (98)

which is indeed o
(
‖h/µ‖L∞(J)

)
, where “o” is independent of µ. On the other hand, as cos(ϕ/2)− 1 ≤ 0,

it holds for ‖h/µ‖L∞(J) < 1 that

|Q1| ≤ 2
√

2 <
∣∣P− (fwµ1/2 ∨ 0

)∣∣2 , 1− cos(ϕ/2) >T . (99)

Put for simplicity F
∆
=
∣∣P− (fwµ1/2 ∨ 0

)∣∣2 and B(ϕ)
∆
= (1− cos(ϕ/2))/ϕ, noting that |B(ϕ)|, hence also

|B(ϕ)| log+ |B(ϕ)|, is bounded above independently of ϕ. Then, it holds that

<
∣∣P− (fwµ1/2 ∨ 0

)∣∣2 , 1− cos(ϕ/2) >T = < B(ϕ)F , ϕ >T . (100)

Now, by (9), we have that ‖ϕ‖BMO ≤ C1‖ log(1 +h/µ)‖L∞(J), and by (8) the function B(ϕ)F + iB̃(ϕ)F
lies in H1 with norm at most C0‖B(ϕ)F‖L log+ L. Therefore, by Fefferman’s duality [19, Ch. VI, Thm.
4.4], we get that

|< B(ϕ)F , ϕ >T| ≤ C4‖B(ϕ)F‖L log+ L‖ log(1 + h/µ)‖L∞(J) (101)

for some absolute constant C4. Hence, by the inequality | log(1 + h/µ)| ≤ 2|h/µ| which is valid for
|h/µ| ≤ 1/2, we obtain from (100)-(101) that

<
∣∣P− (fwµ1/2 ∨ 0

)∣∣2 , 1− cos(ϕ/2) >T ≤ 2
∥∥∥B(ϕ)

(
P−

(
fwµ1/2 ∨ 0

))2∥∥∥
L log+ L

‖h/µ‖L∞(J)
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as soon as ‖h/µ‖L∞(J) < 1/2. Therefore, to prove that (99) is o(‖h/µ‖L∞(J)), it is enough to show that

lim
‖h/µ‖L∞(J)→0

∥∥∥Bh (P− (fwµ1/2 ∨ 0
))2∥∥∥

L log+ L
= 0. (102)

But F =
∣∣P− (fwµ1/2 ∨ 0

)∣∣2 is bounded in Lp/2(T)-norm, independently of µ, by Kp‖f‖2p in view of the

M. Riesz theorem and because wµ1/2 has modulus 1 on I, hence F log+ F is bounded in Lα(T) for every
1 < α < p/2. Moreover, as B(ϕ) is a C1-smooth function of ϕ, it holds that ‖B(ϕ)‖BMO ≤ C5‖ϕ‖BMO

for some absolute constant C5. Consequently, since ‖ϕ‖BMO ≤ 2C1‖h/µ‖L∞ for |h/µ| ≤ 1/2, the limiting
relation (102) follows from Hölder’s inequality and the fact that the BMO norm dominates the Lq(T)
norm for all 1 < q <∞.
In the same vein we show that∥∥P− (fwµ1/2(e∆h − 1) ∨ 0

)∥∥2

L2(T)
= o

(
‖h/µ‖L∞(J)

)
. (103)

Indeed, since P− is a contraction in L2(T) and |wµ1/2 | ≡ 1 on I, we have that∥∥P− (fwµ1/2(e∆h − 1) ∨ 0
)∥∥2

L2(T)
≤ < |f |2 ,

∣∣e∆h − 1
∣∣2 >L2(I)= 2 < |f |2 , (1− cos(ϕ/2)) >L2(I)

which can be treated like the right-hand side of (99) to obtain (103). In view of (85), (96), (97) and
(103), the proof is complete once we have observed that∥∥∥(µ+ h)1/2M

∥∥∥2

L2(J)
−
∥∥∥(µ)1/2M

∥∥∥2

L2(J)
=

∫
J

hM2. (104)

Remark: it is unclear whether Proposition 5 holds true as soon as |f |2 ∈ L log+ L. In this case, the
difficulty is of course to prove (102). When f merely lies in L2(I), it is easy to check using (12), (98),
(99), and (104) that∣∣∣∣ΦM (µ+ h)− ΦM (µ)−

∫
J

h(|gµ|2 −M2) dθ

∣∣∣∣ = O

((
‖h/µ‖2L∞(J) +

∫ π

0

ω0∨h/µ(t)

t
dt

)2
)
, (105)

which is a weak substitute to (92) under the (much stronger) assumption that 0∨h/µ is Dini-continuous.
When f ∈ Lp(I) with p > 2, Proposition 5 may be used to constructively approach problem (3) from the
point of view of convex optimization using an ascent algorithm, thanks to the uniform character of the
function o with respect to µ in (92).
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