A conjecture which implies that there are infinitely many primes of the form $n!+1$

Apoloniusz Tyszka

To cite this version:

Apoloniusz Tyszka. A conjecture which implies that there are infinitely many primes of the form $\mathrm{n}!+1.2017$. hal-01625653v2

HAL Id: hal-01625653
 https://hal.science/hal-01625653v2

Preprint submitted on 13 Nov 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

A conjecture which implies that there are infinitely many primes of the form $n!+1$

Apoloniusz Tyszka

Abstract

Let $f(6)=720$, and let $f(n+1)=f(n)$! for every integer $n \geqslant 6$. For an integer $n \geqslant 6$, let Λ_{n} denote the following statement: if a system $\mathcal{S} \subseteq\left\{x_{i}!=x_{j}: 1 \leqslant i<j \leqslant n\right\} \cup$ $\left\{x_{i} \cdot x_{j}=x_{j+1}: 1 \leqslant i<j \leqslant n-1\right\}$ has at most finitely many solutions in integers x_{1}, \ldots, x_{n} greater than 3 , then each such solution $\left(x_{1}, \ldots, x_{n}\right)$ satisfies $x_{1}, \ldots, x_{n} \leqslant f(n)$. We conjecture that the statements $\Lambda_{6}, \ldots, \Lambda_{9}$ are true. We prove that the statement Λ_{9} implies that there are infinitely many primes of the form $n!+1$.

Key words and phrases: prime numbers of the form $n!+1$.
2010 Mathematics Subject Classification: 11A41.

It is conjectured that $n!+1$ is prime for infinitely many positive integers n, see [3]. In this note, we propose a conjecture which implies this.

Lemma 1. For every integers x and y greater than $1, x!\cdot y=y!$ if and only if $x+1=y$.
For an integer $n \geqslant 6$, let \mathcal{V}_{n} denote the following system of equations:

$$
\left\{\begin{aligned}
\forall i \in\{1, \ldots, n-1\} \backslash\{1,3,5\} x_{i}! & =x_{i+1} \\
x_{1}! & =x_{6} \\
x_{1} \cdot x_{2} & =x_{3} \\
x_{3} \cdot x_{4} & =x_{5} \\
x_{1} \cdot x_{5} & =x_{6}
\end{aligned}\right.
$$

The diagram in Figure 1 illustrates the construction of the system \mathcal{V}_{n}.

Fig. 1 Construction of the system \mathcal{V}_{n}

Let $f(6)=720$, and let $f(n+1)=f(n)$! for every integer $n \geqslant 6$.
Lemma 2. For every integer $n \geqslant 6$, the system \mathcal{V}_{n} has exactly one solution in integers greater than 3, namely $(6,4,24,5,120, f(6), \ldots, f(n))$.

Proof. By Lemma 1, $x_{2}+2=x_{1}$. Hence, $\left(x_{2}+2\right) \cdot x_{2}=x_{1} \cdot x_{2}=x_{3}=x_{2}$!. Therefore, $x_{2}=4$. The rest of the proof follows from the diagram in Figure 1.

Let

$$
T_{n}=\left\{x_{i}!=x_{j}: 1 \leqslant i<j \leqslant n\right\} \cup\left\{x_{i} \cdot x_{j}=x_{j+1}: 1 \leqslant i<j \leqslant n-1\right\}
$$

For an integer $n \geqslant 6$, let Λ_{n} denote the following statement: if a system $\mathcal{S} \subseteq T_{n}$ has at most finitely many solutions in integers x_{1}, \ldots, x_{n} greater than 3 , then each such solution (x_{1}, \ldots, x_{n}) satisfies $x_{1}, \ldots, x_{n} \leqslant f(n)$.

Conjecture. The statements $\Lambda_{6}, \ldots, \Lambda_{9}$ are true.
We present a heuristic reasoning that leads to the Conjecture. For every integer $n \in\{6,7,8,9\}$, we consider all subsystems of the system T_{n}. We conjecture that the largest known solution is indeed the largest possible.

Theorem 1. For every statement Λ_{n}, the bound $f(n)$ cannot be decreased.
Proof. It follows from Lemma 2 because $\mathcal{V}_{n} \subseteq T_{n}$.
Theorem 2. Every statement Λ_{n} holds true with an integer bound that depends on n.
Proof. Indeed, for every integer $n \geqslant 6$, the system T_{n} has a finite number of subsystems.
Lemma 3. If a prime number x is grater than 3 , then $\frac{(x-1)!+1}{x}>3$.
Lemma 4. (Wilson's theorem, [4] p.89]). For every integer $x \geqslant 2, x$ is prime if and only if x divides $(x-1)!+1$.

Let \mathcal{A} denote the following system of equations:

$$
\left\{\begin{aligned}
x_{1}! & =x_{2} \\
x_{2}! & =x_{3} \\
x_{3}! & =x_{4} \\
x_{5}! & =x_{6} \\
x_{8}! & =x_{9} \\
x_{3} \cdot x_{5} & =x_{6} \\
x_{4} \cdot x_{8} & =x_{9} \\
x_{5} \cdot x_{7} & =x_{8}
\end{aligned}\right.
$$

Lemma 1 and the diagram in Figure 2 explain the construction of the system \mathcal{A}.

Fig. 2 Construction of the system \mathcal{A}
Lemma 5. For every integer $x_{1}>3$, the system \mathcal{A} is solvable in integers x_{2}, \ldots, x_{9} greater than 3 if and only if $x_{1}!+1$ is prime. In this case, the integers x_{2}, \ldots, x_{9} are uniquely determined by the following equalities:

$$
\begin{aligned}
& x_{2}=x_{1}! \\
& x_{3}=\left(x_{1}!\right)! \\
& x_{4}=\left(\left(x_{1}!\right)!\right)! \\
& x_{5}=x_{1}!+1 \\
& x_{6}=\left(x_{1}!+1\right)! \\
& x_{7}=\frac{\left(x_{1}!\right)!+1}{x_{1}!+1} \\
& x_{8}=\left(x_{1}!\right)!+1 \\
& x_{9}=\left(\left(x_{1}!\right)!+1\right)!
\end{aligned}
$$

Proof. By Lemmas 1 and 3, for every integer $x_{1}>3$, the system \mathcal{A} is solvable in integers x_{2}, \ldots, x_{9} greater than 3 if and only if $x_{1}!+1$ divides $\left(x_{1}!\right)!+1$. Hence, the claim of Lemma 5 follows from Lemma4.

Theorem 3. The statement Λ_{9} implies that there are infinitely many primes of the form $n!+1$.
Proof. Harvey Dubner proved that $872!+1$ is prime, see [2], [3], [5], p. 7], and [7]. Let $x_{1}=872$. By Lemma 5, there exists a unique tuple $\left(x_{2}, \ldots, x_{9}\right)$ of integers greater than 3 such that the tuple $\left(x_{1}, x_{2}, \ldots, x_{9}\right)$ solves the system \mathcal{A}. Hence,

$$
x_{9}=\left(\left(x_{1}!\right)!+1\right)!>((720!)!+1)!>((720!)!)!=((f(6)!)!)!=f(9)
$$

The statement Λ_{9} and the inequality $x_{9}>f(9)$ imply that the system \mathcal{A} has infinitely many solutions in integers x_{1}, \ldots, x_{9} greater than 3 . This conclusion and Lemma 5 imply that $x_{1}!+1$ is prime for infinitely many integers $x_{1}>3$.

Let C denote the following system of equations:

$$
\left\{\begin{aligned}
x_{1}! & =x_{4} \\
x_{2}! & =x_{5} \\
x_{3}! & =x_{6} \\
x_{2} \cdot x_{3} & =x_{4} \\
x_{3} \cdot x_{5} & =x_{6}
\end{aligned}\right.
$$

Lemma 1 and the diagram in Figure 3 explain the construction of the system C.

Fig. 3 Construction of the system C
Lemma 6. For every integers x_{1}, x_{2} greater than 3 , the system C is solvable in integers $x_{3}, x_{4}, x_{5}, x_{6}$ greater than 3 if and only if $x_{1}!=x_{2}\left(x_{2}+1\right)$. In this case, the integers $x_{3}, x_{4}, x_{5}, x_{6}$ are uniquely determined by the following equalities:

$$
\begin{aligned}
& x_{3}=x_{2}+1 \\
& x_{4}=x_{1}! \\
& x_{5}=x_{2}! \\
& x_{6}=\left(x_{2}+1\right)!
\end{aligned}
$$

Theorem 4. If the equation $x_{1}!=x_{2}\left(x_{2}+1\right)$ has at most finitely many solutions in positive integers, then the statement Λ_{6} guarantees that each such solution $\left(x_{1}, x_{2}\right)$ belongs to the set $\{(2,1),(3,2)\}$.

Proof. Suppose that the antecedent holds. Then, the equation $x_{1}!=x_{2}\left(x_{2}+1\right)$ has at most finitely many solutions $\left(x_{1}, x_{2}\right) \in(\mathbb{N} \backslash\{0,1,2,3\})^{2}$. By Lemma 6, the system C is solvable in integers $x_{3}, x_{4}, x_{5}, x_{6}$ greater than 3 . Since $C \subseteq T_{6}$, the statement Λ_{6} implies that $x_{1}!=x_{4} \leqslant f(6)=720=6$!. Hence, $x_{1} \in\{1,2,3,4,5,6\}$. For every integer $x_{1} \in\{1,2,3,4,5,6\}, x_{1}$! is a product of two consecutive integers if and only if $x_{1} \in\{2,3\}$.

The question of solving the equation $y!=x(x+1)$ was posed by P. Erdös, see [1]. F. Luca proved that the $a b c$ conjecture implies that the equation $y!=x(x+1)$ has only finitely many solutions in positive integers, see [6].

References

[1] D. Berend and J. E. Harmse, On polynomial-factorial Diophantine equations, Trans. Amer. Math. Soc. 358 (2006), no. 4, 1741-1779.
[2] C. K. Caldwell, The List of Largest Known Primes Home Page, http://primes.utm.edu/ primes/page.php?id=33856.
[3] C. K. Caldwell and Y. Gallot, On the primality of $n!\pm 1$ and $2 \times 3 \times 5 \times \cdots \times p \pm 1$, Math. Comp. 71 (2002), no. 237, 441-448.
[4] M. Erickson, A. Vazzana, D. Garth, Introduction to number theory, 2nd ed., CRC Press, Boca Raton, FL, 2016.
[5] R. K. Guy, Unsolved problems in number theory, 2nd ed., Springer, New York, 1994.
[6] F. Luca, The Diophantine equation $P(x)=n$! and a result of M. Overholt, Glas. Mat. Ser. III 37 (57) (2002), no. 2, 269-273.
[7] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, A002981, Numbers n such that $n!+1$ is prime, http://oeis.org/A002981.

Apoloniusz Tyszka
University of Agriculture
Faculty of Production and Power Engineering
Balicka 116B, 30-149 Kraków, Poland
E-mail: rttyszka@cyf-kr.edu.pl

