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Oscillatory dynamics in Smoluchowski's coagulation equation with diagonal kernel

We characterize the long-time behaviour of solutions to Smoluchowski's coagulation equation with a diagonal kernel of homogeneity γ < 1. Due to the property of the diagonal kernel, the value of a solution at a given cluster size depends only on a discrete set of points. As a consequence, the long-time behaviour of solutions is in general periodic, oscillating between different rescaled versions of a self-similar solution. Immediate consequences of our result are a characterization of the set of data for which the solution converges to self-similar form and a uniqueness result for self-similar profiles.

Introduction

Smoluchowski's classical coagulation equation provides a mean-field description of binary coalescence of clusters. If ξ denotes the size of a cluster and F (τ, ξ) the corresponding number density at time τ then the equation is given by

∂ τ F (τ, ξ) = 1 2 ξ 0 K(ξ-η, η)F (τ, ξ-η)F (τ, η)dη - ∞ 0 K(ξ, η)F (τ, ξ)F (τ, η)dη , (τ, ξ) ∈ (0, ∞) 2 , (1) 
where the coagulation kernel K = K(ξ, η) ≥ 0 describes the rate at which clusters of size ξ and η coagulate. This model has been used in various applications, most prominently in aerosol physics or polymerization, but also in astrophysics or population dynamics [START_REF] Aldous | Deterministic and stochastic models for coalescence (aggregation and coagulation): a review of the mean-field theory for probabilists[END_REF][START_REF] Drake | A general mathematical survey of the coagulation equation[END_REF][START_REF] Ramkrishna | Population balances: Theory and applications to particulate systems in engineering[END_REF]. We are in the following interested in kernels that grow at most sublinearly at infinity. In this case it is well-known for a large class of kernels that, if the initial condition F (0) has finite mass, i.e. finite first moment, then the solution F to (1) conserves the mass for all positive times, that is

∞ 0 ξF (τ, ξ) dξ = ∞ 0 ξF (0, ξ) dξ for all τ > 0 , (2) 
1 see the survey papers [START_REF] Ph | Weak compactness techniques and coagulation equations[END_REF][START_REF] Ph | On coalescence equations and related models[END_REF][START_REF] Leyvraz | Scaling theory and exactly solved models in the kinetics of irreversible aggregation[END_REF] and the references therein. Since two clusters merge into one during a coalescence event, the total number of clusters, i.e. the L 1 -norm of F (τ ), is expected to decay to zero as τ → ∞. This property, together with [START_REF] Bernard | Cyclic asymptotic behaviour of a population reproducing by fission into two equal parts[END_REF], entails that the mean size s(τ ) at time τ of the distribution of clusters increases without bounds with time but does not reveal much about the dynamics of the coagulation equation ( 1) and its possible dependence upon the coagulation kernel K. To gain further insight into these matters, the dynamical scaling hypothesis [START_REF] Friedlander | The self-preserving particle size distribution for coagulation by Brownian motion[END_REF][START_REF] Leyvraz | Scaling theory and exactly solved models in the kinetics of irreversible aggregation[END_REF][START_REF] Van Dongen | Scaling solutions of Smoluchowskis coagulation equation[END_REF] predicts that, for large times, the solution F (τ ) to [START_REF] Aldous | Deterministic and stochastic models for coalescence (aggregation and coagulation): a review of the mean-field theory for probabilists[END_REF] behaves in a self-similar way, that is,

F (τ, ξ) ∼ 1 s(τ ) 2 ϕ x s(τ ) as τ → ∞ , (3) 
for some scaling function ϕ to be determined, the prefactor of ϕ being chosen here to comply with the mass conservation [START_REF] Bernard | Cyclic asymptotic behaviour of a population reproducing by fission into two equal parts[END_REF]. Though this issue has been discussed in the physics literature for homogeneous coagulation kernels with homogeneity γ ≤ 1, that is,

K(λξ, λη) = λ γ K(ξ, η) , (λ, ξ, η) ∈ (0, ∞) 3 , (4) 
see [START_REF] Friedlander | The self-preserving particle size distribution for coagulation by Brownian motion[END_REF][START_REF] Leyvraz | Scaling theory and exactly solved models in the kinetics of irreversible aggregation[END_REF][START_REF] Van Dongen | Scaling solutions of Smoluchowskis coagulation equation[END_REF] and the references therein, the validity of ( 3) is still pending, except for the so-called solvable kernels K(ξ, η) = 2 and K(ξ, η) = ξ + η. In these two cases, equation

can be solved explicitly by transform methods and a complete characterization of the long-time behaviour of solutions to [START_REF] Aldous | Deterministic and stochastic models for coalescence (aggregation and coagulation): a review of the mean-field theory for probabilists[END_REF] with solvable kernels can be found in [START_REF] Menon | Approach to self-similarity in Smoluchowski's coagulation equations[END_REF]. Let us emphasize that the outcome of the analysis performed in [START_REF] Menon | Approach to self-similarity in Smoluchowski's coagulation equations[END_REF] is not only that the dynamical scaling hypothesis (3) is valid for a large class of initial data but also that other self-similar behaviours are possible and involve different time and size scales, as well as different scaling profiles. For all other kernels there are so far only numerical studies available [START_REF] Filbet | Numerical simulation of the Smoluchowski coagulation equation[END_REF][START_REF] Friedlander | The self-preserving particle size distribution for coagulation by Brownian motion[END_REF][START_REF] Krivitsky | Numerical solution of the Smoluchowski kinetic equation and asymptotics of the distribution function[END_REF][START_REF] Lee | A survey of numerical solutions to the coagulation equation[END_REF] that suggest for a range of kernels convergence to self-similar form in the long-time limit.

In subsequent years several results established also rigorously the existence of self-similar solutions, both with finite mass and with fat tails [START_REF] Escobedo | On self-similarity and stationary problem for fragmentation and coagulation models[END_REF][START_REF] Fournier | Existence of self-similar solutions to Smoluchowski's coagulation equation[END_REF][START_REF] Leyvraz | Rigorous results in the scaling theory of irreversible aggregation kinetics[END_REF][START_REF] Niethammer | Self-similar solutions with fat tails for Smoluchowski's coagulation equation with singular kernels[END_REF][START_REF] Niethammer | Self-similar solutions with fat tails for a coagulation equation with diagonal kernel[END_REF][START_REF] Niethammer | Self-similar solutions with fat tails for Smoluchowski's coagulation equation with locally bounded kernels[END_REF], but an analysis of the long-time behaviour of solutions is still elusive. It is worth pointing out that the very first existence results of self-similar solutions for a non-solvable coagulation kernel are obtained for the so-called diagonal kernel

K (ξ, η) = ξ 1+γ δ (ξ-η) , (ξ, η) ∈ (0, ∞) 2 , γ < 1 , ( 5 
)
where δ is the Dirac mass at zero [START_REF] Leyvraz | Rigorous results in the scaling theory of irreversible aggregation kinetics[END_REF][START_REF] Niethammer | Self-similar solutions with fat tails for a coagulation equation with diagonal kernel[END_REF]. Observe that the homogeneity of K is equal to γ as the Dirac mass is homogeneous of order -1 (it is the derivative in the sense of distributions of the Heaviside function which is clearly homogeneous of order zero). In this model, only clusters of the same size can coagulate and it is fairly clear that such a model has little physical realization. Nevertheless, it can be viewed as a limit case of a coagulation kernel for which equal size interactions dominate It has also the interesting feature of reducing the nonlocal nonlinear integral equation (1) to a nonlinear differential equation with delay which is more amenable to analysis, see [START_REF] Escobedo | On self-similarity and stationary problem for fragmentation and coagulation models[END_REF] below, and it is commonly believed that a better understanding of its behaviour paves the way to deal with more general kernels. In the same vein, we point out that the diagonal kernel is also used in [START_REF] Buffet | Gelation: the diagonal case revisited[END_REF][START_REF] Leyvraz | Existence and properties of post-gel solutions of the equations of coagulation[END_REF] to elucidate the onset of gelation, i.e. infringement of mass conservation, and the results obtained therein were for almost twenty years among the few rigorous ones available on this matter. We thus focus in this paper on Smoluchowski's coagulation equation ( 1) with diagonal kernel [START_REF] Drake | A general mathematical survey of the coagulation equation[END_REF] and we present the first rigorous analysis of the long-time behaviour of solutions for a non-solvable kernel. As already mentioned, it is in some sense orthogonal to the constant one since only clusters with equal sizes interact. When K is given by (5), equation (1) reduces to

∂ τ F (τ, ξ) = ξ 1+γ 2 3+γ F 2 (τ, ξ/2) -ξ 1+γ F 2 (τ, ξ) , (τ, ξ) ∈ (0, ∞) 2 . ( 6 
)
Obviously a key difference to continuous kernels is the fact that, for the diagonal one, the evolution of the number density F of clusters with mass ξ depends only on smaller values and not on larger ones. As a consequence, the equation obeys a maximum principle, a fact that we will also use in our analysis. Another key feature is that the evolution in ξ depends only on a discrete set of values of the form ξ/2 k and thus the evolution decouples in a certain sense which leads to a long-time behaviour of solutions that is different from what one expects for continuous kernels. We will explain this in more detail in Section 2.2 below, but point out already here, that our results are, to our knowledge, the first ones showing oscillatory behaviour for the solutions with finite mass. Such oscillatory behaviours can also be seen for kernels which are not diagonal, but are concentrated near the diagonal [START_REF] Herrmann | Instabilities and oscillations in coagulation equations with kernels of homogeneity one[END_REF]. These results indicate that the self-similar behaviour is not the only possibility for the coagulation equation, although this has been often assumed and conjectured.

2 Main results

Reformulation of the problem

It turns out to be more convenient to go over to the function

G(τ, η) = 2 η(1+γ) F (τ, ξ) with ξ = 2 η , η ∈ R , and τ > 0 .
Then G satisfies

∂ τ G(τ, η) = 1 2 1-γ G 2 (τ, η-1) -G 2 (τ, η) , (τ, η) ∈ (0, ∞) × R , (7) 
and

R 2 (1-γ)η G(τ, η) dη = R 2 (1-γ)η G(0, η) dη for all τ > 0 . (8) 
Well-posedness of [START_REF] Filbet | Numerical simulation of the Smoluchowski coagulation equation[END_REF] for initial data in L ∞ (R) will be shown later for a reformulated problem in Lemma 3.2. We expect to have as special solutions to (6) self-similar solutions of the form

(τ, ξ) -→ 1 τ 2/(1-γ) φ ξ τ 1/(1-γ) , (τ, ξ) ∈ (0, ∞) 2 ,
which means for [START_REF] Filbet | Numerical simulation of the Smoluchowski coagulation equation[END_REF] rescaled traveling wave solutions of the form

G(τ, η) = 1 τ H η - ln τ (1-γ) ln 2 , (τ, η) ∈ (0, ∞) × R .
In order to study the existence of such special solutions and the large time behaviour of solutions to [START_REF] Filbet | Numerical simulation of the Smoluchowski coagulation equation[END_REF] we introduce the new variables

α := (1-γ) ln 2 , t := ln τ α , x := η - ln τ α
, and e -αt h(t, x) := αG(τ, η) ,

and we deduce from ( 7) and ( 8) that h solves

∂ t h(t, x) = ∂ x h(t, x) + αh(t, x) + e -α h 2 (t, x-1) -h 2 (t, x) , (t, x) ∈ R 2 , (10) 
and

R e αx h(t, x) dx = R e αx h(0, x) dx , t ∈ R . (11) 
A self-similar solution to (6) corresponds now to a stationary solution h of [START_REF] Herrmann | Instabilities and oscillations in coagulation equations with kernels of homogeneity one[END_REF], that is, to a solution of

0 = ∂ x h(x) + α h(x) + e -α h2 (x-1) -h2 (x) , x ∈ R . (12) 
Notice that the equation ( 12) is invariant under a shift, that is, if h is a solution to (12), then so is x → h(x + λ) for all λ ∈ R. Recall that we are interested in solutions h to [START_REF] Ph | Weak compactness techniques and coagulation equations[END_REF] that are nonnegative, locally integrable, and such that h ∈ L 1 (R; e αx dx). By shifting h we can normalize the mass so that R e αx h(x) dx = 1 .

Notice also that it follows directly from [START_REF] Ph | Weak compactness techniques and coagulation equations[END_REF] and the local integrability of h that h ∈ C 1 (R).

It is proved in [START_REF] Leyvraz | Rigorous results in the scaling theory of irreversible aggregation kinetics[END_REF] by a shooting method that for any a > 0 there exists a nonnegative solution ha ∈ L 1 (R; e αx dx) to (12) that is bounded, decreasing and satisfies

lim x→-∞ 2 -σx ha (x) - α 1-e -α = -a , ( 13 
)
where σ is the only positive root of the equation (1+ln 2σ/α)(1-e -α ) = 2(1-e -α 2 -σ ). The constant a is just a normalization and corresponds to rescaling the mass R e αx ha (x) dx.

Furthermore, the function ha satisfies

0 < ha (x) ≤ C a exp -L a 2 x
for some C a > 0 and L a > 0 .

Our goal in this paper is to study the behaviour of solutions to [START_REF] Herrmann | Instabilities and oscillations in coagulation equations with kernels of homogeneity one[END_REF] as t → ∞ and to figure out what is the role played by the family ( ha ) a>0 , if any. As a consequence of our results we will actually show that stationary solutions are unique up to rescaling.

Main results

A key property of the diagonal kernel is that the evolution of h(t, x) depends only on the discrete set of values xk, k ∈ N. Correspondingly, one of the key points of the argument used in this paper is a decomposition of the plane (t, x) ∈ R 2 in a family of lines whose evolution under ( 10) is mutually decoupled. More specifically, given θ ∈ [0, 1), we define the following family of lines:

S θ := (t, x) ∈ R 2 : x + t -θ ∈ Z . Obviously for given θ 1 , θ 2 ∈ [0, 1) with θ 1 = θ 2 we have S θ 1 ∩S θ 2 = ∅, while θ∈[0,1) S θ = R 2 .
Hence, the following function Θ is well-defined.

Definition 2.1. We define the function

Θ : R × R → [0, 1) as the unique θ = Θ (t, x) such that (t, x) ∈ S Θ(t,x) , that is, Θ(t, x) = t + x -⌊t + x⌋.
Notice that the function Θ is 1-periodic in both variables, that is

Θ (t + 1, x) = Θ (t, x) , Θ (t, x) = Θ (t, x -1) , (t, x) ∈ R × R . ( 15 
)
We also define the function

ψ(t, θ) := t -θ -⌊t -θ⌋ ∈ [0, 1) , (t, θ) ∈ [0, ∞) × [0, 1) . (16) 
Notice that in particular ψ(0, θ) = 1θ for θ ∈ (0, 1) and that t → ψ(t, θ) is rightcontinuous and jumps from 1 to 0 at times n + θ, n ∈ N,

ψ((n + θ) -, θ) := lim tրn+θ ψ(t, θ) = 1 and ψ(n + θ, θ) = 0 . ( 17 
)
We now fix a nonnegative solution h ∈ C 1 (R)∩L 1 (R; e αx dx) to ( 12) enjoying the properties ( 13) and ( 14) and with mass normalized to one, that is

1 = R e αx h(x) dx = 1 0 k∈Z e α(k+θ) h(k + θ) dθ . (18) 
Introducing

ν(θ) := k∈Z e α(k+θ) h(k + θ) , θ ∈ [0, 1) ,
we infer from ( 12) and ( 14) that

0 = k∈Z ∂ x h(k + θ) + α h(k + θ) e α(k+θ) = k∈Z d dθ e α(k+θ) h(k + θ) = dν dθ (θ) .
Consequently, ν(θ) = const. for θ ∈ [0, 1) and the normalization (18) entails that

k∈Z e α(k+θ) h(k + θ) = 1 , θ ∈ [0, 1) . (19) 
Then, in order to obtain from h a stationary solution to [START_REF] Herrmann | Instabilities and oscillations in coagulation equations with kernels of homogeneity one[END_REF] with mass M > 0, we need to shift h and see that the shift λ is determined by the following relation:

M = k∈Z e αk h(k -λ) if and only if λ = ln M α . (20) 
As pointed out above, the evolution of (10) decouples into an evolution for each 'fibre' S θ , θ ∈ [0, 1). We shall see that, given a nonnegative initial condition h 0 ∈ L ∞ (R), the long-time behaviour of the corresponding solution to ( 10) is determined by the mass of the initial condition in each fibre, given by

m 0 (θ) := k∈Z e α(k+θ) h 0 (k + θ) , θ ∈ [0, 1) . ( 21 
)
More precisely, we will see that a solution of ( 10) is for large times approximated in each fibre θ ∈ [0, 1) by the stationary solution with the same mass, that is, according to [START_REF] Niethammer | Self-similar solutions with fat tails for a coagulation equation with diagonal kernel[END_REF],

the shift h(• -λ(θ)) of h such that m 0 (θ) = k∈Z e αk h(k -λ(θ)) , λ(θ) := ln m 0 (θ) α . (22) 
We can now formulate our main results.

Theorem 2.2. Consider the solution h of (10) with a nonnegative initial condition

h 0 ∈ L ∞ (R) satisfying m 0 ∈ L 1 (0, 1)
, where m 0 is defined in [START_REF] Niethammer | Self-similar solutions with fat tails for Smoluchowski's coagulation equation with locally bounded kernels[END_REF]. Introducing

µ(t, x) := ln m 0 Θ(t, x) α , (t, x) ∈ (0, ∞) × R , there holds lim t→∞ R e αx h(t, x) -h x -µ(t, x) dx = 0 .
Theorem 2.2 provides a detailed description of the asymptotic behaviour of solutions to (10) as t → ∞ and in particular implies that the long-time behaviour is in general periodic. We note that periodic long-time behaviour is also observed in a growth-fragmentation model where the fragmentation kernel is diagonal [START_REF] Bernard | Cyclic asymptotic behaviour of a population reproducing by fission into two equal parts[END_REF]. Theorem 2.2 also characterizes the class of initial data with finite mass that yield a traveling wave solution (resp. self-similar solution in the original variables) as t → ∞.

Corollary 2.3. We have convergence to a stationary solution if and only if the function m 0 as defined in (21) is constant almost everywhere in [0, 1).

Corollary 2.3 applies in particular to functions h 0 given by h 0 (x) := H k e -α(x-k) for x ∈ [k, k + 1) and k ∈ Z, where (H k ) k∈Z is a sequence of positive real numbers which is bounded and such that H k e αk converges. For instance, H k = e -βk + , β > α, or H k = (k + ) -q e -αk + , q > 1, recalling that k + := max{k, 0}. Let us nevertheless emphasize here that, according to Theorem 2.2, solutions emanating from arbitrarily small perturbations of such initial data may have a drastically different behaviour in the long term, as soon as the corresponding function m 0 in ( 21) is not constant.

Another consequence of Theorem 2.2 is the fact that stationary solutions of [START_REF] Herrmann | Instabilities and oscillations in coagulation equations with kernels of homogeneity one[END_REF] are unique up to rescaling. Proposition 2.4. Let h1 and h2 be two nonnegative solutions to [START_REF] Ph | Weak compactness techniques and coagulation equations[END_REF] in L 1 (R; e αx dx). Then there exists Λ ∈ R such that h1 (x) = h2 (x -Λ) for x ∈ R.

The remainder of the paper is organized as follows. Section 3, which is the core of our paper, contains the proof of Theorem 2.2 and consists of several lemmas. The key idea is that we can construct a Lyapunov functional L θ for the evolution in each fibre that resembles a contractivity property of solutions to scalar conservation laws and nonlinear diffusion equations [START_REF] Dolbeault | L 1 and L ∞ intermediate asymptotics for scalar conservation laws[END_REF][START_REF] Vázquez | The porous medium equation. Mathematical theory[END_REF], see Lemma 3.4. We also identify its limit for large times in Lemma 3.6. Another key auxiliary result is a tightness property that we prove in Lemma 3.3. This in turn allows us to obtain a lower bound for the dissipation functional in Lemma 3.5. All these results are proved pointwise in the sense that we prove them for each fibre. Corollary 2.3 is then a direct consequence of Theorem 2.2. Finally, in order to apply Theorem 2.2 to deduce the uniqueness result stated in Proposition 2.4 we need an a priori L ∞ bound for arbitrary nonnegative solutions to [START_REF] Ph | Weak compactness techniques and coagulation equations[END_REF]. The corresponding result provided in Lemma 4.1 and the conclusionvare the contents of Section 4.

Proof of Theorem 2.2

Consider h 0 ∈ L ∞ (R), h 0 ≥ 0, such that m 0 defined in [START_REF] Niethammer | Self-similar solutions with fat tails for Smoluchowski's coagulation equation with locally bounded kernels[END_REF] belongs to L 1 (0, 1). In particular, m 0 (θ) is finite for almost every θ ∈ [0, 1). Let h be the solution to [START_REF] Herrmann | Instabilities and oscillations in coagulation equations with kernels of homogeneity one[END_REF] with initial condition h(0) = h 0 at time t = 0. We introduce further suitable variables. For θ ∈ [0, 1) such that m 0 (θ) ∈ (0, ∞) we define the right-continuous functions

ϕ θ k (t) := h t, k + 1 -ψ(t, θ) and φθ k (t) := h k + 1 -λ(θ) -ψ(t, θ) (23) 
for (t, k) ∈ [0, ∞) × Z, where ψ is defined in [START_REF] Leyvraz | Scaling theory and exactly solved models in the kinetics of irreversible aggregation[END_REF] and

λ(θ) = ln m 0 (θ)/α. Observe that φθ k is 1-periodic.
The motivation for introducing these variables is as follows. In order to get rid of the transport term ∂ x h in [START_REF] Herrmann | Instabilities and oscillations in coagulation equations with kernels of homogeneity one[END_REF] we as usual go over to characteristics. However, the solution is then continuously shifted to the right by the coagulation term. Thus, to keep the solution at scales of order one, we shift the solution back to the left at times n + θ, n ∈ N. In a more quantitative way, we report the following identity:

Lemma 3.1. For t > 0 there holds R e αx h(t, x) -h(x -µ(t, x)) dx = 1 0 e α(1-ψ(t,θ)) k∈Z e αk ϕ θ k (t) -φθ k (t) dθ . Proof. Clearly R e αx h(t, x) -h(x -µ(t, x)) dx = 1 0
e αy k∈Z e αk h(t, y + k) -h(y + kµ(t, y + k)) dy .

We next make the change of variables y = θ-t+⌊t⌋ for y ∈ (t-⌊t⌋, 1) and y = 1+θ-t+⌊t⌋ for y ∈ (0, t -⌊t⌋) and use the definition of µ and the properties of Θ and ψ to complete the proof.

Define next

J θ := (0, θ) ∪ n∈N (n + θ, n + 1 + θ) . (24) 
It follows from [START_REF] Herrmann | Instabilities and oscillations in coagulation equations with kernels of homogeneity one[END_REF] that

d dt ϕ θ k (t) = αϕ θ k (t) + e -α ϕ θ k-1 2 (t) -ϕ θ k 2 (t) for t ∈ J θ (25) 
and, by ( 17) and ( 23),

ϕ θ k (n + θ) -= lim tրn+θ ϕ θ k (t) = h(t, n + θ) = lim tցn+θ ϕ θ k-1 (t) = ϕ θ k-1 (n + θ) . (26) 
Also, 

k∈Z e α(k+θ) ϕ θ k (0) = m 0 (θ) , (27) 
(t) = e α(t-θ) m 0 (θ) , t ∈ [0, θ) ,
and, for n ∈ N,

k∈Z e αk ϕ θ k (t) = e α(t-n-θ) k∈Z e αk ϕ θ k (n + θ) , t ∈ [n + θ, n + 1 + θ) .
As

k∈Z e αk ϕ θ k (n + θ) -= e α k∈Z e αk ϕ θ k (n + θ)
for n ∈ N by (26), an induction argument leads us to the identity k∈Z e αk ϕ θ k (t) = e α(ψ(t,θ)-1) m 0 (θ) , t ≥ 0 .

Next, thanks to ( 12), [START_REF] Ramkrishna | Population balances: Theory and applications to particulate systems in engineering[END_REF], and ( 23), we easily check that ( φθ k ) k satisfy also (25), (26), and (28). Due to [START_REF] Lee | A survey of numerical solutions to the coagulation equation[END_REF] we also have that φθ

k (t) ≤ C exp -L2 k as k → ∞ uniformly for t ∈ [0, ∞).
We now prove a well-posedness result for (25)-(26) that in particular gives a uniform bound on (ϕ θ k ) k that is independent of θ. Let Y be the space

Y := φ = (φ k ) k∈Z : φ ∈ l ∞ (Z) and k∈Z e αk |φ k | < ∞
and denote its positive cone by Y + .

Lemma 3.2. Fix θ ∈ [0, 1) such that m 0 (θ) < ∞. Let ϕ θ (0) = ϕ θ k (0) k ∈ Y + such that ϕ θ (0) l∞ ≤ C 0 and k∈Z e αk ϕ θ k (0) = e -αθ m 0 (θ) ( 29 
)
for some C 0 > 0. Then there exists a unique function

ϕ θ ∈ C 0 [0, ∞); Y + with ϕ θ k ∈ C 1 J θ
for all k ∈ Z which solves (25) and (26) with initial condition ϕ θ (0) and satisfies (28) as well as the following property:

sup t≥0 ϕ θ (t) l∞ ≤ c 0 := max C 0 , α 1-e -α . (30) 
Proof. Throughout the proof we omit the dependence on θ in the notation. It turns out to be convenient to go over to the unknown function

ρ k (t) := e -α(ψ(t)-1) ϕ k (t) , (t, k) ∈ [0, ∞) × Z .
Then we are looking for a solution of

d dt ρ k (t) = e α(ψ(t)-1) e -α ρ 2 k-1 (t) -ρ 2 k (t) , t ∈ J , (31) 
satisfying ρ k (n + θ) -= e -α ρ k-1 (n + θ) , n ∈ N , k ∈ Z , (32) 
and

k∈Z e αk ρ k (t) = m 0 (θ) for all t . ( 33 
) Introducing R(ρ) := (R k (ρ)) k∈Z with R k (ρ) := e -α ρ 2 k-1 -ρ 2 k , one has R(ρ) -R(σ) l 1 (e αk ) ≤ 2 ( ρ l∞ + σ l∞ ) ρ -σ l 1 (e αk )
for any ρ = (ρ k ) k and σ = (σ k ) in Y. Consequently, a standard fixed point argument implies that there is T ∈ (0, θ) small enough such that there is a unique solution to (31) with initial condition e αθ ϕ k (0) k in

M T := {ρ = ρ k k ∈ C 0 ([0, T ]; l 1 (e αk ) : ρ l∞ ≤ 2c 0 } .
Nonnegativity of each component ρ k , k ∈ Z, of the solution follows from the maximum principle. In order to show that ρ satisfies (33) in [0, T ] we use (31) to compute, for M ≥ 1,

d dt M k=-M e αk ρ k (t) = e α(ψ(t)-1) e -α(M +1) ρ 2 -(M +1) (t) -e αM ρ 2 M (t) , so that d dt M k=-M e αk ρ k (t) ≥ -e αM ρ 2 M (t) , (34) 
and, since ρ ∈ M T ,

d dt M k=-M e αk ρ k (t) ≤ e α(ψ(t)-1) e -α(M +1) ρ 2 -(M +1) (t) ≤ 4c 2 0 e -α(M +1) .
Integrating the previous inequality and letting M → ∞ we obtain that k∈Z e αk ρ k (t) ≤ m 0 for all t ∈ [0, T ] .

In particular, ρ M (t) ≤ m 0 e -αM for t ∈ [0, T ] and we improve the lower bound (34) to

d dt M k=-M e αk ρ k (t) ≥ -e -αM m 2 0 .
Integrating the above inequality and letting M → ∞ give k∈Z e αk ρ k (t) ≥ m 0 for all t ∈ [0, T ] ,

and, as a consequence, the solution ρ satisfies (33) in [0, T ]. It remains to show that (30) is satisfied in [0, T ] from which it follows that we can extend the solution to the interval [0, θ]. We can then repeat the argument in all subsequent intervals [n + θ, n + θ + 1), n ∈ N.

To prove (30) we use a maximum principle argument and note that, given γ ∈ C 1 ([0, T ]) and M ∈ N, it follows from (31) that

d dt M k=-∞ e αk ρ k -γ + = M k=-∞ e α(k-1) ρ 2 k-1 -γ 2 sign + (ρ k -γ)e α(ψ-1) + M k=-∞ e αk e -α -1 γ 2 sign + (ρ k -γ)e α(ψ-1) - M k=-∞ e αk ρ 2 k -γ 2 + e α(ψ-1) - M k=-∞ e αk sign + (ρ k -γ) dγ dt
Choosing γ such that

dγ dt = -e α(ψ-1) (1 -e -α )γ 2 , γ(0) = e αθ C 0 ,
we realize that

d dt M k=-∞ e αk ρ k -γ + ≤ M -1 k=-∞ e αk ρ 2 k -γ 2 + e α(ψ-1) - M k=-∞ e αk ρ 2 k -γ 2 + e α(ψ-1) ≤ 0 , hence M k=-∞ e αk ρ k -γ + (t) ≤ M k=-∞ e αk ρ k -γ + (0) = 0 , t ∈ [0, T ] .
As M ∈ N is arbitrary we conclude that

ρ k (t) ≤ γ(t) , (t, k) ∈ [0, T ] × Z .
Since ψ(t, θ) -1 = tθ for t ∈ (0, θ), the function γ is given by

γ(t) = αC 0 e αθ α + C 0 (e αt -1)(1-e -α ) , t ∈ [0, T ] ,
and we end up with

ϕ k (t) = e α(t-θ) ρ k (t) ≤ e α(t-θ) γ(t) ≤ sup τ ≥0
αC 0 e ατ α + C 0 (e ατ -1)(1-e -α ) = c 0 for (t, k) ∈ [0, T ] × Z, which proves the claim.

To proceed further, we set

L θ (t) := k e αk ϕ θ k (t) -φθ k (t) + , t ≥ 0 , (35) 
which is a right-continuous function of time, and notice that ( 23) and (26) give

L θ ((n + θ) -) = e α L θ ((n + θ)) . ( 36 
)
Our goal is to show that L θ (t) → 0 as t → ∞. This will follow from the fact that L θ is almost a Lyapunov functional and that we can provide a lower bound on the dissipation functional. Towards that aim we first prove a tightness result.

Lemma 3.3. Given ε > 0 and θ ∈ [0, 1) such that m 0 (θ) < ∞, let M = M (θ, ε) > 0 be such that k≥M e αk h 0 (k + θ) < ε . ( 37 
)
Then there exists

N = N (ε, M, m 0 (θ), h 0 L ∞ ) such that |k|≥N e αk ϕ θ k (t) ≤ 2e α ε for all t ∈ [0, ∞) , (38) 
and

|k|≥N e αk φθ k (t) ≤ 2e α ε for all t ∈ [0, ∞) . ( 39 
)
Proof. Within this proof we again omit the dependence on θ in the notation. We first notice that the uniform bound (30) and the boundedness of h imply that there exists

N 1 ∈ N such that k≤-N 1 e αk ϕ k (t) + k≤-N 1 e αk φk (t) ≤ ε , t ∈ [0, ∞) .
In order to control the mass at large positive k we construct a supersolution for the quantiles. More precisely, for t ≥ 0, we define with some sufficiently large ℓ 0 ∈ N that will be determined later. Owing to (25) we note that

Q k solves d dt Q k = αQ k + e -α(k-1) Q k-1 -Q k 2 , t ∈ J ,
and Qk solves the same equation for k ∈ Z. Furthermore, by ( 23) and (26), we have

Q k ((n + θ) -) = e α Q k-1 ((n + θ)) and Qk ((n + θ) -) = e α Qk-1 ((n + θ))
for n ∈ N and k ∈ Z. We also observe that, by (28),

lim k→-∞ Q k (t) = e α(ψ(t)-1) m 0 and lim k→-∞ Qk (t) = e α(ℓ 0 +ψ(t)) m 0 + εe αψ(t) , t ≥ 0 .
For the difference

W k := Q k -Qk we obtain d dt W k = αW k + e -α(k-1) W k-1 -W k Qk-1 -Qk + Q k-1 -Q k , (t, k) ∈ J × Z . (40) Since Qk-1 -Qk + Q k-1 -Q k = e α(k-1) φk-1-ℓ 0 + e α(k-1) ϕ k-1 ,
we infer from ( 23) and (30) that

0 ≤ Qk-1 -Qk + Q k-1 -Q k ≤ c 0 + h L ∞ e α(k-1) , k ∈ Z . (41) 
In addition,

lim k→-∞ W k (t) = m 0 e α(ψ(t)-1) (1 -e αℓ 0 ) -εe αψ(t) ≤ -ε , t ∈ [0, ∞) , so that K k=-∞ (W k ) + = K k=-K (W k ) +
for K ∈ N large enough. We then deduce from ( 40) and (41) that

d dt K k=-∞ (W k ) + ≤ α K k=-∞ (W k ) + + K k=-∞ e -α(k-1) [ Qk-1 -Qk + Q k-1 -Q k ](W k-1 ) + ≤ α + c 0 + h L ∞ K k=-∞ (W k ) + ,
and thus, after integration,

K k=-∞ (W k ) + (t) ≤ K k=-∞ (W k ) + ((n -1 + θ) + ) , t ∈ [(n -1 + θ) + , n + θ) , n ∈ N . ( 42 
)
We now choose ℓ 0 = ℓ 0 (M, m 0 ) so large such that

Qk (0) ≥ 2m 0 ≥ Q k (0) for all k ≤ M .
Also, by (37), we have

Qk (0) ≥ ε ≥ Q k (0) for all k > M .
With this choice of ℓ 0 , we conclude that

W k (0) ≤ 0 for all k ∈ Z, hence W k (t) ≤ 0 for t ∈ [0, θ) and k ∈ Z ∩ (-∞, K] by (42). Since K ∈ N is arbitrary we have thus proved that Q k (t) ≤ Qk (t) for t ∈ [0, θ) and k ∈ Z. In particular, e α Q k-1 (θ) = Q k (θ -) ≤ Qk (θ -) = e α Qk-1 (θ) ,
which allows us to iterate the above argument and end up with

Q k (t) ≤ Qk (t) , (t, k) ∈ [0, ∞) × Z .
Now, according to [START_REF] Van Dongen | Scaling solutions of Smoluchowskis coagulation equation[END_REF], Qk is 1-periodic and, for t ∈ [0, 1), we infer from [START_REF] Lee | A survey of numerical solutions to the coagulation equation[END_REF] that

Qk (t) ≤ C ℓ≥k e αℓ exp -L2 ℓ-ℓ 0 +1-λ-ψ(t) ≤ (2e α -1)ε and ℓ≥k e αℓ φk (t) ≤ C ℓ≥k e αℓ exp -L2 ℓ+1-λ-ψ(t) ≤ (2e α -1)ε for k ≥ N 2 (θ) sufficiently large. Choosing N = max{N 1 , N 2 } finishes the proof. Lemma 3.4. Consider θ ∈ [0, 1) such that m 0 (θ) < ∞. For t ∈ J θ we have d dt L θ (t) = αL θ (t) -D θ (t) ,
where

D θ := k∈Z e αk ϕ θ k + φθ k w θ k sign + (w θ k ) -sign + (w θ k+1 ) ≥ 0 ,
and

w θ k := ϕ θ k -φθ k , k ∈ Z.
Proof. This is a simple explicit computation.

Lemma 3.5. Consider θ ∈ [0, 1) such that m 0 (θ) < ∞ and ε > 0. Let N ∈ N be such that (38) holds and let T θ ε,N be the set of solutions q = (q k ) k∈Z to (25) on (θ, θ + 1) satisfying the mass equation (28), the uniform bound (30), the tightness estimate (38), and the lower bound

k∈Z e αk q k (t) -φk (t)) + ≥ 16e α ε (43) 
on the interval [θ, θ + 1).

Then there exists ν = ν(θ, N, ε) > 0 such that θ+1 θ k∈Z

e αk q k (t) + φk (t) ω k (t) sign + (ω k (t)) -sign + (ω k+1 (t)) dt ≥ ν ,
where

ω k := q k -φθ k , k ∈ Z.
Proof. Throughout this proof we again omit the dependence on θ. Assume for contradiction that there exists a sequence (p m ) m≥1 in T ε,N such that

lim m→∞ θ+1 θ D m (t) dt = 0 , (44) 
where

p m = (p m k ) k∈Z , W m k := p m k -φk , and 
D m := k∈Z e αk p m k + φk W m k sign + (W m k ) -sign + (W m k+1 ) .
Owing to (25) and (30), (p m k ) m≥1 is bounded in C 1 ([θ, θ + 1)) for all k ∈ Z and we can extract a subsequence, again denoted by (p m ) m≥1 such that (p m k ) m≥1 converges uniformly in [θ, θ + 1) to a function p k for all k ∈ Z. Setting p := (p k ) k∈Z , we easily see that p is a solution to (25) and satisfies the uniform bound (30) and the tightness bound (38) in [θ, θ + 1). In addition, due to the tightness property (38), we deduce from the mass equation ( 28) and the lower bound (43) which are valid for p m that k∈Z e αk p k (t)e α(ψ(t)-1) m 0 ≤ 4e α ε and

|k|≤N e αk W k (t) ≤ 4e α ε , (45) 
with W k := p kφk , as well as

|k|≤N e αk W k + (t) ≥ 8e α ε , (46) 
for t ∈ [θ, θ + 1). Now, since each term in the sum D m is non-negative, there holds

lim m→∞ θ+1 θ b m k (t) dt = 0 , k ∈ Z , (47) 
with b m k := e αk p m k + φk W m k sign + (W m k ) -sign + (W m k+1 ) , k ∈ Z . (48) 
It remains to take the limit in (47

). Fix k ∈ Z ∩ [-N, N ]. Introducing b k := e αk p k + φk W k sign + (W k ) -sign + (W k+1 ) , k ∈ Z ,
and the sets

B k := {t ∈ (θ, θ + 1) : W k (t) > 0 and W k+1 (t) = 0} , C k := {t ∈ (θ, θ + 1) : W k (t) < 0 and W k+1 (t) = 0} , G k := (θ, θ + 1) \ (B k ∪ C k ) , we have (θ, θ + 1) = B k ∪ C k ∪ G k and we notice that lim m→∞ b m k (t) = b k (t) for t ∈ G k , while b k (t) ≤ lim inf m→∞ b m k (t) for t ∈ C k .
Then, (47) implies that 0 =

C k ∪G k B k (t) dt + lim m→∞ B k B m k (t) dt . (49) 
We now claim that |B k | = 0. To prove this we use the equation satisfied by W k+1 which reads, due to (25),

d dt W k+1 (t) = αW k+1 (t) + e -α [p k (t) + φk (t)] W k (t) -[p k+1 (t) + φk+1 (t)] W k+1 (t) (50)
for t ∈ (θ, θ + 1). Let t 0 ∈ B k . By (50)

d dt W k+1 (t 0 ) = e -α [p k (t 0 ) + φk (t 0 )] W k (t 0 ) > 0 .
Consequently, there is δ > 0 such that B k ∩ [t 0δ, t 0 + δ] = {t 0 } and B k contains only isolated points. This implies that |B k | = 0 and therefore (49) reduces to

0 = θ+1 θ b k (t) dt . (51) 
This in turn implies that

W k sign + (W k ) -sign + (W k+1 ) = 0 a.e. in (θ, θ + 1) , k ∈ Z ∩ [-N, N ] . (52) 
We will now show that the functions ϕ k and the corresponding W k constructed above cannot exist. Indeed, assume first that there is t * ∈ [θ, θ + 1) such that W -N (t * ) > 0. Due to (45) and ( 46), W k (t * ) cannot be positive for all k ∈ Z ∩ [-N, N ] and we define 

k * + 1 := min{k ∈ Z ∩ [-N, N ] : W k (t * ) ≤ 0} ≤ N . Then W k * (t * ) > 0 and W k * +1 (t * ) ≤ 0. Since d dt W k * +1 = αW k * +1 + e -α [p k * + φk * ] W k * -[p k * +1 + φk * +1 ] W k * +1
W k * (t) sign + (W k * (t)) -sign + (W k * +1 (t)) = W k * (t) ≥ W k * (t * ) 2 > 0
for t ∈ [t *δ, t * ) and contradicts (52). Therefore W -N (t) ≤ 0 for all t ∈ [θ, θ + 1). We fix any value t * ∈ [θ, θ + 1) and define

k 1 := min{k ∈ Z ∩ [-N, N ] : W k (t * ) ≥ 0} .
Then k 1 > -N and (46) guarantees that k 1 ≤ N . Since W k 1 -1 (t * ) < 0 and W k 1 (t * ) ≥ 0, we use once more (50) to obtain

d dt W k 1 (t)e -αt t=t * < 0 .
We may then find δ > 0 sufficiently small such that

W k 1 -1 (t) < W k 1 -1 (t * ) 2 < 0 < W k 1 (t) , t ∈ [t * -δ, t * ) .
This implies that 

W k 1 -1 (t) sign + (W k 1 -1 (t)) -sign + (W k 1 (t)) = -W k 1 -1 (t) ≥ - W k 1 -1 (t * ) 2 > 0 for t ∈ [t * -δ,
After integration we find, for n ∈ N,

L θ ((n + 1 + θ) -) + n+1+θ n+θ D θ (s) ds ≤ e α L θ (n + θ) ,
which, together with (36), gives

e α L θ ((n + 1 + θ)) + n+1+θ n+θ D θ (s) ds ≤ e α L θ (n + θ) . (54) 
In particular, (L θ (n + θ)) n∈N is a nonincreasing sequence and

n∈N n+1+θ n+θ D θ (t) dt ≤ e α L θ (θ) . (55) 
Assume for contradiction that

η := inf n∈N L θ (n + θ) > 0 .
Then, owing to (36), L θ ((n + θ) -) ≥ e α η while we infer from (53) that

L θ (θ -)e α(t-θ) ≤ L θ (t) , t ∈ [0, θ) , L θ ((n + 1 + θ) -)e α(t-n-1-θ) ≤ L θ (t) , t ∈ [n + θ, n + 1 + θ) ,
for n ∈ N. Combining these estimates gives

L θ (t) ≥ η , t ∈ [0, ∞) . (56) 
Consider now ε ∈ (0, η/(16e α )). Since m 0 (θ) < ∞ there is M = M (θ) ∈ N such that (37) holds true and it follows from Lemma 3.3 that there is N

= N (θ, ε) such that |k|≥N e αk ϕ θ k (t) ≤ 2e α ε , t ∈ [0, ∞) . (57) 
We next define

p m k (s) := ϕ θ k (m + s) , (s, m, k) ∈ [θ, θ + 1) × N × Z .
Then, for each m ∈ N, p m := (p m k ) k∈Z is a solution to (25) in (θ, θ + 1) which satisfies the mass equation ( 28) in [θ, θ + 1). It also enjoys the uniform estimate (30) by Lemma 3.2 as well as the tightness property (38) by (57), still in [θ, θ + 1). Finally, for t ∈ [θ, θ + 1),

k∈Z e αk p m k (t) -φθ k (t) + = L θ (m + s) ≥ η ≥ 16e α ε
by (56). In other words, p m belongs to the set T θ ε,N defined in Lemma 3.5 and we infer from Lemma 3.5 that there is ν

= ν(ε, θ) > 0 such that θ+1 θ k∈Z e αk p m k (t) + φθ k (t) W m k (t) sign + (W m k (t)) -sign + (W m k+1 (t)) dt ≥ ν , where W m k := p m k -φθ k , (m, k) ∈ N × Z. In terms of ϕ θ , m+1+θ m+θ D θ (t) dt ≥ ν , m ∈ N .
Summing up with respect to m ∈ N clearly contradicts (55). Therefore η = 0 and, since

L θ (t) ≤ L θ (n + θ)e α , t ∈ [n + θ, n + 1 + θ) , n ∈ N , by (53) 
, we conclude that L θ (t) → 0 as t → ∞. Finally, let t ≥ 0. We recall that k∈Z e αk ϕ θ k (t) = m 0 (θ)e α(ψ(t,θ)-1) = k∈Z e αk φθ k (t) by ( 28), so that

k∈Z e αk ϕ θ k (t) -φθ k (t) = k∈Z e αk 2 ϕ θ k (t) -φθ k (t) + -ϕ θ k (t) -φθ k (t) = 2L θ (t) ,
and the proof is complete.

Proof of Theorem 2.2. By Lemma 3.1

R e αx h(t, x) -h(x -µ(t, x)) dx = 1 0 e α(1-ψ(t,θ)) k∈Z e αk ϕ θ k (t) -φθ k (t) dθ .
On the one hand, since m 0 ∈ L 1 (0, 1), then m 0 (θ) is finite for almost every θ ∈ (0, 1) and, according to Lemma 3.6, lim t→∞ k∈Z

e αk ϕ θ k (t) -φθ k (t) = 0
for almost every θ ∈ (0, 1). On the other hand, thanks to (28),

e α(1-ψ(t,θ)) k∈Z e αk ϕ θ k (t) -φθ k (t) ≤ 2m 0 (θ) .
The Lebesgue dominated convergence then entails that lim t→∞ R e αx h(t, x) -h(xµ(t, x)) dx = 0 , which proves the claim.

A priori estimates for stationary solutions

Lemma 4.1. Let h ∈ C 1 (R) ∩ L 1 (R; e αx dx) be a nonnegative solution to [START_REF] Ph | Weak compactness techniques and coagulation equations[END_REF]. Then h ∈ L ∞ (R).

Proof.

Step 1: We first claim that the function h satisfies

e αx h(x) = x x-1 h2 (t)e αt dt for all x ∈ R . (58) 
To prove (58), we first multiply ( 12) by e αx and integrate to find

e αx h(x) = x x-1 h2 (t)e αt dt + J (59) 
for some J ∈ R. In particular, e αx h(x) ≥ J and the integrability of x → e αx h(x) implies that J ≤ 0. It next follows from the integrability of x → e αx h(x) that there is a sequence (

x n ) n≥1 in (1, ∞) such that lim n→∞ x n = ∞ and h(x n -1) ≤ e α(xn-1) h(x n -1) ≤ 1 2 , n ≥ 1 . (60) 
We are going to show that the differential equation ( 12) for h guarantees that h does not exceed one in (x n -1, x n ). Indeed, by [START_REF] Ph | Weak compactness techniques and coagulation equations[END_REF], ∂ x h ≤ h2 and integrating this equation gives, thanks to (60), Since the right-hand side of the above inequality converges to zero as n → ∞, we conclude that J = 0 which proves (58).

2 - 1 h(x) ≤ 1 h(x n -1) - 1 h(x) ≤ x -x n + 1 ≤ 1 , x ∈ [x n -1, x n ] , hence h(x) ≤ 1 , x ∈ [x n -1, x n ] . (61 
Step 2: To complete the proof we argue by contradiction and assume that there is M ≥ 8e 2α and x 0 ∈ R such that h(x 0 ) ≥ M .

According to (58) we have either Combining this lower bound with (58) gives h x 0 + 1 2 ≥ e -α(x 0 +1/2)

x 0 +1/2

x 0 h2 (y)e αy dy ≥ M 2 8e 2α ≥ M .

Similarly, if (64) holds, then (x 0 -1, x 0 -1/2) ⊂ (y -1, y) for y ∈ [x 0 -1/2, x 0 ] and it follows from (58), (62), and (64) that h(y) ≥ M/(2e α/2 ). In particular, we find h x 0 + 1 2 ≥ e -α(x 0 +1/2)

x 0

x 0 -1/2 h2 (z)e αz dz ≥ M 2 8e 2α ≥ M .

We have thus proved that h

x 0 + 1 2 ≥ M . (65) 
Arguing by induction, we actually conclude that

h x 0 + k 2 ≥ M , k ∈ N . (66) 
Furthermore, arguing as in the proof of (65), we infer from (58) and (66) that Since L or R is infinite, the right-hand side of the above inequality cannot be bounded, which gives a contradiction and hence proves the statement of the lemma.

Proof of Proposition 2.4. Let h ∈ C 1 (R)∩ L 1 (R; e αx dx) be a nonnegative solution to [START_REF] Ph | Weak compactness techniques and coagulation equations[END_REF]. By Lemma 4.1 we have h ∈ L ∞ (R). Then h is also a solution to the evolution equation [START_REF] Herrmann | Instabilities and oscillations in coagulation equations with kernels of homogeneity one[END_REF] Arguing as in the proof of [START_REF] Niethammer | Self-similar solutions with fat tails for Smoluchowski's coagulation equation with singular kernels[END_REF], there exists ν ∈ [0, ∞) such that m0 (θ) = ν for a.e. θ ∈ (0, 1), that is, μ is a constant and the claim is proved.
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  k (t) := ℓ≥k e αℓ ϕ ℓ (t) and Qk (t) := ℓ≥k e αℓ φℓ-ℓ 0 (t) + εe αψ(t)

  ) Combining (59) (with x = x n ) and (61) gives 0 ≤ -J = xn xn-1 h2 (y)e αy dye αxn h(x n ) ≤ xn xn-1 h(y)e αy dy .

  case that (63) holds, consider y ∈ [x 0 , x 0 + 1/2]. Then (x 0 -1/2, x 0 ) ⊂ (y -1, y) and we deduce from (58), (62), and (63) that h(y) = e -αy y y-1 h2 (z)e αz dz ≥ e -αy x 0 x 0 -1/2 h2 (z)e αz dz ≥ M 2e α/2 .
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  and, by Theorem 2.2,lim t→∞ R e αx h(x) -h xμ(t, x) = 0 , where μ(t, x) := ln ( m0 (Θ(t, x))) α , (t, x) ∈ [0, ∞) × R ,with Θ defined in Definition 2.1 and m0 (θ) := k∈Z e α(k+θ) h(k + θ) , θ ∈ [0, 1) .

  t * ) and contradicts again (52). This concludes the proof.Lemma 3.6. Let θ ∈ [0, 1) be such that m 0 (θ) < ∞. The function L θ defined in (35) satisfies limProof. We first note that, for t ∈ J θ , Lemma 3.4 ensures that d dt L θ (t)e -αt = -e αt D θ (t) .

	t→∞	L θ (t) = lim t→∞	k∈Z	e αk ϕ θ k (t) -φθ k (t) = 0 .
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