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A conjecture which implies that there are infinitely many
primes of the form n! + 1

Apoloniusz Tyszka

Abstract

Let f (6) = 720, and let f (n + 1) = f (n)! for every integer n > 6. For an integer
n > 6, let Λn denote the following statement: if a system S ⊆

{
xi! = x j : 1 6 i < j 6 n

}
∪{

xi · x j = x j+1 : 1 6 i < j 6 n − 1} has at most finitely many solutions in integers x1, . . . , xn

greater than 3, then each such solution (x1, . . . , xn) satisfies x1, . . . , xn 6 f (n). We conjecture
that the statements Λ6, . . . ,Λ9 are true. We prove that the statement Λ9 implies that there are
infinitely many primes of the form n! + 1.
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It is conjectured that n! + 1 is prime for infinitely many positive integers n, see [3]. In this note,
we propose a conjecture which implies this.

Lemma 1. For every integers x and y greater than 1, x! · y = y! if and only if x + 1 = y.

For an integer n > 6, letVn denote the following system of equations:
∀i ∈ {1, . . . , n − 1} \ {1, 3, 5} xi! = xi+1

x1! = x6

x1 · x2 = x3

x3 · x4 = x5

x1 · x5 = x6

The diagram in Figure 1 illustrates the construction of the systemVn.
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Fig. 1 Construction of the systemVn
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Let f (6) = 720, and let f (n + 1) = f (n)! for every integer n > 6.

Lemma 2. For every integer n > 6, the systemVn has exactly one solution in integers greater than 3,
namely

(
6, 4, 24, 5, 120, f (6), . . . , f (n)

)
.

Proof. By Lemma 1, x2 + 2 = x1. Hence, (x2 + 2) · x2 = x1 · x2 = x3 = x2!. Therefore, x2 = 4. The
rest of the proof follows from the diagram in Figure 1. �

Let
Tn =

{
xi! = x j : 1 6 i < j 6 n

}
∪

{
xi · x j = x j+1 : 1 6 i < j 6 n − 1

}
For an integer n > 6, let Λn denote the following statement: if a system S ⊆ Tn has at most finitely
many solutions in integers x1, . . . , xn greater than 3, then each such solution (x1, . . . , xn) satisfies
x1, . . . , xn 6 f (n).

Conjecture. The statements Λ6, . . . ,Λ9 are true.

We present a heuristic reasoning that leads to the Conjecture. For every integer n ∈ {6, 7, 8, 9}, we
consider all subsystems of the system Tn. We conjecture that the largest known solution is indeed
the largest possible.

Theorem 1. For every statement Λn, the bound f (n) cannot be decreased.

Proof. It follows from Lemma 2 becauseVn ⊆ Tn. �

Theorem 2. Every statement Λn holds true with an integer bound that depends on n.

Proof. Indeed, for every integer n > 6, the system Tn has a finite number of subsystems. �

Lemma 3. If a prime number x is grater than 3, then (x − 1)! + 1
x > 3.

Lemma 4. (Wilson’s theorem, [4, p. 89]). For every integer x > 2, x is prime if and only if x divides
(x − 1)! + 1.

LetA denote the following system of equations:

x1! = x2

x2! = x3

x3! = x4

x5! = x6

x8! = x9

x3 · x5 = x6

x4 · x8 = x9

x5 · x7 = x8

Lemma 1 and the diagram in Figure 2 explain the construction of the systemA.
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x1
! x2 +1 x5 ! x6
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!
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!
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x5 · x7 = x8

x3 · x5 = x6

x4 · x8 = x9

Fig. 2 Construction of the systemA

Lemma 5. For every integer x1 > 3, the system A is solvable in integers x2, . . . , x9 greater than 3
if and only if x1! + 1 is prime. In this case, the integers x2, . . . , x9 are uniquely determined by the
following equalities:

x2 = x1!
x3 = (x1!)!
x4 = ((x1!)!)!
x5 = x1! + 1
x6 = (x1! + 1)!

x7 =
(x1!)! + 1

x1! + 1
x8 = (x1!)! + 1
x9 = ((x1!)! + 1)!

Proof. By Lemmas 1 and 3, for every integer x1 > 3, the systemA is solvable in integers x2, . . . , x9

greater than 3 if and only if x1! + 1 divides (x1!)! + 1. Hence, the claim of Lemma 5 follows from
Lemma 4. �

Theorem 3. The statement Λ9 implies that there are infinitely many primes of the form n! + 1.

Proof. Harvey Dubner proved that 872! + 1 is prime, see [2], [3], [5, p. 7], and [7]. Let x1 = 872.
By Lemma 5, there exists a unique tuple (x2, . . . , x9) of integers greater than 3 such that the tuple
(x1, x2, . . . , x9) solves the systemA. Hence,

x9 = ((x1!)! + 1)! > ((720!)! + 1)! > ((720!)!)! = (( f (6)!)!)! = f (9)

The statement Λ9 and the inequality x9 > f (9) imply that the systemA has infinitely many solutions
in integers x1, . . . , x9 greater than 3. This conclusion and Lemma 5 imply that x1! + 1 is prime for
infinitely many integers x1 > 3. �

Let C denote the following system of equations:
x1! = x4

x2! = x5

x3! = x6

x2 · x3 = x4

x3 · x5 = x6

Lemma 1 and the diagram in Figure 3 explain the construction of the system C.
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x1!x4
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Fig. 3 Construction of the system C

Lemma 6. For every integers x1, x2 greater than 3, the system C is solvable in integers x3, x4, x5, x6

greater than 3 if and only if x1! = x2(x2 + 1). In this case, the integers x3, x4, x5, x6 are uniquely
determined by the following equalities:

x3 = x2 + 1
x4 = x1!
x5 = x2!
x6 = (x2 + 1)!

Theorem 4. If the equation x1! = x2(x2 + 1) has at most finitely many solutions in positive integers,
then the statement Λ6 guarantees that each such solution (x1, x2) belongs to the set {(2, 1), (3, 2)}.

Proof. Suppose that the antecedent holds. Then, the equation x1! = x2(x2 + 1) has at most finitely
many solutions (x1, x2) ∈ (N \ {0, 1, 2, 3})2. By Lemma 6, the system C is solvable in integers
x3, x4, x5, x6 greater than 3. Since C ⊆ T6, the statement Λ6 implies that x1! = x4 6 f (6) = 720 = 6!.
Hence, x1 ∈ {1, 2, 3, 4, 5, 6}. For every integer x1 ∈ {1, 2, 3, 4, 5, 6}, x1! is a product of two consecu-
tive integers if and only if x1 ∈ {2, 3}. �

The question of solving the equation y! = x(x + 1) was posed by P. Erdös, see [1]. F. Luca proved
that the abc conjecture implies that the equation y! = x(x + 1) has only finitely many solutions in
positive integers, see [6].
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