
HAL Id: hal-01625532
https://hal.science/hal-01625532v2

Submitted on 9 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Orbitopal fixing for the full (sub)-orbitope and
application to the Unit Commitment Problem

Pascale Bendotti, Pierre Fouilhoux, Cécile Rottner

To cite this version:
Pascale Bendotti, Pierre Fouilhoux, Cécile Rottner. Orbitopal fixing for the full (sub)-orbitope and
application to the Unit Commitment Problem. Mathematical Programming, 2021, 186 (1-2), pp.337-
372. �10.1007/s10107-019-01457-1�. �hal-01625532v2�

https://hal.science/hal-01625532v2
https://hal.archives-ouvertes.fr

Orbitopal fixing for the full (sub-)orbitope and application to

the Unit Commitment Problem

Pascale Bendotti∗1,2, Pierre Fouilhoux†2, and Cécile Rottner‡1,2

1EDF R&D, 7 Boulevard Gaspard Monge, 91120 Palaiseau, France
2 Sorbonne Université, LIP6, 4 Place Jussieu, 75005 Paris, France

March, 2018

Abstract

This paper focuses on integer linear programs where solutions are binary matrices, and
the corresponding symmetry group is the set of all column permutations. Orbitopal fixing, as
introduced in [12], is a technique designed to break symmetries in the special case of partitioning
(resp. packing) formulations involving matrices with exactly (resp. at most) one 1-entry in each
row. The main result of this paper is to extend orbitopal fixing to the full orbitope, defined as
the convex hull of binary matrices with lexicographically nonincreasing columns. We determine
all the variables whose values are fixed in the intersection of an hypercube face with the full
orbitope. Sub-symmetries arising in a given subset of matrices are also considered, thus leading
to define the full sub-orbitope in the case of the sub-symmetric group. We propose a linear
time orbitopal fixing algorithm handling both symmetries and sub-symmetries. We introduce
a dynamic variant of this algorithm where the lexicographical order follows the branching
decisions occurring along the B&B search. Experimental results for the Unit Commitment
Problem are presented. A comparison with state-of-the-art techniques is considered to show
the effectiveness of the proposed variants of the algorithm.

1 Definitions

Throughout the paper, we consider an Integer Linear Program (ILP) of the form

min

{
c(x) | x ∈ X

}
, with X ⊆ P(m,n) and c : P(m,n)→ R (1)

where P(m,n) is the set of m × n binary matrices. A symmetry is defined as a permutation π of
the columns {1, ..., n} such that for any solution matrix x ∈ X , matrix π(x) is also solution and has
same cost, i.e., π(x) ∈ X and c(x) = c(π(x)). The symmetry group G of ILP (1) is the set of all

∗pascale.bendotti@edf.fr
†pierre.fouilhoux@lip6.fr
‡cecile.rottner@edf.fr

1

such permutations. Symmetry group G partitions the solution set X into orbits, i.e., two matrices
are in the same orbit if there exists a permutation in G sending one to the other.

Symmetries arising in ILP can impair the solution process, in particular when symmetric solu-
tions lead to an excessively large branch and bound (B&B) search tree (see survey [19]). Symmetry
detection techniques are proposed in [15, 3]. Various techniques, so called symmetry-breaking tech-
niques, are available to handle symmetries in ILP of the form (1). The general idea is, in each orbit,
to pick one solution, defined as the representative, and then restrict the solution set to the set of
all representatives.

A technique is said to be full-symmetry-breaking (resp. partial-symmetry-breaking) if the solution
set is exactly (resp. partially) restricted to the representative set. Moreover, such a technique
may introduce some specific branching rules that interfere with the B&B search. This can forbid
exploiting a user-defined branching rule or, even, the default solver branching settings. A symmetry-
breaking technique is said to be flexible if at any node of the B&B tree, the branching rule can be
derived from any linear inequality on the variables.

Such a technique can be based on specific branching and pruning rules during the B&B search
[18, 23], as well as on symmetry-breaking inequalities [6, 15, 14] possibly derived from the study
of the symmetry-breaking polytope [10]. Techniques based on symmetry-breaking inequalities are
flexible, since they do not rely on a particular B&B search, and can be full or partial-symmetry-
breaking. Efficient full-symmetry-breaking techniques are usually based on the pruning of the B&B
tree (see survey [19] and computational study [24]) and may also be flexible.

In this article, we focus on a particular symmetry group, the symmetric group Sn, which is
the group of all column permutations. The most common choice of representative is based on
the lexicographical order. Column y ∈ {0, 1}m is said to be lexicographically greater than column
z ∈ {0, 1}m if there exists i ∈ {1,,m − 1} such that ∀i′ ≤ i, yi′ = zi′ and yi+1 > zi+1, i.e.,
yi+1 = 1 and zi+1 = 0. We write y � z if y is equal to z or if y is lexicographically greater than
z. A matrix x ∈ P(m,n) is chosen to be the representative of its orbit if its columns x(1), ..., x(n)
are lexicographically non-increasing, i.e., for all j < n, x(j) � x(j + 1).

The convex hull of all m × n binary matrices with lexicographically non-increasing columns is
called a full orbitope and is denoted by P0(m,n). The solution set X of ILP (1) restricted to the
set of representatives is then P0(m,n) ∩ X .

A complete linear description of the full orbitope is given in [11] as an O(mn3) extended formu-
lation. It is constructed by combining extended formulations of simpler polyhedra. To the best of
our knowledge, it has never been used in practice to handle symmetries. Loos [16] studies orbisacks,
i.e., full orbitopes with n = 2, in an attempt to derive a linear description of the full orbitope in
the space of the natural x variables. Complete linear descriptions of orbisacks, as well as extended
formulations, are detailed in [16]. However, no complete linear description of the full orbitope
P0(m,n) is known in the x space, and computer experiments conducted in [16] indicate that its
facet defining inequalities are extremely complicated.

Special cases of full orbitopes are packing and partitioning orbitopes, which are restrictions to
matrices with at most (resp. exactly) one 1-entry in each row. If all matrices in X have at most
(resp. exactly) one 1-entry in each row, then the solution set can be restricted to a packing (resp.
partitioning) orbitope. A complete linear description of these polytopes is given in [13], alongside
with a polynomial time separation algorithm. From this linear description, a symmetry-breaking
algorithm, called orbitopal fixing, is derived in [11] in order to consider only the solutions included in
the packing (resp. partitioning) orbitope during the B&B search. It is worth noting that orbitopal
fixing is flexible, full-symmetry-breaking and does not introduce any additional inequalities. These

2

key features make orbitopal fixing for packing and partitioning orbitopes particularly efficient.
In this article, we propose an orbitopal fixing algorithm for the full orbitope. In the case of an

arbitrary symmetry group, a fixing algorithm can be used to break symmetries during the B&B
search, such as isomorphism pruning [17], orbital branching [23] or strict setting [18, 20]. When
the solution set can be restricted to the full orbitope, the authors in [21] introduce modified orbital
branching (MOB) which is an efficient partial-symmetry-breaking technique. In SCIP 5.0 [9] a
heuristic similar to MOB takes into account some symmetries related to the full symmetric group.

There are many problems whose symmetry group is the symmetric group acting on the columns,
or on a subset of the columns, but whose solution space cannot be restricted to a partitioning or a
packing orbitope. Examples range from line planning problems in public transports [4] to scheduling
problems with a discrete time horizon, like the Unit Commitment Problem. The Min-up/min-down
Unit Commitment Problem (MUCP) is to find a minimum-cost power production plan on a discrete
time horizon for a set of production units. At each time period, the total production has to meet
a forecast demand. Each unit must satisfy minimum up-time and down-time constraints besides
featuring production and start-up costs. In practical instances, there are several sets of identical
units. Assuming a solution is expressed as a matrix where column j corresponds to the up/down
trajectory of unit j over the time horizon, then any permutation of columns corresponding to
identical units leads to another solution with same cost. In this case, the columns are partitioned
into h subsets N1, ..., Nh, and each subset Nk contains nk columns, corresponding to nk identical
units. The corresponding symmetry group is a product of symmetric groups Sn1

×Sn2
× ...×Snh

,
such that Snk

is operating on column subset Nk. In this article we focus on these symmetries which
are a priori known. No detection techniques are therefore used. In [21], the MOB technique is used
on MUCP instances with additional technical constraints.

The orbitopal fixing algorithm for the full orbitope proposed in this article handles the sym-
metries related to the symmetric group arising in the aforementioned problems. This is a flexible
full-symmetry-breaking technique which is computationally efficient. We generalize symmetries and
full orbitopes to a given set of matrix subsets, thus introducing sub-symmetries and sub-orbitopes.
Such subsets appear in particular as underlying subproblems of a B&B search. The main motivation
to look at sub-symmetries is that they are often undetected in the symmetry group G of the prob-
lem. We extend our orbitopal fixing algorithm to break sub-symmetries arising in sub-symmetric
groups.

The paper is organized as follows. Section 2 introduces state-of-the-art techniques to handle
symmetries in the B&B tree when the solution set X is a set of binary matrices, and the sym-
metry group G is the symmetric group acting on the columns. In Section 3, we characterize the
smallest cube face containing the binary intersection of the full orbitope P0(m,n) with any face of
the (m,n)-dimensional 0/1 cube. In Section 4 we introduce sub-symmetries and study conditions
guaranteeing that at least one optimal solution is preserved by sub-symmetry-breaking techniques.
When considering a set of sub-symmetric groups, the lexicographical order qualifies, thus leading to
the definition of full sub-orbitope. In Section 5 we describe two variants of a linear time orbitopal
fixing algorithm for the full (sub)-orbitope. The first variant is referred to as static, as it is defined
for the natural lexicographical order. The second variant is referred to as dynamic, as the lexico-
graphical order follows the branching decisions occurring along the B&B search. Finally, in Section
6, numerical experiments are performed on MUCP instances featuring identical production units.
A comparison with state-of-the-art symmetry-breaking techniques (Cplex and MOB) is presented
in order to show the effectiveness of our approach.

3

2 Handling symmetries in the B&B tree

At some point in the B&B tree, there will be variables whose values are fixed as a result of the
previous branching decisions. Given a node a of the B&B tree, let Ba1 (resp. Ba0) be the set of
indices of variables fixed to 1 (resp. 0) at node a. Pruning strategies can be constructed using
dedicated branching rules or variable fixing algorithms, which will take symmetries into account in
order to avoid exploring some symmetric solutions in the B&B tree.

2.1 Isomorphism pruning and pruning with branching rules

For a general symmetry group G, Margot introduces in [17] isomorphism pruning, which is to prune
any node a in the B&B tree such that all solutions to subproblem a are not representatives. This can
be done provided specific choices of branching variables are made throughout the B&B tree, thus
restricting flexibility. In [18], a more flexible branching rule for isomorphism pruning is defined. In
[23, 22], a flexible partial-symmetry-breaking technique called orbital branching (OB) is introduced.
It is possible to couple isomorphism pruning or orbital branching with an additional variable setting
algorithm [18, 20]. This procedure sets to 0 (resp. 1) the variables which, at a given node, are
symmetric to a variable already set to 0 (resp. 1).

When handling only all column permutation symmetries, modified orbital branching (MOB)
has been introduced in [21] as a variant of orbital branching in order to produce more balanced
B&B trees.

At each node a of the B&B tree, modified orbital branching [21] is to branch on a disjunction
that fixes a larger number of variables than the classical disjunction xi,j = 0 ∨ xi,j = 1 does. For
a given variable xi,j selected for branching at node a, consider the set Oi,j(a) of all variables which
could permute values with xi,j at node a: Oi,j(a) is defined as the set of all variables xi,j′ , j

′ ≤ n,
such that for all i′ ≤ m, xi′,j′ and xi′,j are either fixed to the same value (i.e., {(i′, j), (i′, j′)} ⊂ Ba1
or {(i′, j), (i′, j′)} ⊂ Ba0) or free (i.e., {(i′, j), (i′, j′)} ⊂ {1, ...,m} × {1,, n}\(Ba0 ∪ Ba1)). Thus,
for a given variable orbit Oi,j(a) = {xi,j1 , xi,j2 , ..., xi,jk} at node a, and for a given α ∈ N, modified
orbital branching is to branch on the following disjunction:

xi,j` = 1, ∀` ∈ {1, ..., α} ∨ xi,j` = 0, ∀` ∈ {α, ..., k}

Modified orbital branching is a partial-symmetry-breaking technique. In the case when the
symmetry group is Sn, Ostrowski et al. [21] show that modified orbital branching can be enforced
to a full-symmetry breaking technique. To this end, one need to apply an additional branching rule
restricting the variable orbits which can be branched on at each node. Namely, the authors introduce
the minimum row-index (MI) branching rule, stating that variable xi,j is eligible for branching if and
only if for all rows i′ < i, variables xi′,j have already been fixed. They prove that modified orbital
branching alongside with MI branching rule is full-symmetry-breaking. As the MI rule makes MOB
non-flexible, they also propose some relaxed rules for which the full-symmetry-breaking property
still holds. In particular, a more flexible branching rule is the relaxed minimum-rank index (RMRI).
For each MOB variant, the full-symmetry-breaking property is obtained at the expense of flexibility.

Isomorphism pruning and MOB have similar actions on the B&B tree. Thus only MOB is
considered in the following, as it is dedicated to symmetries arising from the symmetric group

4

2.2 Pruning with variable fixing

Let C(m,n) be the (m,n)-dimensional 0/1-cube. Given an ILP of the form (1), consider a polytope
P ⊂ C(m,n) such that the solution set of (1) is a subset of P . At a given node a of the B&B tree,
some variables have been already fixed by previous branching decisions. Additional variable fixings
can be performed on some of the remaining free variables. The idea is to fix to 0 (resp. 1) variables
that would yield a solution outside P if fixed to 1 (resp. 0). Variable fixing methods, introduced in
[13], are presented as follows.

A non-empty face F of C(m,n) is given by two index sets I0, I1 ⊂ {1,,m} × {1, ..., n} such
that

F = {x ∈ C(m,n) | xi,j = 0 ∀(i, j) ∈ I0 and xi,j = 1 ∀(i, j) ∈ I1}.

For a polytope P ⊂ C(m,n) and a face F of C(m,n) defined by (I0, I1), the smallest face of C(m,n)

that contains P ∩F ∩{0, 1}(m,n) is denoted by FixF (P), i.e., FixF (P) is the intersection of all faces
of C(m,n) that contain P ∩F ∩{0, 1}(m,n). If FixF (P) is a non-empty face of C(m,n), the index sets
defining it will be denoted by I?0 and I?1 . As pointed out in [12], the following result can be directly
derived from the definition of FixF (P).

Lemma 1. If FixF (P) is a non-empty face, then FixF (P) is given by sets I?0 and I?1 such that

I?0 =

{
(i, j) | xi,j = 0 ∀x ∈ P ∩ F ∩ {0, 1}(m,n)

}

I?1 =

{
(i, j) | xi,j = 1 ∀x ∈ P ∩ F ∩ {0, 1}(m,n)

}
When solving ILP (1) by B&B, to each node a corresponds a face F (a) of C(m,n) defined by

Ba0 and Ba1 . The aim of variable fixing is then to find, at each node a, sets I?0 and I?1 defining
FixF (a)(P), where P is a given polytope containing the solution set. From Lemma 1, there are two

cases. If FixF (a)(P) = ∅ then P ∩ F (a) ∩ {0, 1}(m,n) is empty as well and node a can be pruned.
If FixF (a)(P) 6= ∅, then, any free variable in I?0 (resp. I?1) can be set to 0 (resp. 1).

From Lemma 1, any variable xi,j such that (i, j) 6∈ I?0 ∪ I?1 cannot be fixed, as it takes either
value 0 or 1 in solution subset P ∩ F (a) ∩ {0, 1}(m,n). It proves that the fixings occur as early as
possible in the B&B tree.

In general, the problem of computing FixF (P) is NP-hard. However, if one can optimize a linear
function over P ∩ {0, 1}(m,n) in polynomial time, the fixing (I?0 , I?1) of the face defined by given
index subsets (I0, I1) can be computed in polynomial time [12] by solving 2(mn− |I0| − |I1|) many
linear optimization problems over P ∩ {0, 1}(m,n).

Orbitopal fixing is variable fixing with polytope P being an orbitope. It corresponds to the case
when the solution set X of ILP (1) is restricted to an orbitope P . The resulting solution set X ∩P
is trivially included in P . Then variable fixing can be performed in order to restrict the solution
set at each node a to be included in orbitope P .

In [12], the authors characterize the sets I?0 and I?1 defining FixF (P) where P is the partitioning
(or packing) orbitope and where F is defined by (Ba0 , B

a
1), at a given node a of the B&B tree. They

derive a linear time orbitopal fixing algorithm performed at each node of the B&B tree, breaking
all orbitopal symmetries from packing and partitioning formulations.

5

Orbitopal fixing is a full-symmetry-breaking technique which is also flexible, as fixing does not
interfere with branching. Note also that no additional inequalities are required, thus it does not
increase the size of the LP solved at each node.

In the next two sections, we devise a linear time orbitopal fixing algorithm for the full orbitope.

3 Intersection with the full orbitope

For convenience, the full orbitope P0(m,n) is denoted by PO in this section. Given a face F of
[0, 1](m,n) defined by sets (I0, I1), we will characterize the sets I?0 and I?1 defining the fixing FixF (PO)
of the full orbitope at F . Note that face F can be chosen arbitrarily.

We first define F (PO)-minimality and F (PO)-maximality, which are key properties for matrices.
Namely we will see that each column j of an F (PO)-minimal (resp. F (PO)-maximal) matrix
is the lexicographically lowest (resp. greatest) possible jth column of any binary matrix X ∈
PO ∩ F ∩ {0, 1}(m,n).

For any matrix X, the jth column of X is denoted by X(j) and the entry at row i, column j
by X(i, j) .

Definition 1. For a given face F of [0, 1](m,n), a matrix X is said to be F (PO)-minimal (resp.
F (PO)-maximal) if X ∈ PO ∩F ∩ {0, 1}(m,n) and for any matrix Y ∈ PO ∩F ∩ {0, 1}(m,n), X(j) is
lexicographically less (resp. greater) than or equal to Y (j), ∀j ∈ {1, ..., n}, i.e., X(j) � Y (j) (resp.
X(j) � Y (j)) ∀j ∈ {1, ..., n}.

The section is organized as follows.

1. Two sequences of matrices (M j)j∈{1,...,n} and (M
j
)j∈{1,...,n} are introduced, such that

matrices M1 and M
n

will respectively be F (PO)-minimal and F (PO)-maximal.

2. Sets I?1 and I?0 are determined from M1 and M
n
.

We now introduce some definitions. Some matrices considered in this section are partial matrices
in the sense that their entries can take values in the set {0, 1,×}, where × represents a free variable.
A given partial matrix M of size (m,n) is fully given by the pair (S0, S1) of index subsets such that
the indices corresponding to a 0-entry in M are in subset S0 and the indices corresponding to a
1-entry in M are in subset S1. The remaining indices {1, ...,m} × {1,, n}\(S0 ∪ S1) correspond
to free variables in M .

For a given column j ∈ {1, ..., n− 1}, the following definitions are useful to compare columns j
and j + 1 of matrix M .

Definition 2. b

• A row i ∈ {1, ...,m} is said to be j-fixed, for a given j < n, if M(i, j) 6= × and M(i, j+1) 6= ×
and M(i, j) 6= M(i, j + 1).

Let if (M, j) be the smallest j-fixed row in {1, ...,m}, if such a row exists, and m+1 otherwise.

• A row i is said to be j-discriminating, for a given j < n, if M(i, j) 6= 0 and M(i, j + 1) 6= 1.

Let id(M, j) be the largest j-discriminating row in {1, ..., if (M, j)} if such a row exists, and
0 otherwise.

6

Example 1. To illustrate, consider matrix M ′ defined by pair (S′0, S
′
1), with S′0 = {(4, 1), (3, 2), (5, 2)}

and S′1 = {(2, 1), (5, 1), (4, 2), (1, 3), (2, 3)}:

M ′ =

× × 1
1 × 1
× 0 ×
0 1 ×
1 0 ×

Only rows 4 and 5 are 1-fixed. Hence if (M ′, 1) = 4. There is no 2-fixed row, so if (M ′, 2) = 6.
Rows 1, 2, 3 and 5 are 1-discriminating, hence id(M

′, 1) = 3. Only row 4 is 2-discriminating then
id(M

′, 2) = 4.

3.1 Matrix sequences (M j)j∈{1,...,n} and (M
j
)j∈{1,...,n}

We propose an algorithm constructing a sequence of matrices (M j)j∈{1,...,n} (resp. (M
j
)j∈{1,...,n})

of size (m,n). For each j, matrix M j (resp. M
j
) will be derived from pair (Sj0, S

j
1) (resp. (S

j

0, S
j

1)).

Matrices M1 and M
n

will respectively be F (PO)-minimal and F (PO)-maximal if FixF (PO) is non-
empty. Otherwise, they will be arbitrarily defined by the sets S∅

0 = {(1, 1)}, S∅
1 = {1,,m} ×

{1, ..., n}\S∅
0 .

Algorithm 1 Construction of sequence (M j)j∈{1,...,n} defined by pair (Sj0, S
j
1)j∈{1,...,n}

j ← n.
Sn1 ← I1
Sn0 ← {(i, n) 6∈ I1} ∪ I0
for j = n− 1 to 1 do
if ← if (M j+1, j)
if if = m+ 1 then

Sj1 ← Sj+1
1 ∪

{
(i, j) 6∈ Sj+1

0 | (i, j + 1) ∈ Sj+1
1

}
Sj0 ← Sj+1

0 ∪
{

(i, j) 6∈ Sj+1
1 | (i, j + 1) ∈ Sj+1

0

}
else if there is no j-discriminating row i ∈ {1, ..., if} in matrix M j+1 then

(Sj
′

0 , S
j′

1)← (S∅
0 , S

∅
1), ∀j′ ≤ j

else
id ← id(M

j+1, j)

Sj1 ← Sj+1
1 ∪ {(ild, j)} ∪

{
(i, j) 6∈ Sj+1

0 | (i, j + 1) ∈ Sj+1
1 and i < ild

}
Sj0 ← Sj+1

0 ∪
{

(i, j) 6∈ Sj1
}
.

end if
end for

The key idea for the construction of matrix sequence (M j)j∈{1,...,n} is the following. For j = n,
matrix Mn is defined by pair (I0, I1), except that each free variable in column n is set to 0. For

7

each j < n, matrix M j is defined to be equal to matrix M j+1, except that free variables in column
M j+1(j) are set to 0 or 1 in matrix M j . This is done by propagating values from column j + 1, so
that column j is minimum among all columns greater than or equal to column j + 1. Note that in
matrix M j , there are no remaining free variables in columns {j, ..., n}.

The construction of sequence (M j)j∈{1,...,n} is given in Algorithm 1. For j = n, matrix Mn is

defined by pair (I0 ∪ {(i, n) 6∈ I1}, I1). For j < n, if if (M j+1, j) = m + 1 then each free variable
in column M j(j) is set such that columns j and j + 1 are equal. Otherwise, there are two cases.
In the first case, if (M j+1, j) ≤ m and there is no j-discriminating row i ∈ {1, ..., if} in matrix

M j+1. Then for all j′ ≤ j, (Sj
′

0 , S
j′

1) is set to (S∅
0 , S

∅
1). In the second case, if (M j+1, j) ≤ m and

there exists a j-discriminating row i ∈ {1, ..., if} in matrix M j+1. Let row id = id(M
j+1, j). Free

variables in column M j(j) are set such that columns j and j+ 1 are equal from row 1 to row id−1,
and such that row id has the form [1, 0] on columns j and j+1. Every other free variable in column
j is set to 0.

As the definition of sequence (M
j
)j∈{1,...,n} is very similar, the corresponding algorithm is

omitted. For j = 1, matrix M
1

is defined by pair (I0, I1 ∪{(i, 1) 6∈ I0}). For j > 1, free variables in

column M
j−1

(j) are set to 0 or 1 in matrix M
j

by propagating values from column j − 1, so that
column j is maximum among all columns less than or equal to column j − 1.

Referring to (S′0, S
′
1) defined in Example 1 alongside with matrix M ′, corresponding matrix

sequence (Mk)k∈{1,2,3} is as follows.

M3 =

× × 1
1 × 1
× 0 0
0 1 0
1 0 0

, M2 =

× 1 1
1 1 1
× 0 0
0 1 0
1 0 0

, M1 =

1 1 1
1 1 1
1 0 0
0 1 0
1 0 0

.

The first 2-fixed row in matrix M3 is row 4. Row 4 is also the last 2-discriminating row in
matrix M3 before row 4. Thus if (M ′, 2) = 4, id(M

′, 2) = 4 and variables (1,2) and (2,2) in matrix
M2 are set to be equal the corresponding values in column M3(2). The first 1-fixed row in matrix
M2 is row 4. The last 1-discriminating row before row 4 in matrix M2 is row id(M

2, 1) = 3. Since

id(M
2, 1) = 3, entries (1,1) and (3,1) are set to 1 in matrix M1. Matrix sequence (M

k
)k∈{1,2,3} is

obtained similarly. Finally, for any matrix X in the face defined by (S′0, S
′
1), Theorem 1 shows that

the following inequalities hold column-wise:

M1 =

1 1 1
1 1 1
1 0 0
0 1 0
1 0 0

 � X � M
3

=

1 1 1
1 1 1
1 0 0
0 1 1
1 0 0

Theorem 1. If (S1

0, S
1
1) = (S∅

0 , S
∅
1) or (S

n

0 , S
n

1) = (S∅
0 , S

∅
1) then FixF (PO) = ∅. Otherwise

matrix M1 is F (PO)-minimal and matrix M
n

is F (PO)-maximal.

Proof. We will prove that if (Sj0, S
j
1) 6= (S∅

0 , S
∅
1), then, ∀X ∈ FixF (PO), ∀j ∈ {1, ..., n}, M j(j) �

X(j), and otherwise FixF (PO) = ∅. A similar proof can be done to obtain the corresponding result

for (S
n

0 , S
n

1) and M
j
. The property is proved by induction on decreasing index value j ∈ {1, ..., n}.

8

For j = n, by construction (Sn0 , S
n
1) 6= (S∅

0 , S
∅
1). Since all (i, n) 6∈ I1 are set to 0 in matrix Mn,

necessarily ∀X ∈ PO ∩ F ∩ {0, 1}(m,n), Mn(n) � X(n).
Suppose the induction hypothesis holds for j + 1, with j < n. There are two cases: either

(Sj0, S
j
1) 6= (S∅

0 , S
∅
1) or not.

On the one hand, suppose (Sj0, S
j
1) 6= (S∅

0 , S
∅
1). Suppose also there exists X ∈ PO ∩ F ∩

{0, 1}(m,n) such that M j(j) � X(j). Consider the first row i such that columns X(j) and M j(j)
are different. As M j(j) � X(j), we have X(i, j) = 0 and M j(i, j) = 1. By construction, since
(i, j) 6∈ I0∪I1 and M j(i, j) = 1, for all i′ < i, M j(i′, j) = M j(i′, j+1). If M j(i, j+1) = 1, then since
M j(j+1) = M j+1(j+1),M j+1(j+1) � X(j). By the induction hypothesis, X(j+1) �M j+1(j+1)
thus X(j + 1) � X(j), which contradicts X ∈ PO. Let now suppose M j(i, j + 1) = 0, then, from
the construction of M j , row if = if (M j+1, j) in matrix M j+1 has the form [0, 1] on columns
j and j + 1 (otherwise M j(i, j) would have been set to 0). In this case, row i corresponds to
the last j-discriminating row of matrix M j+1 before row if . Thus, for each i′ ∈ {i + 1, if − 1}
such that (i′, j) 6∈ I0 ∪ I1, we have M j(i′, j + 1) = 1. If for such an i′, X(i′, j) = 0 then since
M j(j + 1) = M j+1(j + 1), M j+1(j + 1) � X(j). Otherwise, as row if in matrix M j+1 has the
form [0, 1] on columns j and j + 1, it follows (if , j) ∈ I0, thus X(if , j) = 0. Consequently
M j+1(j+1) � X(j) holds too. By the induction hypothesis, X(j+1) �M j+1(j+1) thus we reach
the same contradiction.

On the other hand, suppose (Sj0, S
j
1) = (S∅

0 , S
∅
1), consider the following two cases: If (Sj+1

0 , Sj+1
1) =

(S∅
0 , S

∅
1) then by the induction hypothesis, FixF (PO) = ∅. Otherwise, (Sj+1

0 , Sj+1
1) 6= (S∅

0 , S
∅
1).

Recall if = if (M j+1, j). Then, by construction of matrix M j , row if of matrix M j+1 has the

form [0, 1] on columns j and j + 1 and there is no row i ∈ {1, ..., if − 1} in matrix M j+1 which is
j-discriminating. As column j+1 is completely fixed in matrix M j+1, each row i ∈ {1, ..., if −1} of
matrix M j+1 has one the following forms on columns j and j+1: [1, 1] or [0, 0] or [×, 1]. Therefore,
if FixF (PO) were not empty, then PO ∩ F ∩ {0, 1}(m,n) 6= ∅ and for any X ∈ PO ∩ F ∩ {0, 1}(m,n),
even if X(i, j) = 1 for each (i, j) 6∈ I0 ∪ I1, M j+1(j + 1) � X(j) would hold. By the induction
hypothesis, X(j + 1) �M j+1(j + 1) thus X(j + 1) � X(j), which contradicts X ∈ PO.

3.2 Determining I?0 and I?1

In case FixF (PO) 6= ∅, sets I?0 and I?1 can be characterized using F (PO)-minimal and F (PO)-
maximal matrices M1 and M

n
as follows. For each j ∈ {1, ...,m}, consider row ij , the first row at

which columns M1(j) and M
n
(j) differs, defined as:

ij = min

{
i ∈ {1, ...,m} |M1(i, j) 6= M

n
(i, j)

}
If columns M1(j) and M

n
(j) are equal, then ij is arbitrarily set to m + 1. By definition

of F (PO)-minimal and F (PO)-maximal matrices, M1(ij , j) < M
n
(ij , j). Note that since for all

(i, j) ∈ I0 (resp. I1), M1(i, j) = M
n
(i, j) = 0 (resp. 1), it follows that (ij , j) is a free variable i.e.,

(ij , j) 6∈ I0 ∪ I1 .

Theorem 2. FixF (PO), if non-empty, is given by sets I?0 = I0 ∪ I+
0 and I?1 = I1 ∪ I+

1 , where

I+
0 =

{
(i, j) 6∈ I0 ∪ I1 | i < ij and M

n
(i, j) = 0

}
, I+

1 =

{
(i, j) 6∈ I0 ∪ I1 | i < ij and M1(i, j) = 1

}
.

9

Proof. (=⇒) We prove that I+
0 ⊂ I?0 and I+

1 ⊂ I?1 . Let us suppose the opposite: I+
0 6⊂ I?0 or

I+
1 6⊂ I?1 . Let (i, j) ∈ (I+

0 \I?0) ∪ (I+
1 \I?1). Consider i0 = min{i′ | (i′, j) ∈ (I+

0 \I?0) ∪ (I+
1 \I?1)}.

Suppose (i0, j) ∈ I+
0 \I?0 . The proof is similar if we suppose (i0, j) ∈ I+

1 \I?1 . As (i0, j) 6∈ I?0 , there

exists X ∈ PO ∩ F ∩ {0, 1}(m,n) such that X(i0, j) = 1. As (i0, j) ∈ I+
0 , M

n
(i0, j) = 0. If for

all i′ < i0, X(i′, j) ≥ M
n
(i′, j) then the following would hold: X(j) � M

n
(j), contradicting the

fact that M
n

is F (PO)-maximal. Thus, there exists a row i1 < i0 such that M
n
(i1, j) = 1 and

X(i1, j) = 0. Note that as (i0, j) ∈ I+
0 , i0 < ij , and thus i1 < ij , which implies M1(i1, j) = 1.

Thus (i1, j) ∈ I+
1 . However, (i1, j) 6∈ I?1 because X ∈ PO ∩ F ∩ {0, 1}(m,n) and X(i1, j) = 0. The

contradiction comes from the fact that i1 < i0 and i1 ∈ {i′ | (i′, j) ∈ (I+
0 \I?0) ∪ (I+

1 \I?1)}. This
proves I+

0 ⊂ I?0 and I+
1 ⊂ I?1 , thus I0 ∪ I+

0 ⊂ I?0 and I1 ∪ I+
1 ⊂ I?1 .

(⇐=) We prove I?0 ⊂ I0 ∪ I+
0 and I?1 ⊂ I1 ∪ I+

1 . It suffices to show that given (i, j) 6∈ I?0 ∪ I?1 ,
there exists a solution X0 ∈ PO ∩ F ∩ {0, 1}(m,n) such that X0(i, j) = 0 and a solution X1 ∈
PO ∩ F ∩ {0, 1}(m,n) such that X1(i, j) = 1. Consider index (ij , j) 6∈ I0 ∪ I1. Solution M1 is such

that M1(ij , j) = 0 and solution M
n

is such that M
n
(ij , j) = 1. So if i = ij , the result is proved.

Now suppose i 6= ij . Note that for all i′ < ij , M
1(i′, j) = M

n
(i′, j), therefore (i′, j) ∈ I?0 ∪ I?1 . Thus

i > ij . Consider solutions X0 and X1 defined as follows. For each i′ ∈ {1, ...,m} and j′ ∈ {1, ..., n},

X0(i′, j′) =

M

n
(i′, j′) if j′ < j

M1(i′, j′) if j′ > j
M1(i′, j′) if j′ = j and i′ < ij
1 if j′ = j and i′ = ij
0 otherwise.

X1(i′, j′) =

M

n
(i′, j′) if j′ < j

M1(i′, j′) if j′ > j
M1(i′, j′) if j′ = j and i′ < ij
0 if j′ = j and i′ = ij
1 otherwise.

Recall that M
n
(ij , j) = 1 and M1(ij , j) = 0, therefore M

n
(j) � X0(j) � X1(j) � M1(j).

As M
n

and M1 ∈ PO, M
n
(j − 1) � M

n
(j) and M1(j) � M1(j + 1). Thus X1 and X0 are

also in PO ∩ F ∩ {0, 1}(m,n) and are such that X1(i, j) = 1 and X0(i, j) = 0. This concludes the
proof.

To illustrate, consider matrices M1 and M
3

from Example 1. Here the rows ij are respectively

i1 = 6, sinceM1(1) = M
3
(1), i2 = 6 and i3 = 4. The corresponding sets I+

0 and I+
1 are I+

0 = {(3, 3)}
and I+

1 = {(1, 1), (3, 1), (1, 2), (2, 2)}. Note that indices (4, 3) and (5, 3) are neither in I+
0 nor in

I+
1 because they belong to rows greater than or equal i3 = 4. The associated variables cannot be

fixed, even though variable x(5, 3) is set to 0 in M1 and M
3

.

Matrices M1 and M
n

can be computed in O(mn) time, since at each iteration j ∈ {1, ..., n} of
Algorithm 1, if and ild can be computed in O(m) time. Once matrices M1 and M

n
are known,

sets I?0 and I?1 can be computed in O(mn) time as well. It follows:

Theorem 3. FixF (PO) can be computed in linear time O(mn).

4 Sub-symmetries and sub-orbitopes

In the next sections, we generalize symmetries and full orbitopes to a given set of matrix subsets.
A similar notion has been introduced in the context of Constraint Satisfaction Programming [7, 8].
Symmetries corresponding to such subsets can be detected and tackled during the B&B search.

10

In this section, the symmetry group of an ILP is the set of all index permutations π (and not
only column permutations) such that for any solution matrix X ∈ X , matrix π(X) is also solution
and has same cost, i.e., π(X) ∈ X and c(X) = c(π(X)).

4.1 Sub-symmetries

Consider a subset Q ⊂ X of solutions of ILP (1). The sub-symmetry group GQ relative to subset Q
is defined as the symmetry group of subproblem min{cx | x ∈ Q}. For instance, such subset Q ⊂ X
can correspond to a B&B node, defined as solutions satisfying branching inequalities.

Permutations in sub-symmetry group GQ are referred to as sub-symmetries. The main motiva-
tion to look at sub-symmetries in GQ is that they remain undetected in the symmetry group G of
the problem. This is illustrated in the following example.

Example 2. Consider an ILP whose solution set is X = {X1, X2, Y } ⊂ {0, 1}(1,3), where

X1 = [1, 0, 1], X2 = [1, 1, 0], Y = [0, 1, 0].

Suppose also solutions X1 and X2 have same cost, i.e., c(X1) = c(X2). Consider solution
subset Q ⊂ X such that Q = {X ∈ X | X(1, 1) + X(1, 2) + X(1, 3) = 2}, then Q = {X1, X2}.
Now consider transposition π132 such that π132(X) = [X(1, 1), X(1, 3), X(1, 2)]. Obviously, π132 is
in sub-symmetry group GQ, but not in symmetry group G, as π132(Y) = [0, 0, 1] 6∈ X .

Property 1. Two solutions in the same orbit with respect to a sub-symmetry group GQ may not
be in the same orbit with respect to the symmetry group G.

Referring to Example 2, solutions X1 and X2 are in the same orbit with respect to GQ since
π132 ∈ GQ. To see that solutions X1 and X2 are not in the same orbit with respect to G, it is
sufficient to show that there is no permutation π ∈ G such that π(X1) = X2. Suppose there was
such a permutation π. First note that π132 6∈ G thus π 6= π132. Since both X1 and X2 have exactly
one entry to 0, π must be such that π(e2) = e3, where, for i ∈ {1, ..., 3} ei ∈ {0, 1}(1,3) is such
that ei(1, i) = 1 and ei(1, j) = 0, ∀j 6= i. Since Y = e2, π(Y) = e3 6∈ X , which is a contradiction.
Thus, X1 and X2 are not in the same orbit with respect to the symmetry group G, which shows
the symmetry acting between these two solutions is not detected in G.

We now generalize to sub-symmetries the concepts introduced for symmetries in Section 1.
Let {Qi ⊂ X , i ∈ {1, ..., s}} be a set of matrix subsets. To each Qi, i ∈ {1, ..., s}, corresponds

a sub-symmetry group GQi containing sub-symmetries that may not be detected in the symmetry
group G. Let Oik, k ∈ {1, ..., oi}, be the orbits defined by GQi

on subset Qi, i ∈ {1, ..., s}.
When considering only the symmetry group G, the orbits of the solutions form a partition of

the solution set X . However, the set O = {Oik, k ∈ {1, ..., oi}, i ∈ {1, ..., s}} of orbits defined by
sub-symmetry groups GQi , i ∈ {1, ..., s}, does not form a partition of X anymore. Indeed, for given
i, j ∈ {1, ..., s}, if Qi ∩Qj 6= ∅, then any x ∈ Qi ∩Qj will appear in both the orbits of GQi and the
orbits of GQj

. In order to break such sub-symmetries, removing all non-representatives of an orbit
of GQi

may remove the representative of an orbit of GQj
, thus leaving the latter unrepresented.

We thus generalize the concept of orbit in order to define a new partition of X taking sub-
symmetries into account. First, for given X ∈ P(m,n), let us define G(X), the set of all permuta-

11

tions π in
⋃s
i=1 GQi such that π can be applied to X:

G(X) =
⋃

Qi3X
GQi

We now define a relation R over the solution set X . Matrix X ′ is said to be in relation with X,
written X ′ R X, if

∃r ∈ N, ∃π1, ..., πr | πk ∈ G(πk−1...π1(X)),∀k ∈ {1, ..., r}, and X ′ = π1π2...πr(X).

The generalized orbit O of X with respect to {Qi, i ∈ {1, ..., s}} is thus the set of all X ′ such
that X ′ R X. Roughly speaking, orbits that intersect one another are collected into generalized
orbits. Matrix X ′ is in the generalized orbit of X if X ′ can be obtained from X by composing
permutations of groups GQi , ensuring that each permutation π ∈ GQi is applied to an element of
Qi. Note that R is an equivalence relation, thus the set of all generalized orbits with respect to
{Qi, i ∈ {1, ..., s}} is a partition of X . Moreover, for a given X ∈ X , each X ′ in the generalized
orbit of X is such that X ′ ∈ X and c(X ′) = c(X). Note that the generalized orbit may not be an
orbit of any of the symmetry groups GQi

, i ∈ {1, ..., s}.

Remark 1. By definition, for any generalized orbit O, there exist orbits σ1, ..., σp ∈ O such that
O = ∪pi=1σi.

Note that the union O = ∪pi=1σi may contain several orbits relative to the same subset Qi.

Example 3. Consider an ILP having the following feasible solutions:

X1 = [1, 1, 0, 0], X2 = [1, 0, 0, 1], X3 = [0, 0, 1, 1], X4 = [0, 1, 1, 0], X5 = [0, 1, 0, 1]

Y1 = [1, 0, 0, 0], Y2 = [0, 0, 0, 1].

with c(X1) = c(X2) = c(X3) = c(X4) = c(X5) and c(Y1) = c(Y2).
Let Q1 = {X1, X2, X3, X4}, Q2 = {X1, X5}, Q3 = {X4, X5} and Q4 = {Y1, Y2}. The

permutation sending X to [X(1, j1), X(1, j2), X(1, j3), X(1, j4)] is denoted by πj1j2j3j4 . Note that
π2341 ∈ GQ1 , π4231 ∈ GQ2 , π1243 ∈ GQ3 and π4231 ∈ GQ4 . Thus, the generalized orbit of X1

with respect to {Q1, Q2, Q3, Q4} is {X1, X2, X3, X4, X5}, as X2 = π2341(X1), X3 = π2341(X2),
X4 = π2341(X3) and X5 = π1243(X4). Similarly, the generalized orbit of Y2 with respect to
{Q1, Q2, Q3, Q4} is {Y1, Y2}. All in all there are two generalized orbits O = {X1, X2, X3, X4, X5}
and O′ = {Y1, Y2}. Note that O′ corresponds to the single orbit Q4.

While simple orbits σ ∈ O may sometimes be easily determined, the generalized orbits may
anyway be difficult to compute. In this case, one may want to choose a representative r(σ) ∈ σ
for each orbit σ ∈ O, and then use a sub-symmetry-breaking technique to remove all elements
σ\r(σ) from the search, for each orbit σ ∈ O. As for given orbit σ, the set σ\r(σ) may contain
the representative of another orbit σ′, we need to ensure that there remains at least one element
per generalized orbit after the removal of all elements ∪σ∈O(σ\r(σ)). To this end the choice of the
representatives r(σ) must satisfy the following compatibility property.

Definition 3. The set of representatives {r(σ), σ ∈ O} is said to be orbit-compatible if for any gen-
eralized orbit O = ∪pi=1σi, σ1, ..., σp ∈ O, there exists j such that r(σj) = r(σi) for all i such that r(σj) ∈
σi. Such a solution r(σj) is said to be a generalized representative of O.

12

Note that there always exists a set of orbit-compatible representatives: start by choosing a
representative r(σ) for a given σ ∈ O, and then choose r(σ) as the representative of each orbit σ′

in which r(σ) is contained. Representatives of orbits not containing r(σ) can be chosen arbitrarily.
There may exist several generalized representatives of a given generalized orbit. If {r(σ), σ ∈ O}

is orbit-compatible then for each generalized orbit O = ∪pi=1σi there exists i ∈ {1, ..., p} such that
either r(σi) is not contained in any other orbit σj ∈ O, j 6= i, or r(σi) is the representative of any
orbit to which it belongs. The next lemma states that when representatives are orbit-compatible,
there remains at least one element per generalized orbit even if all elements ∪σ∈O(σ\r(σ)) have
been removed.

Lemma 2. For given orbit-compatible representatives r(σ), σ ∈ O, for any generalized orbit O =
∪pi=1σi, σ1, ..., σp ∈ O, ∃j ∈ {1, ..., p} such that r(σj) 6∈ ∪pi=1(σi\r(σi)).

Note that even if the set of representatives is orbit-compatible, it may happen that an entire
orbit σ ∈ O is removed by a sub-symmetry breaking technique. However, if orbit-compatibility is
satisfied, there will always remain at least one element in the corresponding generalized orbit, with
same cost as any solution in orbit σ.

Referring to Example 3, we focus on generalized orbit O. In Figure 1a, X1 (resp. X4, X5)
is chosen to be the representative of orbit Q1 (resp. Q3, Q2). The set of chosen representatives
is not orbit-compatible. Indeed, there is no generalized representative as each representative be-
longs also to another orbit, of which it is not representative. Thus the set of removed elements
∪pi=1(σi\r(σi)) contains all elements of the generalized orbit. In Figure 1b, X3 (resp. X5) is chosen
to be representative of Q1 (resp. orbits Q3 and Q2). In this case, the set of chosen representatives
is orbit-compatible, since solutions X3 and X5 are generalized representatives of O. Indeed, X3 is
representative of Q1 and does not belong to any other orbit, so it remains after removal removal of
∪pi=1(σi\r(σi)). Solution X5 is representative of Q2 and Q3, and belongs to these two orbits only,
so it remains after removal as well. In Figure 1c, X1 (resp. X5) is chosen to be representative of
Q1 (resp. orbits Q3 and Q2). In this case, the set of chosen representatives is orbit-compatible,
since solution X5 is a generalized representative of O. Indeed, X5 is representative of Q2 and Q3

and does not belong to any other orbit. This choice of representatives is certainly the best as there
is exactly one generalized representative of O. Indeed, X1 is representative of Q1, but also belongs
to orbit Q2 which has another representative. Therefore, X1 is in the set of removed elements
∪pi=1(σi\r(σi)).

4.2 Full sub-orbitopes

Given X ∈ X and sets R ⊂ {1, ...,m} and C ⊂ {1, ..., n}, we consider sub-matrix (R,C) of X,
denoted by X(R,C), obtained by considering columns C of X on rows R only. Symmetry group GQ
is the sub-symmetric group with respect to (R,C) if it is the set of all permutations of the columns
of X(R,C).

In this section, we generalize the notion of full orbitope in order to account for sub-symmetries
arising in subproblems of ILP (1) whose symmetry group is a sub-symmetric group. We consider
solutions subsets Qi, i ∈ {1, ..., s}, such that for each i the symmetry group GQi is the sub-symmetric
group with respect to (Ri, Ci), Ri ⊂ {1, ...,m} and Ci ⊂ {1, ..., n}.

For each orbit Oik, k ∈ {1, ..., oi}, let its representative Xi
k ∈ Oik be such that sub-matrix

Xi
k(Ri, Ci) is lexicographically maximal, i.e., its columns are lexicographically non-increasing.

Lemma 3. The set of representatives {Xi
k, k ∈ {1, ..., oi}, i ∈ {1, ..., s}} is orbit-compatible.

13

X1 = r(Q1)

X2 X3

X4 = r(Q3)

X5 = r(Q2)

Q1

Q3Q2

(a) No element remaining.

X1

X2 X3 = r(Q1)

X4

X5 = r(Q2) = r(Q3)

Q1

Q3Q2

(b) X3 and X5 remain

X1 = r(Q1)

X2 X3

X4

X5 = r(Q2) = r(Q3)

Q1

Q3Q2

(c) X5 remains

Figure 1: Orbits in the generalized orbit {X1, X2, X3, X4, X5} with various choices of representatives

Proof. In order to prove that this set of representatives is orbit-compatible, we prove that there
exists a generalized representative of each generalized orbit.

First consider the following row-wise ordering of matrix entries: (1, 1), (1, 2), ..., (1, n), (2, 1),
(2, 2), ..., (2, n), ..., (m,n). We define an ordering �M of the matrices such that for two matrices A
and B, A �M B if A(i, j) > B(i, j), with (i, j) the first position, with respect to the given ordering
of matrix entries, where A and B differ.

For a given solution matrix X ∈ X , we propose an algorithm computing a generalized rep-
resentative of the generalized orbit of X. First set X0 = X. At iteration k of the algorithm,
there are two cases. In the first case, there exists i ∈ {1, ..., s} such that Xk ∈ Qi and sub-
matrix Xk(Ri, Ci) is not lexicographically maximal, i.e., there exists a column j ∈ Ci such that
Xk(Ri, {j}) ≺ Xk(Ri, {j + 1}). In this case, Xk+1 is set to Xk, except that columns j and j + 1
of sub-matrix Xk(Ri, Ci) are transposed. Otherwise in the second case, the algorithm stops. The
claim is that this algorithm stops at some iteration K, and corresponding matrix XK is a gener-
alized representative of the generalized orbit of X. Note that at each iteration k, Xk �M Xk−1.
As matrices Xk take values in a finite set, there exists an iteration K at which the algorithm
stops. By construction, matrix XK is in the generalized orbit of X, and for each i ∈ {1, ..., s}
such that X ∈ Qi, sub-matrix (Ri, Ci) of X is lexicographically maximal. It is thus a generalized
representative of the generalized orbit of X.

The full sub-orbitope Psub with respect to subsets Qi, i ∈ {1, ..., s}, is the convex hull of binary
matrices X such that for each i ∈ {1, ..., s}, if X ∈ Qi then the columns of X(Ri, Ci) are lexi-
cographically non-increasing. In particular, Psub contains the generalized representatives of each
generalized orbit O, but no other element of O. Note that the full sub-orbitope generalizes the full
orbitope, as for s = 1, Q1 = X , GQ1

= Sn and (R1, C1) = ({1, ...,m}, {1, ..., n}), the associated
full sub-orbitope is the full orbitope P0(m,n). Note that the restriction Psub(Ri, Ci) of Psub to
sub-matrix (Ri, Ci) is the full orbitope P0(|Ri|, |Ci|) for any i ∈ {1, ..., s}. The results presented in
Section 3 can then directly be used to compute the smallest cube face containing the binary points

14

in the intersection of Psub(Ri, Ci) and a given cube face.

5 Static and dynamic orbitopal fixing

So far, the considered lexicographical order on the columns was defined with respect to order 1,,m
on the rows. In this section, we define a static orbitopal fixing algorithm for the full orbitope, which
relies on this lexicographical order. We also define a dynamic orbitopal fixing algorithm for the full
orbitope, where the lexicographical order is defined with respect to an order on the rows determined
by the branching decisions in the B&B tree. Interestingly these static and dynamic variants of the
orbitopal fixing algorithm can be used also for the full sub-orbitope case. It is worth noting that
this orbitopal fixing algorithm based on our intersection result from Section 3 performs all possible
variable fixings (with respect to the full (sub-)orbitope) as early as possible in the B&B tree.

5.1 Static orbitopal fixing

When solving MILP (1) with B&B, static orbitopal fixing can be performed at the beginning of
each node processing in the B&B tree, in order to ensure that any enumerated solution x in the
B&B tree is such that x ∈ P0(m,n), assuming the lexicographical order is a priori given.

The static orbitopal fixing algorithm at node a is the following:

- Set I0 = Ba0 , I1 = Ba1 , where Ba0 (resp. Ba1) is the index set of variables previously fixed to 0
(resp. 1).

- Compute matrices M1 and M
n

using Algorithm 1.

- If M1 or M
n

is defined by pair (S∅
0 , S

∅
1), prune node a. Otherwise determine I+

0 and I+
1

using Th. 2.

- Fix variable xi,j to 0, for each (i, j) ∈ I+
0 .

- Fix variable xi,j to 1, for each (i, j) ∈ I+
1 .

From Theorem 2, the pair (I?0 , I
?
1) = (I0 ∪ I+

0 , I1 ∪ I+
1) defines FixF (a)(P0(m,n)), where F (a)

is the hypercube face given by (Ba0 , B
a
1) at each node a of a B&B tree. Thus the following result

can be directly derived.

Theorem 4. Let τ be a B&B tree of ILP (1), in which static orbitopal fixing is performed, and the
branching rule is arbitrary. For each solution orbit O of ILP (1), there is exactly one solution of
O enumerated in B&B tree τ .

From Theorem 3, the static orbitopal fixing algorithm is in O(mn) time at each node of the
B&B tree.

5.2 Dynamic orbitopal fixing

In the previous sections, the lexicographical order on the columns of an m × n binary matrix was
defined with respect to the order 1, ...,m on the rows. Note that this order is arbitrary, and thus
the definition of the lexicographical order can be extended for any ordering of the m rows. Namely,
considering a bijection φ : {1, ...,m} → {1, ...,m}, column c is lexicographically greater than or

15

equal to a column c′, with respect to ordering φ, if there exists i ∈ {1,,m− 1} such that ∀i′ ≤ i,
yφ(i′) = zφ(i′) and yφ(i)+1 > zφ(i)+1.

Dynamic fixing is to perform, at any node a of the B&B tree, orbitopal fixing with respect
to reorderings φa of the row indices, defined by the branching decisions leading to node a. The
idea of pruning the B&B tree with respect to an order defined by the branching process has been
introduced by Margot [19].

As a first step, suppose at each node a of the B&B tree, the branching disjunction has the form

xia,ja = 0 ∨ xia,ja = 1. (2)

Dynamic orbitopal fixing is to perform orbitopal fixing on row set Ia = { φa(1), φa(2), ..., φa(|Ia|)
} at each node a, where lexicographical ordering φa and Ia are defined recursively as follows.

If a is the root, then

{
Ia = {ia}
φa(1) = ia

, otherwise

Ia = Ib ∪ {ia}
φa(i) = φb(i) ∀i ∈ {1, ..., |Ib|}.
φa(|Ib|+ 1) = ia if ia 6∈ Ib,
where b is the father of a.

Note that an arbitrary branching rule used alongside with an arbitrary ordering may lead to
the removal of every optimal solution from the B&B tree. The following theorem shows that the
use of branching rule (2) and ordering φa preserves an optimal solution in the B&B tree.

Theorem 5. Let τ be a B&B tree of ILP (1), in which dynamic orbitopal fixing is performed and
branching disjunctions have the form (2). For each solution orbit O of ILP (1), there is exactly
one solution of O enumerated in B&B tree τ .

Proof. The sketch of the proof is to produce a solution X ∈ O and prove that X is the only solution
of O which is enumerated in τ .

First consider the branching disjunction at the root node ar: (xi0,j0 = 0 ∨ xi0,j0 = 1). Then
φar (1) = i0. Let ni0 be the number of 1-entries on row i0 of any matrix X ∈ O. Since dynamic
orbitopal fixing is enforced in τ , any solution enumerated by τ must be lexicographically non-
increasing with respect to φar . Then, as row i0 is the first row with respect to the lexicographical
order φar , any X ∈ O enumerated by the B&B tree will be such that:

X(i0, j) = 1, ∀j ∈ {1, ..., ni0} and X(i0, j) = 0, ∀j ∈ {ni0 + 1, ..., n}

Note that if j0 ≤ ni0 (resp. j0 > ni0) then any X ∈ O enumerated by τ is such that X(i0, j0) = 1
(resp. X(i0, j0) = 0). Thus there is no solution of O in the branch xi0,j0 = 0 (resp. xi0,j0 = 1).

Suppose w.l.o.g. that j0 ≤ ni0 , so the node considered is b1, the son of ar such that xi0,j0 = 1.
Consider the branching disjunction at node b1: (xi1,j1 = 0 ∨ xi1,j1 = 1). If i1 = i0 then,
by the same arguments as at the root node, there is exactly one branch in which all elements of
O are enumerated, and this branch can be easily determined. Otherwise, since i1 6= i0, then by
construction, φb1(1) = i0 and φb1(2) = i1. Let n1

i1
(resp. n0

i1
) be the number of columns j such

that X(i0, j) = 1 (resp. X(i0, j) = 0) and X(i1, j) = 1. Since row i1 is second with respect to
lexicographical order φb1 , any X ∈ O enumerated by the B&B tree will be such that:{

X(i1, j) = 1 ∀j ∈ {1, ..., n1
i1
} ∪ {ni0 + 1, ..., ni0 + n0

i1
}

X(i1, j) = 0 ∀j ∈ {n1
i1

+ 1, ..., ni0} ∪ {ni0 + n0
i1

+ 1, ..., n}

16

Thus, all X ∈ O enumerated by τ have the same value v in entry (i1, j1), and this value
can be determined, as previously, by finding to which of the sets {1, ..., n1

i1
}, {n1

i1
+ 1, ..., ni0},

{ni0 + 1, ..., ni0 + n0
i1
}, {ni0 + n0

i1
+ 1, ..., n} does index j1 belong. Therefore, since for all X ∈ O

enumerated by τ , X(i1, j1) = v, there is exactly one branch (xi1,j1 = v) in which any X ∈ O is
enumerated. This process can be repeated until a leaf node al is reached. At that point, all entries
of X are determined. By construction, X is the only element of O enumerated by τ , since at each
node we considered, there was always a unique branch leading to all elements of O.

Now suppose the branching disjunction at each node a is arbritrary. The latter result can be
extended to show that dynamic orbitopal fixing can also be used in this case. For each node a,
consider a branching disjunction of the form:

∑
i∈Ra

p∑
j=1

λiaxi,j ≤ k ∨
∑
i∈Ra

p∑
j=1

λiaxi,j > k. (3)

where Ra = {ra,1, ..., ra,p} ⊂ {1, ...,m}.
A new lexicographical ordering φ̃a taking into account every row involved in disjunction (3) must

be defined at each node a. Namely, row subset Ĩa ⊂ {1, ...,m} and bijection φ̃a : {1, ..., |Ĩa|} → Ĩa
are as follows.

If a is the root, then

{
Ĩa = Ra
φ̃a(k) = ra,k, k ∈ {1, ..., p}

, otherwise

Ĩa = Ĩb ∪Ra
φ̃a(i) = φ̃b(i) ∀i ∈ {1, ..., |Ĩb|}
φ̃a(|Ĩb|+ k) = r′a,k, ∀k ∈ {1, ..., p′}
where b is the father of a

and {r′a,1, ..., r′a,p′} = Ra\Ĩb.

5.3 Orbitopal fixing in the full sub-orbitope

Recall that given X ∈ X and sets R ⊂ {1, ...,m} and C ⊂ {1, ..., n}, sub-matrix X(R,C) of X
is obtained by considering columns C of X on rows R only. Consider solutions subsets Qi ⊂ X ,
i ∈ {1, ..., s} such that for each i ∈ {1, ..., s} the symmetry group GQi

is the sub-symmetric group
with respect to (Ri, Ci). Let Psub be the associated full sub-orbitope. Static (resp. dynamic)
orbitopal fixing can be performed for Psub at each node a of the B&B tree as follows. Consider
Ia ⊂ {1, ..., s} such that for each i ∈ Ia, each solution x to the sub-problem at node a is in Qi.
The idea is to apply static (resp. dynamic) orbitopal fixing to the sub-matrix X(Ri, Ci), for each
i ∈ Ia.

By Lemma 3 the representatives associated with the natural lexicographical order are orbit-
compatible. Consequently, static orbitopal fixing for Psub does not change the optimal value re-
turned by the B&B process. Lemma 3 can directly be adapted to the case when the representatives
are associated to a lexicographical order defined by arbitrary row-order φ, and the proof of Theorem
5 can be slightly modified to show that dynamic orbitopal fixing for Psub is also valid.

17

6 Application to the Unit Commitment Problem

Given a discrete time horizon T = {1, ..., T}, a demand for electric power Dt is to be met at each
time period t ∈ T . Power is provided by a set N of n production units. At each time period, unit
j ∈ N is either down or up, and in the latter case, its production is within [P jmin, P jmax]. Each
unit must satisfy minimum up-time (resp. down-time) constraints, i.e., it must remain up (resp.
down) during at least Lj (resp. `j) periods after start up (resp. shut down). Each unit j also
features three different costs: a fixed cost cjf , incurred each time period the unit is up; a start-up

cost cj0, incurred each time the unit starts up; and a cost cjp proportional to its production. The
Min-up/min-down Unit Commitment Problem (MUCP) is to find a production plan minimizing
the total cost while satisfying the demand and the minimum up and down time constraints. The
MUCP is strongly NP-hard [1].

For each unit j ∈ N and time period t ∈ T , let us consider three variables: xt,j ∈ {0, 1} indicates
if unit j is up at time t; ut,j ∈ {0, 1} whether unit j starts up at time t; and pt,j ∈ R is the quantity
of power produced by unit j at time t. Without loss of generality we consider that Lj , `j ≤ T . A
formulation for the MUCP is as follows [25, 21, 2].

min
x,u,p

n∑
j=1

T∑
t=1

cjfxt,j + cjppt,j + cj0ut,j

s. t.

t∑
t′=t−Lj+1

ut′,j ≤ xt,j ∀j ∈ N , ∀t ∈ {Lj , ..., T} (4)

t∑
t′=t−`j+1

ut′,j ≤ 1− xt−`j ,j ∀j ∈ N , ∀t ∈ {`j , ..., T} (5)

ut,j ≥ xt,j − xt−1,j ∀j ∈ N , ∀t ∈ {2, ..., T} (6)
n∑
j=1

pt,j ≥ Dt ∀t ∈ T (7)

Pmin0jxt,j ≤ pt,j ≤ P jmaxxt,j ∀j ∈ N , ∀t ∈ T (8)

xt,j , ut,j ∈ {0, 1} ∀j ∈ N , ∀t ∈ T (9)

6.1 Symmetries in the MUCP

Symmetries in the MUCP (and in the UCP) arise from the existence of groups of identical units,
i.e., units with identical characteristics (Pmin, Pmax, L, `, cf , c0, cp). The instance is partitioned
into types h ∈ {1, ...,H} of nh identical units. The unit set of type h is denoted by Nh.

The solutions of the MUCP can be expressed as a series of binary matrices. For a given type h,
we introduce matrix Xh ∈ P(T, nh) such that entry Xh(t, j) corresponds to variable xt,j′ , where j′

is the index of the jth unit of type h. Column of matrix Xh(j) corresponds to the up/down plan
relative to the jth unit of type h. Similarly, we introduce matrices Uh and Ph.

The set of all feasible X = (xt,j)t∈T ,j∈N is denoted by XMUCP . Note that any solution matrix
X (resp. U , P) can be partitioned in H matrices Xh (resp. Uh, Ph). Since all units of type h are
identical, their production plans can be permuted, provided that the same permutation is applied

18

to matrices Xh, Uh and Ph. Thus, the symmetry group G contains all column permutations applied
to Xh, Uh and Ph for each unit type h. Consequently, for each type h, feasible solutions Xh can
be restricted to be in the full orbitope P0(T, nh). As binary variables U are uniquely determined
by variables X, breaking the symmetry on the X variables will break the symmetry on U variables.

6.2 Sub-symmetries in the MUCP

There are other sources of symmetry, arising from the possibility, in some cases, of permuting some
sub-columns of matrices Xh. For example, consider two identical units at a given node a. Suppose
the fixings at the previous nodes are such that these two units are down and ready to start up
at given time t0. Then their plans after t0 can be permuted, even if they do not have the same
up/down plan before t0. This kind of sub-symmetry is not detected by the symmetry group G.
Indeed, as soon as their up/down plans before t0 are different, the two units would no longer be
considered symmetrical with respect to G.

More precisely, a unit j ∈ N is ready to start up at time t if and only if ∀t′ ∈ {t− `j , ..., t− 1},
xt′,j = 0. Similarly, a unit j ∈ N k is ready to shut down at time t if and only if ∀t′ ∈ {t−Lj , ..., t−1},
xt′,j = 1.

For each time period t ∈ {1, ..., T } and subset N ⊂ Nh, h ∈ {1, ...,H} of identical units, consider
the following subsets of XMUCP :

Q
t

N =
{
X ∈ XMUCP | X(t′, j) = 0, ∀t′ ∈ {t− `j , ..., t− 1}, ∀j ∈ N

}
Qt

N
=
{
X ∈ XMUCP | X(t′, j) = 1, ∀t′ ∈ {t− Lj , ..., t− 1}, ∀i ∈ N

}
Note that at each node a of the tree, it is easy to find the sets Q

t

N and Qt
N

, t ∈ {1, ..., T },
N ⊂ Nh, h ∈ {1, ...,H}, to which any solution of the subproblem associated to node a belongs.
Indeed, for each time period t and for each unit i down (resp. up) at time t, it is possible to know
how long unit i has been down (resp. up), and thus whether unit i is ready to start up (resp. shut
down) or not. If we denote by Nu

t,h (resp. Nd
t,h) the set of type h units which are ready to start up

(resp. shut down) at time t, then all solutions at node a are in sets Q
t

Nu
t,h

and Qt
Nd

t,h

.

Let G
Q

t
N

and GQt
N

be the sub-symmetry groups associated to Q
t

N and Qt
N

, t ∈ {1, ..., T },
N ⊂ Nh, h ∈ {1, ...,H}. Note that groups G

Q
t
N

and GQt
N

contain the sub-symmetric group

associated to the sub-matrix defined by rows and columns ({t, ..., T},N). The corresponding full
sub-orbitope is denoted by Psub(MUCP).

6.3 Orbitopal fixing for the MUCP

As the production plans of identical units can be permuted, each variable matrix Xh can be re-
stricted to be in the full orbitope P0(T, nh). More generally we have seen in Section 6.2 that variable
matrix X can be restricted to be in the full sub-orbitope Psub(MUCP)

The fixing strategies developed in Sections 5.1 and 5.2 can thus be applied to fix variables in
each matrix Xh, in order to enumerate only solutions with lexicographically maximal Xh. These
strategies can also be applied to restrict the feasible set to the full sub-orbitope Psub(MUCP).

The possible approaches are the following:

- Static orbitopal fixing (SOF) for the full orbitopes P0(T, nh), h ∈ {1, ...,H}, where the order
on the rows is decided before the branching process.

19

- Dynamic orbitopal fixing (DOF) for the full orbitopes P0(T, nh), h ∈ {1, ...,H}, where the

order on the rows φ̃ is decided during the branching process, as described in Section 5.2.

- Static orbitopal fixing for the full orbitopes P0(T, nh), h ∈ {1, ...,H} and for the full sub-
orbitope Psub(MUCP).

- Dynamic orbitopal fixing for the full orbitopes P0(T, nh), h ∈ {1, ...,H} and for the full
sub-orbitope Psub(MUCP).

In the static case, the branching decisions are completely free. As stated in Section 5.2, the
branching decisions remain free in the dynamic case, provided that the corresponding rows are
ordered accordingly. In our experiments, we only consider the branching disjunctions of the form
(xt,j = 0 ∨ xt,j = 1), or (xt,j − xt−1,j ≤ 0 ∨ xt,j − xt−1,j = 1), i.e., (ut,j = 0 ∨ ut,j = 1).

7 Experimental results for the MUCP

All experiments were performed using one thread of a PC with a 64 bit Intel Core i7-6700 processor
running at 3.4GHz, and 32 GB of RAM memory. The MUCP instances are solved until optimality
(defined within 10−7 of relative optimality tolerance) or until the time limit of 3600 seconds is
reached.

In the following experiments, we compare resolution methods pairwise using a speed-up indica-
tor. For given approaches m1 and m2, the speed-up achieved by m1 with respect to m2 on a given

instance is the ratio CPU(m2)
CPU(m1) . The average speed-up, computed on a set I of p instances, is the

geometric mean (Πp
i=1si)

1
p of the speed-ups s1,..., sp.

The following methods are considered:
- Default Cplex: Default implementation of Cplex used by its C++ API,
- Callback
Cplex:

Cplex with empty Branch and LazyConstraint Callbacks,

- MOB: modified orbital branching with no branching rules enforced
(Cplex is free to choose the next branching variable),

- SOF: Static orbitopal fixing for the full-orbitope,
- DOF Dynamic orbitopal fixing for the full orbitope,
- SOF-S: Static orbitopal fixing for the full orbitope and sub-orbitope,
- DOF-S: Dynamic orbitopal fixing for the full orbitope and sub-orbitope.

For methods MOB, SOF, DOF, SOF-S and DOF-S, we also use Cplex C++ API. The fixing (or
branching) algorithms are included in Cplex using the so-called Branch Callback, alongside with
an empty LazyConstraint Callback to warn Cplex that our methods will remove solutions from
the feasible set. Note that such callbacks deactivate some Cplex features designed to improve the
efficiency of the overall algorithm. This may induce a bias when comparing results obtained with
and without the use of a callback. This is why we also compare our methods to Callback Cplex.

7.1 Instances

In order to determine which symmetry-breaking technique performs best with respect to the number
of rows and columns of matrix X, we consider various instance sizes (n, T). Namely, we generate
instances with T = 96 and smaller n : (30, 96), (60,96) and instances with T = 48 and larger n:
(60, 48), (80,48).

20

For each pair (n, T), we generate a set of MUCP instances as follows.
For each instance, we generate a “2-peak per day” type demand with a large variation between

peak and off-peak values: during one day, the typical demand in energy has two peak periods, one
in the morning and one in the evening. The amplitudes between peak and off-peak periods have
similar characteristics to those in the dataset from [5].

We consider the parameters (Pmin, Pmax, L, `, cf , c0, cp) of each unit from the dataset presented
in [5]. We draw a correlation matrix between these characteristics and define a possible range for
each characteristic. In order to introduce symmetries in our instances, some units are randomly
generated based on the parameters correlations and ranges. Each unit generated is duplicated d
times, where d is randomly selected in [1, nF] in order to obtain a total of n units. The parameter
F is called symmetry factor, and can vary from 2 to 4 depending on the value of n. Note that
these instances are generated along the same lines as literature instances considered in [2], but with
different F factors.

Table 1 provides some statistics on the instances characteristics. For each instance, a group is
a set of two or more units with same characteristics. Each unit which has not been duplicated is a
singleton. The first and second entries column-wise are the number of singletons and groups. The
third entry is the mean group size and the fourth entry is the maximum group size. Each entry
row-wise corresponds to the average value obtained over 20 instances with same size (n, T) and
same symmetry factor F .

Size (n, T) Sym. factor Nb of singletons Nb of groups Mean size of groups Group max size
(30,96) F = 4 1.3 6.5 4.5 6.7

F = 3 0.4 5.3 6.0 8.7
F = 2 0.6 4.1 7.6 11.4

(60,96) F = 4 0.6 7.9 7.8 13.3
F = 3 0.3 6.0 10.5 16.7
F = 2 0.2 4.4 14.8 24.9

(60,48) F = 4 0.8 7.7 7.9 13.1
F = 3 0.6 5.8 10.9 17.8
F = 2 0.2 4.8 13.9 23.8

(80,48) F = 4 0.4 8.0 10.6 18.5
F = 3 0.5 6.7 12.5 22.2
F = 2 0.1 4.5 18.9 31.4

Table 1: Instance characteristics

Note that the most symmetrical instances are the ones with the highest n
F ratio. Indeed, these

instances feature large groups of identical units, and the size of solution orbits grows exponentially
with the size of these groups. It is well-known that symmetries dramatically impair the B&B
solution process. The highly symmetrical instances are thus expected to be the hardest ones. We
also expect that symmetry-breaking techniques will prove useful specifically on these instances.

7.2 Static and dynamic orbitopal fixing

The average speed-up achieved by DOF over SOF is given in Table 2. The average is computed for
each group of 20 instances with same size and symmetry factor.

21

(30, 96) (60, 48)
F = 4 F = 3 F = 2 F = 4 F = 3 F = 2
14.5 3.6 2.6 4.6 11.7 6.7

Table 2: Speed-up of DOF with respect to SOF

It is clear that DOF outperforms SOF on each group, by a factor ranging from 2.6 to 14. Thus,
we do not consider SOF nor SOF-S in the following experiments. This behavior can be explained as
DOF allows for more variable fixings earlier in the B&B tree. Indeed, the orbitopal fixing algorithm
propagates a branching decision occurring at rth row (with respect to the lexicographical order) only
if there are enough variables already fixed in 1st to r−1th rows. As DOF defines the lexicographical
order with respect to the branching decisions, chances are that many variables are already fixed in
each row with rank less than r. Thus, DOF often propagates branching decisions in the B&B tree
earlier than SOF does.

Note that MOB also follows the branching decisions, as it branches on a whole variable orbit,
i.e., a set of symmetrical variables on a given row. Contrary to DOF, MOB does not account for
variables outside the orbit, whereas these variables could be fixed as well.

7.3 Modified orbital branching for the MUCP

The authors in [21] apply MOB alongside with several complementary branching rules to break
symmetries of the MUCP with additional technical constraints. Note that sub-symmetries, defined
in Section 4, appear in the symmetry groups of the subproblems associated to the B&B nodes. In
practice, this is not exploited in [21], where the symmetries considered at each node are all contained
in the symmetry group of the global problem. Different approaches are compared experimentally:
Default Cplex, Callback Cplex, OB (orbital branching), MOB with no branching rules enforced
(Cplex is free to choose the next branching variable), and MOB with RMRI (the most flexible
branching rule ensuring full-symmetry breaking).

Because advanced Cplex features are turned off when callbacks are used, there is still a huge
performance gap between Callback Cplex and default Cplex. It is shown in [21] that MOB with
RMRI is more efficient than MOB, OB and Callback Cplex in terms of CPU time. The difference
between using MOB with RMRI and MOB alone is however not as significant as the difference
between MOB and simple orbital branching. In particular, referring to the experimental results
obtained in [21], the (geometric) average CPU time speed-up between MOB and MOB+RMRI
is 1.098. Even though MOB+RMRI is slightly better than MOB with no branching rules, we
will choose in Section 7.4 to compare our methods to MOB. The rationale behind is that its
implementation is straightforward, thus leaving no room to interpretation.

7.4 Comparison of Cplex, MOB, DOF and DOF-S

We compare five different resolution methods for the MUCP: Default Cplex, Callback Cplex, MOB,
DOF and DOF-S. As shown in Table 2, dynamic orbitopal fixing outperforms the static variant,
thus SOF and SOF-S are not considered.

Table 3 provides, for each method and each group of 20 instances:

22

Instances Method #opt #nodes #fixings CPU time
(30,96) F = 4 DC 20 34 742 - 34

CC 12 1 669 334 - 1506
MOB 14 794 522 49 529 1212
DOF 19 325 977 135 984 339

DOF-S 20 96 416 74 281 129

F = 3 DC 16 823 455 - 877
CC 8 1 977 613 - 2296

MOB 12 733 875 197 964 1578
DOF 13 831 504 667 733 1338

DOF-S 16 484 930 564 660 899

F = 2 DC 17 367 672 - 606
CC 11 1 244 729 - 1727

MOB 12 960 300 660 193 1525
DOF 14 575 483 698 740 1089

DOF-S 17 496 889 736 485 1026

(60,96) F = 4 DC 9 1 971 737 - 1994
CC 3 1 899 968 - 3072

MOB 9 730 306 1 037 813 2082
DOF 8 932 314 3 992 329 2224

DOF-S 10 678 260 3 410 927 1828

F = 3 DC 10 1 679 013 - 2134
CC 0 1 890 180 - 3600

MOB 3 649 769 381 602 3064
DOF 5 952 878 1 813 052 2957

DOF-S 7 633 231 2 193 599 2465

F = 2 DC 9 1 669 806 - 2128
CC 0 1 295 402 - 3600

MOB 7 562 942 281 326 2490
DOF 8 496 424 967 275 2379

DOF-S 8 525 966 1 322 964 2199

(60,48) F = 4 DC 17 1 059 290 - 830
CC 8 2 664 489 - 2252

MOB 17 348 881 205 477 639
DOF 16 665 100 702 066 764

DOF-S 17 431 652 694 538 558

F = 3 DC 13 1 322 111 - 1283
CC 7 2 224 234 - 2374

MOB 13 932 987 778 563 1317
DOF 15 486 352 972 444 922

DOF-S 15 443 246 1 083 904 935

F = 2 DC 17 701 617 - 645
CC 10 1 448 065 - 1804

MOB 18 190 009 54 377 417
DOF 18 150 486 407 031 382

DOF-S 19 135 906 449 141 325

(80,48) F = 4 DC 8 2 423 226 - 2168
CC 1 2 653 960 - 3420

MOB 5 1 134 716 1 047 231 2798
DOF 6 1 185 164 2 246 156 2607

DOF-S 9 861 262 2 476 840 2160

F = 3 DC 10 1 404 892 - 2015
CC 1 1 553 426 - 3447

MOB 2 744 775 262 750 3247
DOF 2 936 007 1 062 502 3248

DOF-S 3 865 991 1 285 128 3169

F = 2 DC 8 2 715 484 - 2217
CC 0 3 628 624 - 3600

MOB 6 1 145 092 1 150 613 2552
DOF 6 1 594 025 3 597 266 2591

DOF-S 8 1 328 985 2 662 087 2269

Table 3: Performance indicators relative to the comparison of five methods
to solve MUCP instances wih symmetries

23

#opt: Number of instances solved to optimality,
#nodes: Average number of nodes,
#fixings: Average number of fixings (for MOB, it is the total number of variables fixed

during the branching process)
CPU
time:

Average CPU time in seconds.

Note that the best feasible solution value is not reported, as all methods are able to find the
same best feasible solution value within the time limit.

First note that instances of size (80,48) and, to a lesser extent, of size (60, 96), are the hardest
ones: Default Cplex only solves to optimality half of them, and Callback Cplex solves nearly none
of them. Further increases in the number n of units or in the number T of time steps would then
not be of particular interest, if the corresponding instances are intractable.

Interestingly, increasing the number n of units seems to have more impact on the CPU time
than increasing the number T of time steps. Indeed, from instances of size (60,48) to instances of
size (80,48), n is only multiplied by a factor 1.3, but the computation time increases by a factor
2. A similar increase in computation time is obtained from instances of size (60,48) to instances of
size (60,96), but in this case the number T of time periods has increased by a factor 2. Similarly,
from instances of size (30,96) to instances of size (60,48), n increases but T decreases, and both
the CPU time and the number of nodes increase. This strong computational impact of parameter
n illustrates the polynomiality of the MUCP when n is fixed and T is arbitrary [1].

Note that in average, MOB explores more nodes in comparison with DOF and DOF-S. Even
though MOB has more opportunities to fix variables due to the large number of nodes visited, the
number of fixings performed by DOF or DOF-S is always much larger (often by at least one order
of magnitude). Thus, DOF and DOF-S solve MUCP instances faster, since they branch less thanks
to the fixing procedure.

Table 4 compares each method m1, among MOB, DOF and DOF-S, with respect to method m2,
among Default Cplex and Callback Cplex, in terms of average speed-up. The average speed-up is
computed on groups of 20 instances of same size (n, T) and same symmetry factor F , as described
in Section 7.1.

Table 4 shows:
(n, T): Instance size,
F : Symmetry factor,
m1: Method m1, namely MOB, DOF or DOF-S,
m2: Method m2, namely Default Cplex or Callback Cplex,
#opt: Number of instances solved to optimality by m1,
opt∆: Difference in terms of the number of instances solved to optimality by m1 and

by m2,
SCPU : Average speed-up by method m1 with respect to m2, computed on a group of

20 instances.
In terms of CPU time, MOB, DOF and DOF-S greatly outperform Callback Cplex, but the

improvement is larger with DOF and even more significant with DOF-S. Indeed, even on the less
symmetrical instances ((n, T) = (30, 96) and F = 4), MOB outruns Callback Cplex by a factor 1.57
and DOF increases this factor to 11.4. Similarly, on more symmetrical instances (n, T) = (60, 48),
F = 4 (resp. F = 3, F = 2), MOB outperforms Callback Cplex by a factor 13.5 (resp. 8.6, 11.7)
while DOF increases this factor to 20.1 (resp. 18.9, 16.4).

24

When both symmetries and sub-symmetries are accounted for, the performance is significantly
improved. For example, on some of the less symmetrical instances ((n, T) = (30, 96) and F = 3),
DOF outruns Callback Cplex by a factor 5.17 and this factor increases to 10.7 with DOF-S. Similarly,
on more symmetrical instances (n, T) = (60, 96), F = 3 (resp. F = 2), DOF outperforms Callback
Cplex by a factor 1.81 (resp. 5.39) while DOF-S increases this factor to 4.11 (resp. 7.32). On
instances (n, T) = (60, 48), F = 4, DOF-S is even faster than Callback Cplex by a factor 26.5.

As observed in [21], there is a huge performance gap between Callback Cplex and Default Cplex.
Thus, even if MOB, DOF and DOF-S substancially outperforms Callback Cplex in each instance
group, it is sometimes not enough to close the performance gap between Default and Callback Cplex,
especially for instances with small n. On the opposite, for large n instances where symmetries are
a major source of difficulty, DOF and DOF-S clearly outperforms Default Cplex.

Typically, when T is large compared to n (i.e., on instances of size (60,96) and (30,96)) it seems
that non symmetry-related difficulties arise, and none of the compared methods catch up with
Default Cplex. In this context, the cost of applying symmetry-breaking techniques (including the
performance loss induced by the use of a Callback) seems too important compared to the impact
of symmetries. The performance loss is less important with DOF and DOF-S than it is with MOB.
DOF-S is the method that is the closest to catch up with Default Cplex. Indeed, for (n, T) = (30, 96)
instances, it solves to optimality as many instances as Default Cplex, and on F = 3 instances of
size (30,96) DOF-S even slightly improves Default Cplex, while MOB is slower than Default Cplex
by a factor 3.

On the opposite, when n is large compared to T (i.e., on instances of size (80,48) and (60,48)),
symmetry seems to be a major factor of computational difficulty. Indeed, DOF-S performs quite
well in this context and solves to optimality some instances Default Cplex cannot. For example, on
instances (n, T) = (60, 48), F = 2 (resp. F = 3), DOF-S solves two more instances to optimality
than Default Cplex. DOF and MOB do not perform as well as DOF-S in this respect. On instances
of size (60,48), DOF and DOF-S outrun Default Cplex by a factor 2, while MOB is closer to a
factor 1. When n increases to 80, DOF-S achieves a speed-up of 1.1 compared to Default Cplex
on the most symmetrical instances (F = 2), while MOB and DOF stay behind with a speed-up
around 0.7 relatively to Default Cplex. Moreover, DOF-S solves more instances to optimality than
Default Cplex. For less symmetrical instances with n = 80, i.e. F = 3 and F = 4 groups, none
of the compared methods are able to outrun Default Cplex in terms of CPU time. It seems that
non-symmetry related difficulties inherent to the MUCP arise in these instances featuring a large
number of distinct units. In this context, DOF-S is the method closest to catch up with Default
Cplex. Indeeed, on both groups of instances, the speed-up provided by DOF is around 0.8, whereas
this factor ranges from 0.3 to 0.6 for MOB and DOF. While Callback Cplex solves to optimality only
one instance out of forty, DOF-S proves its efficiency by solving even more instances to optimality
than Default Cplex.

25

Instance m2 = Default Cplex m2 = Callback Cplex
(n, T) Sym m1 #opt opt∆ SCPU opt∆ Scpu
(30,96) F = 4 MOB 14 -6 0.0902 2 1.57

DOF 19 -1 0.659 7 11.4
DOF-S 20 0 0.725 8 12.6

F = 3 MOB 12 -4 0.371 4 3.78
DOF 13 -3 0.507 5 5.17

DOF-S 16 0 1.05 8 10.7
F = 2 MOB 12 -5 0.197 1 2.1

DOF 14 -3 0.564 3 6
DOF-S 17 0 0.716 6 7.62

(60,96) F = 4 MOB 2 -8 0.218 1 1.36
DOF 2 -8 0.214 1 1.33

DOF-S 3 -7 0.218 2 1.36
F = 3 MOB 3 -7 0.314 3 2.33

DOF 5 -5 0.244 5 1.81
DOF-S 7 -3 0.555 7 4.11

F = 2 MOB 7 -2 0.358 7 3.92
DOF 8 -1 0.493 8 5.39

DOF-S 8 -1 0.669 8 7.32

(60,48) F = 4 MOB 17 0 0.978 9 13.5
DOF 16 -1 1.45 8 20.1

DOF-S 17 0 1.92 9 26.5
F = 3 MOB 13 0 0.94 6 8.6

DOF 15 2 2.07 8 18.9
DOF-S 15 2 2.25 8 20.6

F = 2 MOB 18 1 1.84 8 11.7
DOF 18 1 2.58 8 16.4

DOF-S 19 2 2.6 9 16.5

(80,48) F = 4 MOB 5 -3 0.316 4 2.88
DOF 6 -2 0.462 5 4.21

DOF-S 9 1 0.75 8 6.83
F = 3 MOB 6 -2 0.637 6 4.97

DOF 6 -2 0.422 6 3.29
DOF-S 8 0 0.792 8 6.18

F = 2 MOB 9 0 0.701 6 5.22
DOF 8 -1 0.632 5 4.7

DOF-S 10 1 1.1 7 8.14

Table 4: MOB and dynamic orbitopal fixing (DOF and DOF-S) - average speed-up for various
instances compared to Default Cplex and Callback Cplex

26

Conclusion

In this paper, we define a linear time orbitopal fixing algorithm for the full orbitope. We propose
to also account for symmetries arising in solutions subsets, which we refer to as sub-symmetries.
Sub-symmetries related to sub-symmetric groups are considered, leading us to define the full sub-
orbitope. We extend our orbitopal fixing algorithm in order to apply it to both orbitope and
sub-orbitope structures. This algorithm is proven to be optimal, in the sense that at any node
a in the search tree, any variable that can be fixed, with respect to the lexicographical order, is
fixed by the algorithm. We propose a dynamic version of the orbitopal fixing algorithm, where the
lexicographical order at node a is defined with respect to the branching decisions leading to a.

For MUCP instances, experimental results show that the dynamic variant of our algorithm
performs much better than the static variant. Moreover, it is clear that sub-symmetries greatly
impair the solution process for MUCP instances, since dynamic orbitopal fixing for both full orbitope
and full sub-orbitope (DOF-S) performs even better than dynamic orbitopal fixing for the full
orbitope (DOF). Finally, our experiments show that our approach is competitive with commercial
solvers like Cplex and state-of-the-art techniques like modified orbital branching (MOB). Even if
MOB already improves Callback Cplex, the improvement is even more significant with our methods
DOF and DOF-S. Furthermore, even if there is a huge performance gap between Callback Cplex
and Default Cplex, DOF-S is able to outrun Default Cplex by a factor 2 on some of the most
symmetrical instances.

In the past, the complete linear description of partitioning and packing orbitopes helped to
design an orbitopal fixing algorithm for these orbitopes. Likewise in the future, the orbitopal fixing
algorithm for the full orbitope, by improving our understanding of this polyhedron, might help to
find a complete linear description of the full orbitope. Moreover, it would be interesting to extend
orbitopal fixing to full orbitopes under other group actions, for example the cyclic group. Another
approach to handle symmetries related to the symmetric or the cyclic group would be to find a
new set of representatives whose convex hull would be easier to describe than the full orbitope.
Another promising perspective would be to adapt existing symmetry-breaking techniques to break
sub-symmetries as well, in the case of arbitrary sub-symmetry groups.

Finally, there is a wide range of problems featuring all column permutation symmetries and
sub-symmetries, in particular many variants of the UCP, on which it would be desirable to analyze
the effectiveness of our approach. Other examples of such problems can be found among covering
problems, whose solution matrix has at least one 1-entry per row, like bin-packing variants. Even
though computing the exact fixing has been shown NP-hard in this case, our orbitopal fixing
algorithm, designed for full orbitopes, can be used to compute valid variable fixings in a covering
orbitope as well.

References

[1] P. Bendotti, P. Fouilhoux, and C. Rottner. On the complexity of the unit commitment prob-
lem. Optimization Online, 2017. http://www.optimization-online.org/DB_HTML/2017/06/
6061.html.

[2] P. Bendotti, P. Fouilhoux, and C. Rottner. The min-up/min-down unit commitment polytope.
Journal of Combinatorial Optimization, To appear. http://www.optimization-online.org/
DB_HTML/2016/12/5750.html.

27

http://www.optimization-online.org/DB_HTML/2017/06/6061.html
http://www.optimization-online.org/DB_HTML/2017/06/6061.html
http://www.optimization-online.org/DB_HTML/2016/12/5750.html
http://www.optimization-online.org/DB_HTML/2016/12/5750.html

[3] Timo Berthold and Marc E Pfetsch. Detecting orbitopal symmetries. In Operations Research
Proceedings 2008, pages 433–438. Springer, 2009.

[4] R. Borndörfer, M. Grötschel, and M. E. Pfetsch. A column-generation approach to line planning
in public transport. Transportation Science, 41(1):123–132, 2007.

[5] M. Carrion and J. M. Arroyo. A computationally efficient mixed-integer linear formulation for
the thermal unit commitment problem. IEEE Transactions on Power Systems, 21, 2006.

[6] E. J. Friedman. Fundamental Domains for Integer Programs with Symmetries, pages 146–153.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.

[7] I. Gent, T.A Kelsey, S. Linton, I. McDonald, I. Miguel, and B.” Smith. Conditional sym-
metry breaking. Proc. 8th International Conference on Principles and Practice of Constraint
Programming, pages 256–270, 2005.

[8] Ian P Gent, Tom Kelsey, Stephen A Linton, Justin Pearson, and Colva M Roney-Dougal.
Groupoids and conditional symmetry. Proc. 9th International Conference on Principles and
Practice of Constraint Programming, pages 823–830, 2007.

[9] Ambros Gleixner, Leon Eifler, Tristan Gally, Gerald Gamrath, Patrick Gemander, Robert Lion
Gottwald, Gregor Hendel, Christopher Hojny, Thorsten Koch, Matthias Miltenberger, Ben-
jamin Müller, Marc E. Pfetsch, Christian Puchert, Daniel Rehfeldt, Franziska Schlösser, Felipe
Serrano, Yuji Shinano, Jan Merlin Viernickel, Stefan Vigerske, Dieter Weninger, Jonas T. Witt,
and Jakob Witzig. The scip optimization suite 5.0. Technical Report 17-61, ZIB, Takustr.7,
14195 Berlin, 2017.

[10] C. Hojny and M. E. Pfetsch. Polytopes associated with symmetry handling. Optimization
Online, 2017. http://www.optimization-online.org/DB_HTML/2017/01/5835.html.

[11] V. Kaibel and A. Loos. Branched polyhedral systems. In Proceedings of the 14th International
IPCO Conference on Integer Programming and Combinatorial Optimization. Springer-Verlag,
2010.

[12] V. Kaibel, M. Peinhardt, and M. E Pfetsch. Orbitopal fixing. In IPCO, pages 74–88. Springer,
2007.

[13] V. Kaibel and M. Pfetsch. Packing and partitioning orbitopes. Mathematical Programming,
114(1):1 – 36, 2008.

[14] L. Liberti and J. Ostrowski. Stabilizer-based symmetry breaking constraints for mathematical
programs. Journal of Global Optimization, 60(2):183–194, 2014.

[15] Leo Liberti. Reformulations in mathematical programming: automatic symmetry detection
and exploitation. Mathematical Programming, 131(1):273–304, 2012.

[16] A. Loos. Describing Orbitopes by Linear Inequalities and Projection Based Tools. PhD thesis,
Universität Magdeburg, 2011.

[17] F. Margot. Pruning by isomorphism in Branch-and-Cut. In Proceedings of the 8th International
IPCO Conference on Integer Programming and Combinatorial Optimization, pages 304–317,
London, UK, 2001. Springer-Verlag.

28

http://www.optimization-online.org/DB_HTML/2017/01/5835.html

[18] F. Margot. Exploiting orbits in symmetric ILP. Mathematical Programming, 98(1):3–21, 2003.

[19] F. Margot. Symmetry in Integer Linear Programming, pages 647–686. Springer, Berlin, Hei-
delberg, 2010.

[20] J. Ostrowski. Symmetry in integer programming. PhD thesis, Lehigh University, 2008.

[21] J. Ostrowski, M.F. Anjos, and A. Vannelli. Modified orbital branching for structured symmetry
with an application to unit commitment. Mathematical Programming, 150(1):99 – 129, 2015.

[22] J. Ostrowski, J. Linderoth, F. Rossi, and S. Smriglio. Constraint Orbital Branching, pages
225–239. Springer Berlin Heidelberg, 2008.

[23] J. Ostrowski, J. Linderoth, F. Rossi, and S. Smriglio. Orbital branching. Mathematical Pro-
gramming, 126(1):147–178, 2011.

[24] MARC E Pfetsch and Thomas Rehn. A computational comparison of symmetry handling
methods for mixed integer programs. Optimization Online, 2015.

[25] D. Rajan and S. Takriti. Minimum up/down polytopes of the unit commitment problem with
start-up costs. IBM Research Report, 2005.

29

	Definitions
	Handling symmetries in the B&B tree
	Isomorphism pruning and pruning with branching rules
	Pruning with variable fixing

	Intersection with the full orbitope
	Matrix sequences (Mj)j {1, ..., n } and (Mj)j {1, ..., n }
	Determining I0 and I1

	Sub-symmetries and sub-orbitopes
	Sub-symmetries
	Full sub-orbitopes

	Static and dynamic orbitopal fixing
	Static orbitopal fixing
	Dynamic orbitopal fixing
	Orbitopal fixing in the full sub-orbitope

	Application to the Unit Commitment Problem
	Symmetries in the MUCP
	Sub-symmetries in the MUCP
	Orbitopal fixing for the MUCP

	Experimental results for the MUCP
	Instances
	Static and dynamic orbitopal fixing
	Modified orbital branching for the MUCP
	Comparison of Cplex, MOB, DOF and DOF-S

