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Abstract

It is common knowledge that symmetries arising in integer programs could impair the
solution process, in particular when symmetric solutions lead to an excessively large branch
and bound (B&B) search tree. Techniques like isomorphic pruning [11], orbital branching [16]
and orbitopal fixing [8] have been shown to be essential to solve very symmetric instances from
the literature. This paper focuses on formulations involving a set of 2-index variables, also
referred to as matrix, such that the corresponding symmetry group is the set of all column
permutations. Such formulations arise for example from scheduling problems with a discrete
time horizon. Orbitopal fixing as introduced in [8] is restricted to the special case of partitioning
(resp. packing) formulations involving a solution matrix with exactly (resp. at most) one 1-
entry in each row. It relies on the linear description of the partitioning (resp. packing) orbitope
[9], i.e., the convex hull of binary matrices with lexicographically non-increasing columns and
exactly (resp. at most) one 1-entry per row. The main result of this paper is to extend
orbitopal fixing to the full orbitope, namely with no restriction on the number of ones in each
row. We propose a linear time orbitopal fixing algorithm for the full orbitope, referred to as
the static version, as it is defined for the natural lexicographical order. We also introduce
a dynamic version of this algorithm where the lexicographical order follows the branching
decisions occurring along the B&B process. Experimental results for the Unit Commitment
Problem are presented. A comparison with state of the art techniques like modified orbital
branching [14] is also considered to show the effectiveness of the proposed algorithms.
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1 State of the art

1.1 Definitions

Consider an ILP of the form :

(ILP ) min

{
cx | x ∈ P

}
where A is an m × n matrix and P =

{
x ∈ {0, 1}n | Ax ≥ b

}
. Let Πn be the set of all

permutations of the indices In = {1, ..., n}.
The symmetry group G of (ILP ) is the set of all permutations π mapping each feasible solution

to a feasible solution of same value, i.e.:

G =

{
π ∈ Πn | ∀x ∈ P, cx = cπ(x) and π(x) ∈ P

}
For instance, consider the problem presented as Example 1:

Example 1.

min

{
x1 + x2 + 2(x3 + x4 + x5) s. t. 3(x1 + x2) + (x3 + x4) + 3x5 = 4 and x ∈ {0, 1}5

}
(Ex1)

The symmetry group G1 of this problem contains {id, π1,2, π3,4}, where id is the identity
permutation, πi,j is the transposition of variables i and j.

Subset S ⊂ In and its characteristic vector will be used interchangeably in the following.
The orbit of S under G is defined as the set of all sets S′ symmetric to S under G:

orb(S,G) = {S′ ⊂ In | S′ = π(S), π ∈ G}

Referring to Example 1, let S = [1, 1, 1, 0, 0]. Then orb(S,G1) contains {[1, 1, 1, 0, 0], [1, 1, 0, 1, 0]},
since π3,4(S) = [1, 1, 0, 1, 0] and π1,2(S) = S.

Subset R ⊂ In is said to be lexicographically larger than subset T ⊂ In if there exists j ∈
{1, ...., n− 1} such that:

• ∀i ≤ j, R[i] = T [i]

• R[j + 1] > T [j + 1]

We write T ≤ R if R is equal to T or if R is lexicographically larger than T . Note that R
is lexicographically larger than or equal to T if the binary number encoded by R (with the most
significant bit on the left) is larger than or equal to the binary number encoded by T :

n∑
i=1

2n−iR[i] ≥
n∑

i=1

2n−iT [i].

Subset R ∈ orb(S,G) is said to be a representative among orb(S,G) if R is lexicographically maxi-
mum among the sets in the orbit of S under G, i.e., R ≥ g(S), ∀g ∈ G. Note that, in this case, R
is also a representative among its own orbit, since orb(S,G) = orb(R,G).

For instance, referring to Example 1, subset S = [1, 1, 1, 0, 0] is lexicographically maximal
among its orbit, thus S is a representative.
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1.2 Branch & Bound

The Branch & Bound algorithm is to enumerate candidate solutions by means of a rooted tree, the
root corresponding to the full solution set. The principle of the algorithm is to split recursively the
search space in smaller spaces. The algorithm explores branches of this tree, each node representing
a subset of the solution set. At each node, a lower and an upper bound on the solution value is
computed, and if no better solution than the one found by the algorithm so far can be produced,
the node is discarded.

When implementing a Branch & Bound algorithm, one has two strategies to elaborate:

• Exploration strategy, i.e. in which order the branching tree is explored,

• Branching strategy, i.e. which disjunction is branched on at each node.

Note that whichever branching strategy is chosen, at some point in the branching tree, there
will be variables whose values are fixed as a result of the preceding branching decisions taken from
the root to the current node. For a given node a of the enumeration tree, F a

1 (resp. F a
0 ) is defined

as the set of indices of variables fixed to 1 (resp. 0) at node a. F a is the set of indices of free
variables at node a.

For each solution S, all elements in orb(S,G) are enumerated in the tree, whereas the optimal
value obtained would be the same if only one representative of orb(S,G) were enumerated.

Referring to Example 1, a Branch & Bound algorithm would produce solutions x = [1, 1, 1, 0, 0]
and x′ = [1, 1, 0, 1, 0]. Both are elements of orb(x,G1) and have value 4. Solution x′ could have
been obtained by applying permutation π3,4 to the representative solution x.

The key idea is to prune non-representative solutions from the Branch & Bound tree. This
can be done, for example, by combining pruning strategies to adequate exploration and branching
strategies.

A pruning strategy is said to be flexible if it does not constrain the exploration and branching
strategies to be used in the Branch & Bound tree. For example, a pruning strategy which can be
applied only if a given branching rule is used is not flexible.

Note that, as the branching process fixes variables, the symmetry group G(a) of the subproblem
associated to node a evolves and differs from the global symmetry group G.

Indeed, suppose at a given node a of the enumeration tree relative to problem (Ex1), variable
x1 is fixed to 1 and variable x2 is fixed to 0. Then for any feasible solution x at node a, π1,2(x) =
[0, 1, x3, x4, x5] which is not a feasible solution of the subproblem associated to node a. Thus,
although π1,2 is in the global symmetry group G1 of the problem, it is no longer in the symmetry
group G(a) associated to a.

However, as reported in [16], it may be computationally prohibitive to compute the symmetry
group for every node of the enumeration tree, since all known algorithms have exponential running
time. Thus, an alternative possibility is to consider a subgroup, called Ga, of the global symmetry
group, defined as follows:

Ga = {g ∈ G | g(F a
1 ) = F a

1 }.

Example 2 proves that at node a, the subgroup Ga of the global symmetry group may be different
from the symmetry group of the subproblem G(a).
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Example 2. Problem min{cx | Ax ≤ b, x ∈ {0, 1}3} whose solution set is

{[0, 1, 1], [1, 0, 1], [1, 1, 0], [0, 1, 0]}.

Then G = {id, π1,3}. Consider a node a of the enumeration such that F a
1 = {3} and F a

0 = ∅.
Then Ga = stab(F a

1 ,G) = id. However, the solution set of subproblem a is {[0, 1, 1], [1, 0, 1]},
with symmetry group {id, π1,2}.

This example shows how fixed variables in the Branch & Bound enumeration tree can introduce
new symmetries in the solution set of the subproblem considered at each node.

1.3 Pruning by isomorphism in Branch & Bound

In [11], Margot considers a general framework, where the symmetry group G is not restricted.
A pruning strategy called isomorphism pruning (ISP) is defined, such that at any node a, if F a

1

is not a representative then node a is pruned.
The branching strategy called minimum index branching (MIB) is defined as branching on the

minimum index free variable xi at each node, with disjunction:

xi = 0 ∨ xi = 1

Minimum index branching used alongside with isomorphism pruning can ensure that only rep-
resentative solutions are explored in the tree. It can be shown that the optimal value remains the
same. For any set S ⊂ In representative under G, subset S′ = S\{v} with v = max{w ∈ S} is also
a representative. Hence, at a given node a of the Branch & Bound enumeration tree, if F a

1 is not a
representative, then any solution S such that F a

1 ⊂ S is not a representative neither, provided that
rule MIB was used in the enumeration tree.

Margot introduces another operation called 0-setting, which sets to 0 free variables that would
induce a non-lexicographically maximum solution.

0-setting consists in the two following operations:

(i) Let b be a node in the enumeration tree and let xf be the branching variable at b. If a is the
son of b where xf is fixed to 0 then set to 0 all free variables in orb({f},Ga).

(ii) Let f = min{r ∈ F a}. If F a
1 ∪ {f} is not a representative then set to 0 all free variables in

orb({f},Ga).

For example, given a variable xf fixed to 0 by branching at a node a. Suppose some free variable
xf ′ ∈ orb({f},Ga) is fixed to 1 at a descendant node a′. Note that f ′ > f , provided that rule MIB

is used. Then for g ∈ Ga such that g({f ′}) = {f}, we would have g(F a′

1 ) > F a′

1 , thus F a′

1 would
not be a representative. Thus, variable xf ′ has value 0 in any representative solution S such that
F a

1 ⊂ S.
Margot proves that the use of 0-setting alongside with minimum index branching and isomor-

phism pruning does not change the optimal value returned by the Branch & Bound.
Referring to Example 1, consider the enumeration tree of a Branch & Bound algorithm using

MIB and ISP. Let node a be such that F a
0 = {1} and F a

1 = {2}. Then F a
1 is not a representative,

because π1,2({2}) = {1} which is lexicographically larger. Thus node a is eliminated by isomorphism
pruning.
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Referring again to Example 1, consider the enumeration tree of a Branch & Bound algorithm
using MIB, ISP and 0-setting. Let b be the node such that F b

0 = {1} and F b
1 = ∅. Then Gb = G

and orb({1},Gb) = {2}. By rule (i) of 0-setting, variable x2 is set to 0 at node b. Therefore, if
0-setting is used, node a will not be explored by the enumeration tree. It indicates that the use of
0-setting enables early detection and pruning of non-representative solutions in the tree.

Isomorphism pruning must be used with minimum index branching in order to be valid. Con-
sequently, isomorphism pruning is not flexible with respect to the definition of flexibility given in
Section 1.2.

In practice, Margot represents symmetry group G using the Schreier-Sims representation [17]. A
backtracking algorithm is proposed to compute orb({f},Ga).

In [12], a more flexible branching rule for isomorphism pruning is defined, alongside with more
general 0- and 1-setting operations.

1.4 Orbital branching

In [16], the authors introduce a branching strategy called orbital branching, which is suitable to the
general case where the symmetry group G is arbitrary.

The notion of orbit is extended to variables. We say that {xi1 , xi2 , ..., xik} is a variable orbit if

orb({i1},G) = {{i1}, {i2}, ..., {ik}}

Let a be a node in the Branch & Bound tree. For a given variable orbit O = {xi1 , xi2 , ..., xik}
of Ga, orbital branching is to branch on the disjunction:

xi1 = 1 ∨
k∑

`=1

xi` = 0 (1)

By fixing either one or k variables, this disjunction often leads to an unbalanced branching tree.
In order to create a more balanced tree, the authors in [14] consider an alternate branching strategy
called modified orbital branching (MOB). For any α ∈ N, consider the disjunction:

k∑
`=1

xi` ≥ α ∨
k∑

`=1

xi` ≤ α− 1

Since variables xi` , ` ≤ k, belong to the same orbit, α variables can be arbitrarily chosen to

take value 1 to enforce
∑k

`=1 xi` ≥ α. Similarly, |O| − α + 1 variables can be arbitrarily chosen to

take value 0 to enforce
∑k

`=1 xi` ≤ α− 1. Thus the disjunction can be strengthened to:

xi` = 1, ∀` ∈ {1, ..., α} ∨ xi` = 0, ∀` ∈ {α, ..., |O|}

For example, consider a problem with orbit O = {x1, x2, x3}. Suppose one uses MOB in the
Branch & Bound tree and branches on orbit O at the root node. Then, for α = 2, the left child is
created by fixing x1 = x2 = 1 and the right child is created by fixing x2 = x3 = 0.

Even though orbital branching removes a significant proportion of symmetries, it is not guar-
anteed that only one representative of each orbit is explored.
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In [15], the authors extend orbital branching so that the branching disjunction can be based on
an arbitrary constraint.

1.5 Symmetry-breaking inequalities

Another way to break symmetries is to add symmetry breaking inequalities. A general description of
symmetry breaking inequalities is given in [13], which is a generalization of the framework described
in [4]. A closed set F ⊂ R is said to be a fundamental region for a symmetry group G if:

(i) g(int(F )) ∩ int(F ) = ∅, ∀g ∈ G, g 6= id

(ii) ∪g∈G g(F ) = Rn

where int(F ) denotes the interior of F .
If F is a fundamental region for the symmetry group G of problem (ILP ), then the following

holds:

min

{
cx | x ∈ P

}
= min

{
cx | x ∈ P ∩ F

}
Indeed, for any optimal solution x∗, point (ii) guarantees that there exists g ∈ G such that

g−1(x∗) ∈ F . Point (i) guarantees that region F is not too large.
In [5], a linear description of a fundamental region is proposed:

F = {x ∈ Rn | (g(x)− x) · x ≤ 0,∀g ∈ G} (2)

where x ∈ R is such that g(x) 6= x for all g ∈ G, g 6= id.
Thus, any inequality from linear description (2) can be added to (ILP ). In [13], it is shown

that these inequalities can be used even if the condition g(x) 6= x for all g ∈ G does not hold.

Example 3. Suppose G contains all permutations of In. In order to enforce a lexicographical
ordering, one can use inequalities

xj ≥ xj+1, ∀j ∈ {1, ..., n− 1}

obtained, for each j ∈ {1, ..., n− 1}, from description (2) by setting xi = n− i for all i ∈ In and
g = πj,j+1, the transposition of entries j and j + 1.

1.6 Symmetry-breaking polytopes

For a symmetry group G, the authors of [6] define the symmetry breaking polytope PS(G), called
symretope, as the convex hull of the lexicographically maximal binary points w.r.t. G:

PS(G) = conv
{
x ∈ {0, 1}n | x ≥ g(x), ∀g ∈ G

}
The binary points in PS(G) are exactly those in fundamental region F with xi = 2n−i.
As proved in [6], optimization over binary points in symretopes is NP-hard, thus a complete

linear description is not available in general. It is still useful to have an IP formulation for binary
points in those polytopes in order to handle the symmetries defined by G. Inequalities defined in
(2) provide such a formulation, but it has exponentially large coefficients and may not be compu-
tationally tractable. The authors of [6] consider symresacks, a special case of symretopes, where
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the symmetry group G contains a unique non-trivial permutation. These polytopes can be seen as
knapsack polytopes, where the knapsack constraint has exponential coefficients. This constraint
can be replaced by an exponential number of minimal cover inequalities with {−1, 0, 1} coefficients.
It is proved in [6] that the separation problem of these minimal cover inequalities for the symresack
can be solved in O(n2) time.

As an arbitrary symretope PS(G) can be written as the intersection of the symresacks PS(g)
for each g ∈ G, the authors derive IP formulations with small coefficients for symretopes, with
separation in O(|G|n2) time.

1.7 Variable fixing in symmetry-breaking polytopes

At a given node a of the Branch & Bound tree, some variables are set to 0, i.e. variables in F a
0 ,

and some to 1, i.e. variables in F a
1 . Based on these variables already fixed by previous branching

decisions, some fixings of the remaining free variables can be performed. The idea of variable fixing
is to restrict the solution space at each node a to be in a given symmetry-breaking polytope P .
This is done by fixing to 0 (resp. 1) variables that would yield a solution outside P if fixed to 1
(resp. 0).

This method is introduced by Kaibel and Pfetsch [8].
Let Cd be the d-dimensional 0/1-cube. A face F of Cd is given by sets I0, I1 ⊂ Id as follows:

F = {x ∈ Cd | xi = 0 ∀i ∈ I0 and xi = 1 ∀i ∈ I1}

For a polytope P ⊂ Cd and a face F of Cd defined by (I0, I1), the smallest face of Cd that
contains P ∩ F ∩ {0, 1}d is denoted by FixF (P ), i.e. FixF (P ) is the intersection of all faces of Cd

that contain P ∩ F ∩ {0, 1}d.
Referring to Example 2, consider C3 = {x ∈ R3, 0 ≤ xi ≤ 1 for all i ∈ {1, ..., 3}}, and polytope

Pex ⊂ C3:
Pex = conv{[0, 1, 1], [1, 0, 1], [1, 1, 0], [0, 1, 0]}.

Let F be the face defined by I0 = {2} and I1 = ∅. Namely, F = {x ∈ C3 | x2 = 0}. Then
Pex ∩ F ∩ {0, 1}3 = [1, 0, 1] thus FixF (P ) is defined by I?0 = {2} and I?1 = {1, 3}

Lemma 1. ([8]) If FixF (P ) is the non-empty face defined by I?0 and I?1 , then:
Index i ∈ I?0 (resp. I?1 ) iff all solutions of P ∩ F ∩ {0, 1}d are such that xi = 0 (resp. xi = 1).

From an optimization perpective, P can be seen as the polytope defining the solution space
P ∩ {0, 1}d. Then, when optimizing over P ∩ {0, 1}d, to each node a of the Branch & Bound tree
corresponds a face F (a) defined by F a

0 and F a
1 . The aim is thus to compute sets I?0 and I?1 defining

FixF (a)(P ), at each node a. Then, if FixF (P ) = ∅ then the node can be pruned. If FixF (P ) 6= ∅,
by Lemma 1, any free variable in I?0 (resp. I?1 ) can be set to 0 (resp. 1) (otherwise it would yield a
solution outside P ∩ F (a) ∩ {0, 1}d).

In general, the problem of computing FixF (P ) is NP-hard. However, if one can optimize a
linear function over P ∩ {0, 1}d in polynomial time, the fixing (I?0 , I?1 ) at (I0, I1) can be computed
in polynomial time by solving 2(d− |I0| − |I1|) many linear optimization problems over P ∩ {0, 1}d
[8].

If sets I?0 and I?1 relative to P cannot be computed efficiently, some relaxations of P can be
considered. Instead of computing FixF (P ), one may only compute FixF (P ′) where P ⊂ P ′.
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2 State of the art for matrix formulations with structured
symmetry

In general, the symmetry group G acting on the variables is arbitrary. In this section, we consider
a class of problems such that the symmetry group G has a particular structure. We suppose the
variable set can be represented as a matrix x = (xi,j)i≤m,j≤p. We suppose the symmetry group G
is the set of all column permutations of the x matrix. This kind of symmetries arise naturally in
many scheduling problems.

The MILP considered has the form:

min

{∑
i

∑
j

ci,jxi,j |
∑
i

∑
j

aki,jxi,j ≥ bk ∀k ∈ {1, ..., l} and x ∈ P(m, p)

}
(3)

where P(m, p) is the set of the m× p binary matrices.
Note that in this case, the symmetry group Ga at a given node a of the Branch & Bound tree

can be easily computed: permutations that act on columns j1, ..., jk are in Ga if and only if for
each i ∈ {1, ...,m}, either variables xi,j1 ,..., xi,jk are fixed to the same value or are all free.

For example, this type of symmetry can be found in graph coloring, where symmetry arises in
particular from the permutation of colors. If entry xi,j of the solution matrix x corresponds to
assigning color j to vertex i, then permuting colors corresponds to permuting columns of matrix x.

One common method used to break such kind of symmetry is to restrict the solution space to
lexicographically non-increasing matrices. Hence, in this setting, a matrix x ∈ P(m, p) is said to
be representative if its columns are lexicographically non-increasing.

2.1 Symmetry-breaking inequalities

For a problem of the form (3) whose symmetry group G is the set of all column permutations of
the x matrix, Margot describes some symmetry-breaking inequalities in [13], obtained from linear
description (2) for specific values of x.

The first family of inequalities enforces a lexicographic order on the columns of x:

m∑
i=1

2m−ixi,j ≥
m∑
i=1

2m−ixi,j+1, ∀j ∈ {1, ..., p− 1}.

These inequalities state that the binary number encoded by the jth column is larger than the
binary number encoded by the j + 1th column.

However, they may get hard to handle when m is large. Thus, weaker inequalities can be used
to break symmetries, such as:

m∑
i=1

xi,j ≥
m∑
i=1

xi,j+1, ∀j ∈ {1, ..., p− 1} (4)

These inequalities do not enforce a lexicographical order on the columns, but restrict the search
space to matrices such that the columns are ordered with respect to their total number of 1-entry.
This ordering is weaker than lexicographic ordering since two different columns can have the same
number of ones.
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2.2 Orbital branching with branching rules

When the symmetry group G is the set of all column permutations of matrix x, Ostrowski et al
[14] show the Branch & Bound search with modified orbital branching can be restricted to only
representative solutions. The key idea is to enforce an additional branching rule restricting the
variable orbits which can be branched on at each node. Namely, they define the minimum row-
index (MI) branching rule which states that variable xi,j is eligible for branching if and only if
for all rows i′ < i, variables x(i′, j) have already been fixed. They prove that modified orbital
branching alongside with MI branching rule is sufficient to ensure that only representative solutions
are explored. As the MI rule may seem highly restrictive, they also propose some relaxations
for which the same property holds, the most flexible branching rule being what is called relaxed
minimum-rank index (RMRI).

Note that MOB used with MI can be seen as a particular case of Margot’s isomorphism pruning
used with MIB and 0-setting. Indeed, MOB and MI ensure that at each node a, F a

1 is a represen-
tative (otherwise it would lead to a non-representative solution). Furthermore, if a is the son of
b where xi,j is fixed to 0, then all variables xi,j′ ∈ orb({f},Ga) with j′ > j are also fixed to 0 by
disjunction (1). Finally, if f is a minimum row index free variable at node a, then by construction
F a

1 ∪ {f} is a representative.

2.3 Orbitopes and orbitopal fixing

The convex hull of all m×p binary matrices with lexicographically non-increasing columns is called a
full orbitope and is denoted by P0(m, p). Special cases of full orbitopes are packing and partitioning
orbitopes, which are restrictions to matrices with at most (resp. exactly) one 1-entry in each row.

The key idea is to restrict to P0(m, p) the search space of MILP (3), whose symmetry group
G is the set of all column permutations of the x matrix, in order to explore only lexicographically
non-increasing solutions in the Branch & Bound tree.

If constraints
∑

i

∑
j a

k
i,jxi,j ≥ bk, ∀k ∈ {1, ..., l} include the row-sum inequalities

∑
j xi,j = 1

(resp.
∑

j xi,j ≤ 1), ∀i ∈ {1, ...m}, then the search can be restricted to a partitioning (resp.
packing) orbitope.

2.3.1 Full orbitopes

Full orbitopes can be seen as a special case of symretopes.
The authors of [6] specifically address this particular case, defining orbisacks as the convex hull

of all m×2 binary matrices whose first column is lexicographically larger than or equal to the second
column. It is shown that only p − 1 orbisacks need to be considered to obtain an IP-formulation
with small coefficients for the full orbitope P0(m, p). Furthermore, they prove these inequalities
can be separated in O(mp) time.

No complete description of the full orbitope P0(m, p) is known, and computer experiments
conducted in [7] indicate that its facet defining inequalities are extremely complicated. However,
exploiting the general framework of polyhedral branching systems defined in [7], a compact extended
formulation is constructed by combining extended formulations of simpler polyhedra.

In [10], a complete description of orbisacks is given.
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2.3.2 Packing and partitioning orbitopes

In [9], shifted columns inequalities are introduced. The authors prove that these inequalities,
together with non-negativity constraints and row-sum inequalities, completely describe both packing
and partitioning orbitopes. A polynomial time separation algorithm for the exponentially large class
of shifted columns inequalities is also given.

2.3.3 Variable fixing in partitioning orbitopes: orbitopal fixing

Orbitopal fixing is variable fixing with polytope P being an orbitope.
In [8], the authors take advantage of the shifted columns inequalities for partitioning and packing

orbitopes in order to characterize the sets I?0 and I?1 defining FixF (P ) where P is the partitioning
(or packing) orbitope and F is defined by (F a

0 , F
a
1 ), at a given node a of the Branch & Bound tree.

3 Orbitopal fixing for the full orbitope

Orbitopal fixing introduced in [8] is particularly interesting to break symmetries as it restricts the
search in the Branch & Bound tree to only representative solutions while remaining flexible. In
particular, it does not constrain the set of variables nor the disjunction that can be branched on.
Note also that no additional inequalities need to be appended to the model, thus it does not increase
the size of the LP solved at each node. The authors of [8] have proved that for any face F of Cd,
the sets I?0 and I?1 defining FixF (P ) can be characterized when P is a partitioning or a packing
orbitope.

There are many problems whose symmetry group G is the set of all column permutations among
given subsets of columns of the x matrix, but whose search space cannot be restricted to a parti-
tioning or a packing orbitope. For example, the UCP with identical units is such that the plans of
the units, i.e. the columns, can be permuted in any solution, but there is no general restriction on
the number of ones on each row t of matrix Xh, corresponding to the number of type h units up
at time t.

As detailed in Sections 1.4 and 2.2, the authors in [14] propose to break this kind of “all-column
permutations” symmetries using MOB, i.e. by branching on a disjunction that fixes a larger number
of variables than the classical disjunction xi,j = 0 ∨ xi,j = 1. If the use of MOB removes a large
number of symmetries, it provides no guarantee that only representative solutions are explored in
the Branch & Bound tree. The only way to ensure that MOB will remove all non-representative
solutions is to use it alongside with a branching rule that restricts the choice of the variables to be
branched on.

We explore a different approach, where, at each node, orbitopal fixing for the full orbitope is
used to fix some of the remaining variables left free by branching. At a given node a, once some
variables have been fixed by branching, we restrict the solution at node a to be in the full orbitope
by setting to 0 (resp. to 1) variables that would yield a non-lexicographically ordered solution if
set to 1 (resp. to 0). This approach preserves flexibility as the choice of the branching disjunctions
and variables remains totally free.

In this section, we will extend the notion of orbitopal fixing to the full orbitope, by characterizing
sets I?0 and I?1 corresponding to the fixing of the full orbitope at (I0, I1).
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3.1 Intersection with the full orbitope

Let P be the full orbitope P0(m,n), and let F a be a face of {0, 1}(m,n) defined by sets I = (I0, I1).
Recall that the smallest face of [0, 1](m,n) that contains P ∩F a∩{0, 1}(m,n) is denoted by FixFa(P ).
If FixFa(P ) 6= ∅, there exist sets I?0 and I?1 defining FixFa(P ).

For any matrix X ∈ P , we denote by X(j) the jth column of X and by X(i, j) the entry at row
i, column j.

Definition 1. For a given face F of {0, 1}(m,n), a matrix X is said to be F (P )-minimal (resp.
F (P )-maximal) if X ∈ P ∩F ∩{0, 1}(m,n) and for any matrix Y ∈ P ∩F ∩{0, 1}(m,n), X(j) ≤ Y (j)
(resp. X(j) ≥ Y (j)) ∀j ∈ {1, ..., n}, i.e. X(j) is lexicographically less (resp. greater) than or equal
to Y (j), ∀j ∈ {1, ..., n}.

In the following, we construct a F (P )-minimal matrix and a F (P )-maximal matrix in the case
FixFa(P ) 6= ∅.

First some definitions are introduced. For any couple of index sets S = (S0, S1), consider matrix
XS whose entries with index in S0 are set to 0, entries with index in S1 are set to 1 and remaining
entries in FS = {1, ...,m} × {1, ...., n}\(S0 ∪ S1) contain ×, representing free variables.

Definition 2. Two columns j and j′ of a matrix X are said to be fixedly different on a given row
i if X(i, j) 6= × and X(i, j′) 6= × and X(i, j) 6= X(i, j′).

Definition 3. Consider two columns j and j′, of a matrix XS . Let index iSf (j, j′) be the index
of the first row of XS where columns j and j′ are fixedly different. If there is no such row, then
iSf (j, j′) is arbitrarily set to m+ 1.

In other words,

• for each row i < iSf (j, j′), either XS(i, j) is free or XS(i, j′) is free or XS(i, j) = XS(i, j′).

• at row iSf (j, j′), entries [XS(i, j), XS(i, j′)] have one of the following forms: [1, 0] or [0, 1].

Definition 4. A row i of matrix XM ′ is said to be (j, j′)-discriminating if it has one of the following
forms on columns j and j′: [×, ×] or [×, 0] or [1, ×], where × stands for a free variable.

In other words, row i is discriminating if it contains at least one free variable, and values 0 or 1
could be assigned to this or these variables in such a way that XS(i, j) > XS(i, j′).

In the following, two matrix sequences (Mj
)j∈{1,...,n} and (Mj)j∈{1,...,n} are defined. Matrix

Mn
is constructed to be F a(P )-maximal and matrix M1 is constructed to be F a(P )-minimal, if

FixFa(P ) 6= ∅.

The idea of the construction is the following. For j = 1, matrix M1
corresponds to matrix

XI where values 1 are assigned to all free variables in the first column of XI . Obviously, for

any X ∈ P ∩ F a ∩ {0, 1}(m,n), M1
(1) ≥ X(1). For each k, for any X ∈ P ∩ F a ∩ {0, 1}(m,n),

Mk
(k) ≥ X(k) holds. Thus, free variables in column k+1 of matrixMk are set to 0 or 1 in matrix

Mk+1 by propagating values from column k, so that column k+ 1 is maximum among all columns
less than or equal to column k. The other columns remain unchanged from Mk to Mk+1.

Similarly, for j = n, matrix Mn corresponds to matrix XI where values 0 are assigned to all
free variables in the last column of XI . Then for each k < n, the free variables in column k of

11



matrix Mk+1 are set to 0 or 1 in matrix Mk by propagating values from column k + 1, so that
column k is minimum among all columns larger than or equal to column k+ 1. The other columns
remain unchanged from Mk+1 to Mk.

Note that in matrix Mk (resp. Mk
), there is no remaining free variables in columns {k, ..., n}

(resp. {1, ..., k}).
In the following, we define matrix sequence (Mj)j∈{1,...,n} using a sequence Sj = (Sj

0, S
j
1),

where Sj is a couple of two disjoint index subsets. Matrix Mj is defined as matrix XSj . Sequence

(Mj
)j∈{1,...,n} can be defined similarly using a sequence Sj , where Sj is a couple of two disjoint

index subsets. The construction is not detailed here.
Sequence (Sj) is defined as follows.

• For j = n, Sn
1 = I1 and Sn

0 = {(i, n) ∈ FI} ∪ I0.

• For j < n, define if = i
Sj+1

f (j, j + 1) for convenience. Consider row if in matrix Mj+1.

– If if = m+ 1 or if row if has the form [1, 0] on columns j and j + 1, then,

Sj
1 = Sj+1

1 ∪
{

(i, j) ∈ FI | (i, j + 1) ∈ Sj+1
1 and i < if

}

Sj
0 = Sj+1

0 ∪
{

(i, j) ∈ FI | (i, j) 6∈ Sj
1

}
i.e. free variables in column j of Mj are set such that columns j and j + 1 are equal
from row 1 to row if − 1. Every other free variables in column j are set to 0.

– Otherwise, row if has the form [0, 1]. In this case:

∗ If, in matrixMj+1, there is no row i ∈ {1, ..., if−1} which is (j, j+1)-discriminating,

then, for all j′ ≤ j, Sj
′

is set to S∅, which is arbitrarily defined as:

S∅0 = {(1, 1)}

S∅1 = {1, ....,m} × {1, ..., n}\S∅0
∗ Otherwise consider row ild, the last (j, j + 1)-discriminating row before row if in

matrix Mj+1, i.e.

ild = max
i∈{1,...,if−1}

{
i is (j, j + 1)− discriminating in Mj+1

}
.

Then,

Sj
1 = Sj+1

1 ∪ {(ild, j)} ∪
{

(i, j) ∈ FI | (i, j + 1) ∈ Sj+1
1 and i < ild

}

Sj
0 = Sj+1

0 ∪
{

(i, j) ∈ FI | (i, j) 6∈ Sj
1

}
.

i.e. free variables in column j ofMj are set such that columns j and j+ 1 are equal
from row 1 to row ild − 1, and such that row ild has the form [1, 0] on columns j
and j + 1. Every other free variables in column j are set to 0.
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The following result shows that either FixFa(P ) is empty, and in this case S1 = Sn = S∅, or
matrices M1 and Mn

are respectively F a(P )-minimal and F a(P )-maximal.

Theorem 1.

• If S1 = S∅ or Sn = S∅ then FixFa(P ) = ∅.

• Otherwise matrix M1 is F a(P )-minimal and matrix Mn
is F a(P )-maximal.

Proof. The following result is proved by induction: for all j ∈ {1, ..., n},

- if Sj 6= S∅, then, ∀X ∈ FixFa(P ), Mj(j) ≤ X(j),

- if Sj = S∅ then FixFa(P ) = ∅.

A similar proof can be done to obtain the corresponding result for Sj andMj
. The details are not

provided here.
If j = n, then by construction, Sn 6= S∅. Since all (i, n) ∈ FI are set to 0 in matrix Mn,

necessarily ∀X ∈ P ∩ F a ∩ {0, 1}(m,n), Mn(n) ≤ X(n).
Otherwise, consider j < n and suppose the result holds for j + 1.
If Sj 6= S∅, suppose there exists X ∈ P ∩ F a ∩ {0, 1}(m,n) such that Mj(j) > X(j). Consider

the first row i such that columns X(j) and Mj(j) are different. As Mj(j) > X(j), we have
X(i, j) = 0 and Mj(i, j) = 1. By construction, since (i, j) ∈ FI and Mj(i, j) = 1, for all i′ < i,
Mj(i′, j) =Mj(i′, j + 1).

We now consider two cases:

- If Mj(i, j + 1) = 1, then since Mj(j + 1) =Mj+1(j + 1),Mj+1(j + 1) > X(j).

- If Mj(i, j + 1) = 0, then, from the construction of Mj , row if = iM
j+1

f (j, j + 1) in matrix

Mj+1 has the form [0, 1] on columns j and j+1 (otherwiseMj(i, j) would have been set to 0).
In this case, row i corresponds to the last (j, j+ 1)-discriminating row of matrixMj+1 before
row if . Thus, for each i′ ∈ {i + 1, if − 1} such that (i′, j) ∈ FI , we have Mj(i′, j + 1) = 1.
If for such an i′, X(i′, j) = 0 then since Mj(j + 1) = Mj+1(j + 1), Mj+1(j + 1) > X(j).
Otherwise, as row if in matrix Mj+1 has the form [0, 1] on columns j and j + 1, it follows
(if , j) ∈ F a

0 , thus X(if , j) = 0. Consequently Mj+1(j + 1) > X(j) holds too.

By the induction hypothesis, X(j + 1) ≥Mj+1(j + 1) thus X(j + 1) > X(j), which contradicts
X ∈ P .

If Sj = S∅, consider the following two cases:

- If Sj+1 = S∅ then by the induction hypothesis, FixFa(P ) = ∅.

- Otherwise, Sj+1 6= S∅. Recall if = i
Sj+1

f (j, j + 1). Then, by construction of matrix Mj ,

row if of matrix Mj+1 has the form [0, 1] on columns j and j + 1 and there is no row
i ∈ {1, ..., if − 1} in matrix Mj+1 which is (j, j + 1)-discriminating. As column j + 1 is
completely fixed in matrix Mj+1, each row i ∈ {1, ..., if − 1} of matrix Mj+1 has one the
following forms on columns j and j + 1: [1, 1] or [0, 0] or [×, 1]. Therefore, if FixFa(P )
were not empty, then P ∩ F a ∩ {0, 1}(m,n) 6= ∅ and for any X ∈ P ∩ F a ∩ {0, 1}(m,n), even if
X(i, j) = 1 for each (i, j) ∈ FI ,Mj+1(j+1) > X(j) would hold. By the induction hypothesis,
X(j + 1) ≥Mj+1(j + 1) thus X(j + 1) > X(j), which contradicts X ∈ P .
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Now, in case FixFa(P ) 6= ∅, sets I?0 and I?1 can be characterized, using sets S1 = (S1
0, S

1
1) and

Sn = (S
n

0 , S
n

1 ) defining F a(P )-minimal and F a(P )-maximal matrices M1 and Mn
.

First, for each j ∈ {1, ...,m}, consider row ij , the first row at which columnsM1(j) andMn
(j)

differs, defined as:

ij = min

{
i ∈ {1, ...,m} | M1(i, j) 6=Mn

(i, j)

}
If columns M1(j) and Mn

(j) are equal, then ij is arbitrarily set to m + 1. By definition

of F a(P )-minimal and F a(P )-maximal matrices, M1(ij , j) < M
n
(ij , j). Note that since for all

(i, j) ∈ I0 (resp. I1), M1(i, j) = 0 (resp. 1) andMn
(i, j) = 0 (resp. 1), (ij , j) is a free variable i.e.

(ij , j) ∈ FI .
Now define sets I+

0 and I+
1 :

I+
0 =

{
(i, j) ∈ FI | i < ij and Mn

(i, j) = 0

}

I+
1 =

{
(i, j) ∈ FI | i < ij and M1(i, j) = 1

}
The sets (I?0 , I

?
1 ) defining FixFa(P ) can be characterized using I+

0 and I+
1 , as shown in the

following.

Theorem 2.
I?0 = I0 ∪ I+

0

I?1 = I1 ∪ I+
1

Proof. First, we prove that I+
0 ⊂ I?0 and I+

1 ⊂ I?1 . Suppose I+
0 6⊂ I?0 or I+

1 6⊂ I?1 . Let (i, j) ∈
(I+

0 \I?0 ) ∪ (I+
1 \I?1 ). Consider i0 = min{i′ | (i′, j) ∈ (I+

0 \I?0 ) ∪ (I+
1 \I?1 )}. Suppose (i0, j) ∈ I+

0 \I?0 .
As (i0, j) 6∈ I?0 , there exists X ∈ P ∩ F a ∩ {0, 1}(m,n) such that X(i0, j) = 1. As (i0, j) ∈ I+

0 ,

Mn
(i0, j) = 0. If for all i′ < i0, X(i′, j) ≥Mn

(i′, j) then the following would hold: X(j) >Mn
(j),

contradicting the fact that Mn
is F a(P )-maximal. Thus, there exists a row i1 < i0 such that

Mn
(i1, j) = 1 and X(i1, j) = 0. As (i0, j) ∈ I+

0 , i1 < i0 < ij , so M1(i1, j) = 1 too. Thus
(i1, j) ∈ I+

1 . However, (i1, j) 6∈ I?1 because X ∈ P ∩ F a ∩ {0, 1}(m,n) and X(i1, j) = 0. The
contradiction comes from the fact that i1 < i0 and i1 ∈ {i′ | (i′, j) ∈ (I+

0 \I?0 ) ∪ (I+
1 \I?1 )}.

The proof is the same if we suppose (i0, j) ∈ I+
1 \I?1 . This proves I+

0 ⊂ I?0 and I+
1 ⊂ I?1 , thus

I0 ∪ I+
0 ⊂ I?0 and I1 ∪ I+

1 ⊂ I?1 .
Now we prove I?0 ⊂ I0 ∪ I+

0 and I?1 ⊂ I1 ∪ I+
1 . For this, it suffices to show that for each

(i, j) 6∈ I?0 ∪ I?1 , there exists a solution X0 ∈ P ∩ F a ∩ {0, 1}(m,n) such that X0(i, j) = 0 and a
solution X1 ∈ P ∩ F a ∩ {0, 1}(m,n) such that X1(i, j) = 1.

Let (i, j) 6∈ I?0 ∪ I?1 . Consider index (ij , j) ∈ FI .

Solution M1 is such that M1(ij , j) = 0 and solution Mn
is such that Mn

(ij , j) = 1. So if
i = ij , the result is proved.

Now suppose i 6= ij . Note that for all i′ < ij , M1(i′, j) =Mn
(i′, j), therefore (i′, j) ∈ I?0 ∪ I?1 .

Thus i > ij .
Consider solutions X1 and X0 defined as follows.

∀j′ ∈ {1, ..., j − 1}, ∀i′ ∈ {1, ...,m}, X1(i′, j′) = X0(i′, j′) =Mn
(i′, j′)
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∀j′ ∈ {j + 1, ..., n}, ∀i′ ∈ {1, ...,m}, X1(i′, j′) = X0(i′, j′) =M1(i′, j′)

∀i′ < ij , X1(i′, j) = X0(i′, j) =M1(i′, j) =Mn
(i′, j)

X1(ij , j) = 0 and ∀i′ ∈ FI\{i}, i′ > ij , X1(i, j) = 1

X0(ij , j) = 1 and ∀i′ ∈ FI\{i}, i′ > ij , X0(i, j) = 0

Recall that Mn
(ij , j) = 1 and M1(ij , j) = 0, therefore Mn

(j) ≥ X0(j) > X1(j) >M1(j).

As Mn
and M1 ∈ P , Mn

(j − 1) ≥ Mn
(j) and M1(j) ≥ M1(j + 1). Thus X1 and X0 are

also in P ∩ F a ∩ {0, 1}(m,n) and are such that X1(i, j) = 1 and X0(i, j) = 0. This concludes the
proof.

The fixing FixFa(P0(m, p)) being now characterized, in the next two sections we will define two
fixing algorithms for the full orbitope: static orbitopal fixing and dynamic orbitopal fixing.

3.2 Static orbitopal fixing

When solving MILP (3) with Branch & Bound, static orbitopal fixing can be performed at each node
of the branching tree in order to ensure that any solution x enumerated is such that x ∈ P0(m, p).

The static orbitopal fixing algorithm at node a is the following:

- Set I0 = F a
0 and I1 = F a

1

- Compute matrices M1 and Mn

- For each (i, j) ∈ I+
0 , fix variable xi,j to 0

- For each (i, j) ∈ I+
1 , fix variable xi,j to 1

Let τ be a branch & bound tree of MILP (3), in which static orbitopal fixing is used. No
assumptions are made on the branching strategy used.

Theorem 3. For each feasible solution X to MILP (3), there is exactly one solution X ′ ∈ orb(X)
enumerated in tree τ .

Proof. Since the sets (I0 ∪ I+
0 , I1 ∪ I+

1 ) define FixFa(P0(m, p)), the result follows directly.

3.3 Dynamic orbitopal fixing

In the previous sections, we have considered that a column c of a binary matrix is lexicographically
larger than or equal to a column c′ if:

n∑
i=1

2n−ic[i] ≥
n∑

i=1

2n−ic′[i].

Note that the order on the n rows is arbitrary. Considering a bijection φ : {1, ..., n} → {1, ..., n},
one could define the lexicographical order as follows:

n∑
i=1

2n−ic[φ(i)] ≥
n∑

i=1

2n−ic′[φ(i)].
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The idea of dynamic fixing is to use the branching decisions to define reorderings φa of the row
indices, depending on the branch a of the branch & bound tree.

First suppose that all branching disjunctions have the form:

xi,t = 0 ∨ xi,t = 1,

For each node a, let
xia,ta = 0 ∨ xia,ta = 1,

be the branching disjunction at node a. We define subset Ta ⊂ T , integer ea ∈ N and bijection
φa : {1, ..., ea} → Ta as follows. If a is the root node, then Ta = {ta}

ea = 1
φa(1) = ta

Otherwise, let b be the father node of a and:
Ta = Tb ∪ {ta}
ea = |Ta|
∀i ∈ {1, ..., eb} φa(i) = φb(i)
If ta 6∈ Tb, φa(ta) = ea

Thus, dynamic orbitopal fixing is such that at each node a, orbitopal fixing is performed on rows
Ta = { φa(1), φa(2), ..., φa(ea) }, with respect to lexicographical ordering φa.

Let τ be a branch & bound tree of MILP (3), in which dynamic orbitopal fixing is used and
branching disjunctions have the form:

xi,t = 0 ∨ xi,t = 1,

for given i, t.

Theorem 4. For each feasible solution X to MILP (3), there is exactly one solution X ′ ∈ orb(X)
enumerated in tree τ .

Proof. The idea of the proof is to compute the representative X ′ ∈ orb(X) enumerated by τ by
following the branching decisions taken in τ , and seeing there is a unique X ′ possible.

First consider the branching disjunction at the root node a:

xi0,t0 = 0 ∨ xi0,t0 = 1,

Then φa(1) = t0.
Let nt0 be the number of “1” entries on row t0 of matrix X. Since row t0 is the first row with

respect to the lexicographical order φa, any X ′ ∈ orb(X) enumerated by the branching tree will be
such that:

X ′(t0, j) = 1, ∀j ∈ {1, ..., nt0}

X ′(t0, j) = 0, ∀j ∈ {nt0 + 1, ..., n}

Indeed, dynamic orbitopal fixing is enforced in τ , thus any solution enumerated by τ must be
lexicographically non-increasing with respect to φa.
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Thus, if we denote by b1 the son of a such that xi0,t0 = 1 and b0 the son of a0 such that xi0,t0 = 0,
then the next node to be considered will be:{

b1 if i0 ≤ nt0
b0 otherwise.

Indeed, if i0 ≤ nt0 (resp. i0 > nt0) then any X ′ ∈ orb(X) enumerated by τ is such that
X ′(i0, t0) = 1 (resp. X ′(i0, t0) = 0). Thus there is no representative of X in the branch xi0,t0 = 0
(resp. xi0,t0 = 0).

Now suppose i0 ≤ nt0 , so the node considered is b1. If the node considered were b0, we could
proceed similarly. Consider the branching disjunction at node b1:

xi1,t1 = 0 ∨ xi1,t1 = 1,

If t1 = t0 then, by the same arguments as at the root node, there is exactly one branch in which
is enumerated any X ′ ∈ orb(X), and this branch can be easily determined.

Otherwise t1 6= t0, and φa1(1) = t0, φa1(2) = t1.
Let n1

t1 (resp. n0
t1) be the number of columns j such that X(t0, j) = 1 (resp. X(t0, j) = 0) and

X(t1, j) = 1. Since row t1 is second with respect to lexicographical order φa1
, any X ′ ∈ orb(X)

enumerated by the branching tree will be such that:

X ′(t1, j) = 1, ∀j ∈ {1, ..., n1
t1}

X ′(t1, j) = 0, ∀j ∈ {n1
t1 + 1, ..., nt0}

X ′(t1, j) = 1, ∀j ∈ {nt0 + 1, ..., n0
t1}

X ′(t1, j) = 0, ∀j ∈ {n0
t1 + 1, ..., n}

Thus, all X ′ ∈ orb(X) enumerated by τ have the same value v in entry (i1, t1), and this value
can be determined, as previously, by finding in which of the sets {1, ..., n1

t1}, {n
1
t1 +1, ..., nt0}, {nt0 +

1, ..., n0
t1}, {n

0
t1+1, ..., n} does index i1 belong. Therefore, since for allX ′ ∈ orb(X) enumerated by τ ,

X ′(i1, t1) = v, there is exactly one branch in which any X ′ ∈ orb(X) is enumerated: xi1,t1 = v. This
defines the next node to consider. This process can be repeated until a leaf node a is reached. At
that point, all entries of X ′ are determined. By construction, X ′ is lexicographically non-increasing
with respect to φa, and X ′ ∈ orb(X).

Furthermore, X ′ is the only element of orb(X) enumerated by τ , since at each node we consid-
ered, there was always a unique branch leading to all elements of orb(X).

This result can be easily extended if one wishes to branch on a given inequality featuring only
variables of a given row i, i.e. a branching disjunction of the form:

p∑
j=1

aixi,j ≤ k ∨
p∑

j=1

aixi,j > k.
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4 Application to the Unit Commitment Problem

Given a discrete time horizon T = {1, ..., T}, a demand for electric power Dt is to be met at each
time period t ∈ T . Power is provided by a set N of n production units. At each time period, unit
i ∈ N is either down or up, and in the latter case, its production is within [P i

min, P i
max]. Each

unit must satisfy minimum up-time (resp. down-time) constraints, i.e. each unit i must remain up
(resp. down) during at least Li (resp. `i) periods after start up (resp. shut down). Each unit i has
initial conditions (ei, τ i), indicating unit i has commitment status ei before time 1, and it should
remain in the same status up to time τ i (if τ i = 0, unit i is free to shut down or start up at time 1).
Each unit i also features three different costs: a fixed cost cif , incurred each time period the unit

is up; a start-up cost ci0, incurred each time the unit starts up; and a cost cip proportional to its
production. The Min-up/min-down Unit Commitment Problem (MUCP) [1] is to find a production
plan minimizing the total cost while satisfying the demand and the minimum up and down time
constraints. The MUCP is strongly NP-hard [2].

For each unit i ∈ N and time period t ∈ T , let us consider three variables: xit ∈ {0, 1} indicates
if unit i is up at time t; uit ∈ {0, 1} indicates whether unit i starts up at time t; and pit ∈ R is
the quantity of power produced by unit i at time t. Without loss of generality we consider that
Li, `i ≤ T . The MUCP can be formulated as follows:

min
x,u,p

n∑
i=1

T∑
t=1

cifx
i
t + cipp

i
t + ci0u

i
t

s. t.

t∑
t′=t−Li+1

uit′ ≤ xit ∀i ∈ N , ∀t ∈ {Li, ..., T} (5)

t∑
t′=t−`i+1

uit′ ≤ 1− xit−`i ∀i ∈ N , ∀t ∈ {`i, ..., T} (6)

uit ≥ xit − xit−1 ∀i ∈ N , ∀t ∈ {2, ..., T} (7)
n∑

i=1

pit ≥ Dt ∀t ∈ T (8)

P i
minx

i
t ≤ pit ≤ P i

maxx
i
t ∀i ∈ N , ∀t ∈ T (9)

xit, u
i
t ∈ {0, 1} ∀i ∈ N , ∀t ∈ T (10)

Symmetries in the MUCP (and in the UCP) arise from the existence of groups of identical units.
Suppose there are H different types of units and nh units of type h, h ∈ {1, ...,H}. The set of type
h units is denoted by Nh.

The solutions of the MUCP can be expressed as a series of 0/1 matrices. We introduce matrix
Xh ∈ P(T, nh) such that entry Xh

i,t corresponds to variable xit of the ith unit of type h. Column

i of matrix Xh corresponds to the up/down planning of the ith unit of type h. Similarly, we
introduce matrices Uh and Ph. Since all units of type h are identical, their production plans can be
permuted, provided that the same permutation is applied to matrices Xh, Uh and Ph. Thus, the
symmetry group G contains all column permutations applied to X, U and P . As binary variables
U are uniquely determined by variables X, breaking the symmetry of the X variables will break
the symmetry over U variables.
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4.1 State of the art: modified orbital branching

The authors in [14] apply modified orbital branching alongside with various additional branching
rules to break symmetries on the X variables of another variant of the UCP. Experimental results
compare different approaches:

- Default Cplex

- Branch & Cut Cplex, i.e Cplex with advanced features turned off, mimicking what happens
when callbacks are used

- OB, i.e. orbital branching

- MOB with no branching rules enforced (Cplex is free to choose the next branching variable)

- MOB with RMRI, the most flexible branching rule ensuring that only representatives are
enumerated.

It is shown that MOB with RMRI is more efficient than MOB, OB and Branch & Cut Cplex
in terms of CPU time. The difference between using MOB with RMRI and MOB alone is however
not as significant as the difference between MOB and simple orbital branching. Because advanced
Cplex features are turned off when callbacks are used, there is still a huge performance gap between
Branch & Cut Cplex and default Cplex.

4.2 Orbitopal fixing applied to the MUCP

As the production plans of identical units can be permuted, each variable matrix Xh can be re-
stricted to be in the full orbitope P0(T, nh). The fixing strategies developed in Sections 3.2 and 3.3
can then be applied to fix variables in each matrix Xh, in order to enumerate only solutions with
lexicographically non-increasing X.

More precisely, the two possible approaches are:

- Static orbitopal fixing, where the order on the lines is decided before the branching process.
In this case, the branching decisions remain completely free

- Dynamic orbitopal fixing, where the order on the lines is decided during the branching process.
In this case, the branching disjunctions must be of the form (xi,t = 0 ∨ xi,t = 1), or more
generally, featuring only one line i of matrix X.

As in the context of the UCP it may be useful to branch on U variables, the next section describes
how dynamic orbitopal fixing can be adapted to branch on more general types of disjunctions.

4.3 Dynamic orbitopal fixing and branching on u variables

One might want to be able to branch on the start-up variables u as well when using dynamic
orbitopal fixing, or in terms of X variables, to branch on a disjunction of the form:

xit − xit−1 ≤ 0 ∨ xit − xit−1 = 1

19



Actually, it is possible to slightly adapt lexicographical ordering φ, so that dynamic fixing
remains valid when at each node, the branching disjunction has one of the following forms:

xit = 0 ∨ xit = 1

uit = 0 ∨ uit = 1.

We thus define lexicographical ordering φ̃. For a given node a, if the branching disjunction at a
is

xiata = 0 ∨ xiata = 1,

or if ta = 1, then subset T̃a ⊂ T , integer ẽa ∈ N and bijection φ̃a : {1, ..., ea} → Ta are defined as
Ta, ea and φa in Section 3.3.

If the branching disjunction at a is

uiata = 0 ∨ uiata = 1,

then we define subset T̃a ⊂ T , integer ẽa ∈ N and bijection φ̃a : {1, ..., ẽa} → Ta as follows.
If a is the root node, then 

T̃a = {ta, ta − 1}
ẽa = 2

φ̃a(1) = ta
φ̃a(2) = ta − 1

Otherwise, let b be the father node of a and:

T̃a = T̃b ∪ {ta, ta − 1}
ẽa = |T̃a|
∀i ∈ {1, ..., ẽb}, φ̃a(i) = φ̃b(i)

If ta 6∈ T̃b, φ̃a(ta) = ẽb + 1

If ta − 1 6∈ T̃b, φ̃a(ta − 1) = ẽa

Thus, at each node a, dynamic orbitopal fixing is performed on lines T̃a = { φ̃a(1), φ̃a(2), ...,

φ̃a(ẽa) }, with respect to lexicographical ordering φ̃a.
Let τ be a branch & bound tree of MILP (UCP ), in which dynamic orbitopal fixing is used and

at each node, the branching disjunction has one of the following forms:

xit = 0 ∨ xit = 1

uit = 0 ∨ uit = 1.

Theorem 5. For each feasible solution X to MILP (UCP), there is exactly one solution X ′ ∈
orb(X) enumerated in tree τ .

Proof. The proof can be derived as in Theorem 4: it suffices to see that at each node considered
from the root, there is exactly one branch which contains all the elements of orb(X) enumerated in
tree τ .

This result can be easily extended if one wishes to branch on an arbitrary disjunction, if at each
node a, any time period featured in the disjunction is ordered by φ̃a.
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4.4 Numerical experiments

All experiments were performed using one thread of a PC with a 64 bits Intel Core i7-6700 processor
running at 3.4GHz, and 32 GB of RAM memory. The problems are solved until optimality (defined
within 10−6 of relative optimality tolerance) or until the time limit of 3600 seconds is reached.

4.4.1 Instances

In order to determine which symmetry-breaking method performs best with respect to the number
of rows and columns of matrix X, we consider various couples (n, T ), namely: (60, 48), (30, 96),
(20, 192) and (15, 288).

For each couple (n, T ), we generate a set of UCP instances as follows.
For each instance, we generate a “2-peak per day” type demand with a large variation between

peak and off-peak values: during one day, the typical demand in energy during one day has two peak
periods, one in the morning and one in the evening. The amplitudes between peak and off-peak
periods have similar characteristics to those in the dataset from [3].

For all instances we randomly generate initial conditions ei and set τ i = 0, for each unit i. We
consider the parameters (Pmin, Pmax, L, `, cf , c0, cp) of each unit from the dataset presented in
[3]. We draw a correlation matrix between these characteristics and define a possible range for
each characteristic. In order to introduce symmetries in our instances, some units are randomly
generated based on the parameters correlations and ranges. Each unit generated is duplicated d
times, where d is randomly selected in [1, n

F ] in order to obtain a total of n units. The parameter
F is called symmetry factor, and can vary from 2 to 4 depending on the value of n.

Table 1 provides some statistics on the instances. For each instance, a group is a set of two or
more units with same characteristics. Each unit which has not been duplicated is a singleton. The
first and second entries column-wise are the number of singletons and groups. The third entry is the
mean group size and the fourth entry is the maximum group size. Each entry row-wise corresponds
to the average value obtained over the 20 instances with same size (n, T ) and same symmetry factor
F .

Size Sym. factor Nb of singletons Nb of groups Mean size of groups Group max size
(15,288) F = 3 1.5 4.2 3.27583 4.55

F = 2 0.9 3.45 4.23167 6.15

(20,192) F = 4 2.15 5.35 3.40726 4.75
F = 3 1.35 5.1 3.7875 5.5
F = 2 0.65 3.7 5.38333 8.05

(30,96) F = 4 1.3 6.45 4.51718 6.7
F = 3 0.4 5.25 5.96786 8.65
F = 2 0.55 4.05 7.58667 11.4

(60,48) F = 4 0.8 7.7 7.86369 13.15
F = 3 0.55 5.8 10.8604 17.8
F = 2 0.2 4.75 13.9317 23.75

Table 1: Instances

In the following experiments, we compare various resolution methods. The experimental results
show there is an important variability in the computation time within groups of instances with
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same size (n, T ) and same symmetry factor F . We thus introduce the CPU time improvement
score, which is a performance ratio comparing the CPU times of two methods. The improvement
score for two given methods m1 and m2 is defined as:

ICPU (m1,m2) = 2CPU(m2)−CPU(m1)
CPU(m1)+CPU(m2)

We similarly define the node improvement score and the gap improvement score:

Inodes(m1,m2) = 2nodes(m2)−nodes(m1)
nodes(m1)+nodes(m2)

Igap(m1,m2) = 2 gap(m2)−gap(m1)
gap(m1)+gap(m2)

For any indicator ind and any two methods m1 and m2, the considered improvement score
Iind(m1,m2) provides a symmetric comparison between the two methods m1 and m2. Indeed, the
improvement score is a performance ratio, where the reference used is the average of the indicator
values obtained from m1 and m2. Using this average value as reference yields the following key
property: Iind(m1,m2) = −Iind(m2,m1). In particular, Iind(m1,m2) ∈ [−2, 2], while the standard

relative error calculated as ind(m1)−ind(m2)
ind(m1) ∈ [−∞, 1] would be non-symmetric and unbounded.

4.4.2 Static orbitopal fixing vs dynamic orbitopal fixing

The average improvement score between static orbitopal fixing (SOF) and dynamic orbitopal fixing
(DOF) in given in Table 2, for each group of 20 instances of same size and symmetry factor. It is
clear that DOF outperforms SOF on each group.

(15, 288) ((20, 192) (30, 96) (60, 48)
F = 3 F = 2 F = 4 F = 3 F = 2 F = 4 F = 3 F = 2 F = 4 F = 3 F = 2
72.7 % 102 % 79.3 % 116 % 65.1 % 52.7 % 84 % 52.5 % 50.3 % 43.3 % 39.5 %

Table 2: ICPU (SOF,DOF )

4.4.3 Comparison of Cplex, MOB and DOF

We compare four different resolution methods for the MUCP:

- Default Cplex (DC)

- Callback Cplex (CC) , i.e Cplex with an empty branch callback

- MOB with no branching rules enforced (Cplex is free to choose the next branching variable)

- Dynamic orbitopal fixing (DOF)

On instances from [14], the average CPU time improvement score between MOB and MOB+RMRI
is 9%. Even though MOB+RMRI is slightly better than MOB with no branching rules, we choose
to compare our methods to MOB, because its implementation is straightforward, thus leaving no
room to interpretation.

Table 3 compares MOB and DOF to Callback Cplex and Default Cplex, with respect to their
average gap, node and CPU time improvement scores on groups of 20 instances of same size (n, T )
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and same symmetry factor F . For each method m1, Table 3 indicates N, the number of instances
solved to optimality by m1, and compares m1 to another method m2 with respect to:

N∆ = number of instances solved by m1 - number of instances solved by m2

Igap: average gap improvement score, computed for each instance on which neither m1 nor
m2 reaches optimality.

Inodes: average node improvement score, computed for each instance on which both m1 and
m2 reached optimality.

ICPU : average CPU time improvement score, computed on every instance.

Instance m2 = Default Cplex m2 = Callback Cplex
(n, T ) Sym m1 N N∆ Igap Inodes Icpu N∆ Igap In Icpu

(15,288) F = 3 MOB 13 -6 -134 % -87.4 % -88.4 % -1 14.7 % 0.15 % 4.73 %
DOF 15 -4 -171 % -23.6 % -42.4 % 1 72.4 % 96.4 % 63.3 %

F = 2 MOB 17 -3 0 % -61.1 % -57.5 % 0 54.3 % 43.7 % 15.2 %
DOF 18 -2 0 % -21.5 % -30.4 % 1 61.8 % 113 % 57.9 %

(20,192) F = 4 MOB 17 -2 -153 % -123 % -111 % 1 -37.4 % 64.2 % 20.3 %
DOF 19 0 -144 % -77.2 % -40.7 % 3 29.8 % 132 % 102 %

F = 3 MOB 13 -5 -183 % -62.5 % -96.8 % 1 29.1 % 69.3 % 32.9 %
DOF 14 -4 -185 % -68.7 % -79.5 % 2 59.9 % 100 % 58.9 %

F = 2 MOB 12 -6 -82.3 % -31.5 % -75.9 % 0 4.84 % 36.1 % 27.3 %
DOF 13 -5 -61.7 % 0.00326 % -55.6 % 1 43.3 % 104 % 52.2 %

(30,96) F = 4 MOB 14 -6 0 % -72.3 % -107 % 2 -3.64 % 48.1 % 16.5 %
DOF 19 -1 0 % -38.3 % -18.5 % 7 14.1 % 143 % 113 %

F = 3 MOB 12 -4 -124 % -34.2 % -51.1 % 4 16.2 % 149 % 69 %
DOF 13 -3 -90 % -58.3 % -47.8 % 5 82.6 % 121 % 84.8 %

F = 2 MOB 12 -5 -46.3 % -12.7 % -63.2 % 1 85.4 % 113 % 45.8 %
DOF 14 -3 -10.5 % 58.5 % -15.1 % 3 125 % 138 % 89.6 %

(60,48) F = 4 MOB 17 0 47.7 % 66.7 % 15 % 9 143 % 91.1 % 105 %
DOF 16 -1 -7.35 % 65.5 % 28.7 % 8 103 % 106 % 110 %

F = 3 MOB 13 0 1.62 % 42.6 % 14.3 % 6 49.9 % 114 % 80.2 %
DOF 15 2 -3.55 % 89.4 % 48.9 % 8 99.3 % 120 % 110 %

F = 2 MOB 17 0 44.1 % -17.9 % 7.57 % 6 44.5 % 97.7 % 89.4 %
DOF 19 2 0 % 14.1 % 61.4 % 8 195 % 75.6 % 112 %

Table 3: MOB and dynamic orbitopal fixing - average improvement scores for various instances

In terms of CPU time, both MOB and DOF greatly outperform B&C Cplex, but the improve-
ment is much larger with DOF.

As observed in [14], there is a huge performance gap between B&C Cplex and Default Cplex. In
particular, on instances with n ≤ 30, Default Cplex manages symmetries very efficiently. Thus, even
if DOF and MOB greatly improve B&C Cplex, it is usually not enough to close this performance
gap. Globally, even if it does not catch up Default Cplex, the performance loss is less important
with DOF than with MOB.
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When n increases (n = 60), Default Cplex sometimes struggles to reach optimality within the
time limit. On the opposite, DOF still performs well in this context and solves to optimality some
instances Default Cplex cannot. Thus, in case n = 60, DOF outperforms both B&C Cplex and
Default Cplex. MOB does not improve Default Cplex as much as DOF.

Table 4 provides average number of nodes, number of fixings (for MOB, it is the total number
of variables fixed during the branching process) and CPU time for each group of 20 instances.

24



Instances method nodes number of fixings cpu time
(15,288) F = 3 DC 72723.7 0 237.434

CC 278722 0 1166.08
MOB 259414 5374.2 1353.14
DOF 215412 57826.9 923.255

F = 2 DC 16480.5 0 20.9985
CC 207097 0 576.868

MOB 218786 1464.35 583.012
DOF 138925 40262.1 418.916

(20,192) F = 4 DC 24734.8 0 197.672
CC 386446 0 978.943

MOB 163565 9150.55 706.585
DOF 121659 23574.9 347.097

F = 3 DC 141456 0 392.782
CC 509161 0 1624.79

MOB 342974 22621.8 1363.59
DOF 374525 204167 1256.53

F = 2 DC 70283.7 0 413.073
CC 569132 0 1574.98

MOB 310299 37422 1493.3
DOF 446119 254436 1379.42

(30,96) F = 4 DC 34741.5 0 35.242
CC 1.23224e+06 0 1541.24

MOB 734868 48313.3 1222.69
DOF 312632 131181 353.692

F = 3 DC 800230 0 879.658
CC 1.47284e+06 0 2338.72

MOB 683773 188132 1583.97
DOF 782985 627884 1343.78

F = 2 DC 350610 0 608.481
CC 947007 0 1762.22

MOB 904914 617226 1530.35
DOF 531426 661735 1088.96

(60,48) F = 4 DC 1.02977e+06 0 841.093
CC 1.92451e+06 0 2286.65

MOB 326837 194657 647.311
DOF 628777 656787 767.224

F = 3 DC 1.25776e+06 0 1284.29
CC 1.57958e+06 0 2386.88

MOB 872257 730178 1321.21
DOF 448037 911962 923.128

F = 2 DC 589062 0 580.998
CC 1.21218e+06 0 1805.79

MOB 436945 50496 590.528
DOF 166956 336218 198.01

Table 4: Average number of nodes, fixing and cpu time values for each method and each instance
group
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Conclusion

In this paper, we define a linear time orbitopal fixing algorithm for the full orbitope. This algorithm
is proven to be optimal, in the sense that at any node a in the search tree, any variable that can
be fixed (i.e. a variable set to the same value in all lexicomax feasible solutions to subproblem a)
is fixed by the algorithm. From the simple observation that when more variables on small-index
rows are already fixed at node a, more fixings can be performed, we propose a dynamic version of
the orbitopal fixing algorithm, where the lexicographical order at node a is defined with respect to
the branching decisions leading to a. For MUCP instances, our experimental results show that the
proposed approach is competitive with state of the art methods like modified orbital branching.

In the past, the complete linear description of partitioning and packing orbitopes helped to design
an orbitopal fixing algorithm for these orbitopes. Likewise in the future, maybe the orbitopal fixing
algorithm for the full orbitope, by improving our understanding of this polyhedron, might help to
find a complete linear description of the full orbitope. Moreover, it would be interesting to extend
orbitopal fixing to full orbitopes under other group actions, for example the cyclic group.

Finally, there is a wide range of problems featuring all column permutation symmetries, in
particular many variants of the UCP, on which it would be desirable to analyze the effectiveness
of our approach. Other examples of such problems can be found among covering problems, whose
solution matrix has at least one 1-entry per row. Even though computing the exact fixing has
been shown NP-hard in this case, our orbitopal fixing algorithm, designed for full orbitopes, can be
used to compute fixings in a covering orbitope. In this case, there is no guarantee that fixings are
done as early as possible in the tree, because the special structure of covering orbitopes may induce
possible fixings that would not be correct in a full orbitope. Nevertheless, this fixing algorithm
breaks all column-permutation related symmetries at some point in the branching tree, which may
be sufficient to overcome the computational difficulties arising from the highly symmetric nature of
these problems.
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