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Abstract—We propose to derive the analytical expression of
the Hybrid Cramer-Rao Bound HCRB for the joint time delay
and channel fading estimation. The time delay is considered
as a deterministic parameter and the channel is considered as
a complex gaussian random variable. The HCRB expression
is computed for both the data-aided (DA) and the non data-
aided (NDA) modes. The obtained result allows us to assess the
performance of on-line and off-line dynamical Rayleigh channel
gains estimation. It also evaluates timing recovery techniques
under a time varying fading channel.

I. I NTRODUCTION

The standard Cramer-Rao Bound (CRB) [1] and the
Bayesian Cramer-Rao Bound (BCRB) [2] have been intro-
duced in the literature to find a theoretical minimum mean
square error (MSE) limit for respectively, deterministic and
stochastic parameter estimation. Closed form expressionsof
the CRB have been derived in [3] for carrier frequency and
phase offset estimation for turbo-coded Square-QAM modu-
lated signals. It was also evaluated in [4] and [5] respectively
for SNR and for frequency and phase NDA estimation. For
the timing recovery problem, the CRB has been evaluated
for DA [6], NDA [7] and with the help of soft information
[8], [9] in code-aided (CA) [10], [11] only for a constant
delay. The BCRB has been derived for the unknown random
phase offset problem [12], [13] in [14]–[16] and for dynamical
timing recovery [17], [18].

However, it is frequent that a mixture of deterministic and
stochastic parameters has to be jointly estimated. For instance,
in real systems, time delay recovery is often associated to
dynamic channel estimation. CRB and BCRB are then no
more relevant for such estimators designed to jointly recover
deterministic and random parameters. By the introduction of
a general framework to derive the analytical expression of the
BCRB suited for a vector of parameters estimation [2], an
extension has been proposed [19] for some practical cases
where the vector to be estimated is composed of a mixture
of random and deterministic parts. This theoretical bound is
called the Hybrid CRB (HCRB).

In [20] a HCRB has been introduced for a dynamical
time varying channel, modeled by a random variable, and
a deterministic carrier frequency offset estimation in OFDM
systems. In [14], [21], this bound has been computed for a

dynamical phase offset estimation following a brownian model
with a linear unknown drift. The authors of [22] proposed a
HCRB for the joint estimation of the pair of dynamical carrier
phase-Doppler shift (random part) and the constant time delay
(deterministic part). In this proposal, we provide an analytical
derivation of the HCRB for a joint estimation of a Rayleigh
fading channel and a deterministic time delay.

This paper is organized as follows. In section II, the system
model is presented. In section III, closed form expressionsof
the HCRB for both the DA and the NDA modes are derived.
Simulation results are provided in section IV and validate our
analysis. The last section concludes our work.

GLOSSARY OF PRINCIPAL NOTATIONS

• ℜ{z} andℑ{z}: the real and imaginary parts ofz
• z∗: the conjugate ofz
• XT : the transpose of the matrixX
• ḟ (resp. f̈ ): the first (resp. the second) derivative off ,

for any functionf
• fX(x): the probability density function (pdf) of the

random variableX
• P (X): the probability of the random variableX
• Ey(X): the mean value of the random variableX overy
• |X|: the determinant of the matrixX
• ∇x: the gradient with respect tox
• △y

x = ∇x∇y: the Laplace operator with repect toyandx

II. SYSTEM MODEL

Let us consider the linearly modulated transmitted signal
s(t) such as:

s(t) =
∑

i

aih(t− iT ), (1)

whereai denotes the transmitted symbols which are assumed
to be statistically independent and equally likely, with normal-
ized energy,h(t) is the impulse response of the root Nyquist
transmission filter andT is the symbol period.

Generally, propagation in a radio channel is characterizedby
a very slowly varying time delay with respect to the channel
gains affecting the signal amplitude and phase. Hence, it is
reasonable to assume that the time delay remains constant and978-1-5386-3531-5/17/$31.00c© 2017 IEEE



the channel gain varies from one measurement to another. The
received signal can thus be written as:

r(t) = α(t)s(t− τ) + n(t), (2)

whereτ is an unknown delay introduced by the channel,α(t)
is a complex gaussian process representing the channel fading
andn(t) is an additive white Gaussian noise (AWGN) of zero
mean and varianceσ2.

The Nyquist pulseg(t) obtained fromh(t), with g(t) =
h(t)⊗h∗(−t), satisfies the first Nyquist criterion (g(nT ) = 0
for any integern 6= 0).

Let us consider theN -dimensional truncated vectors
r = [r1, · · · , rN ]T , s(τ) = [s1(τ), · · · , sN (τ)]T , α =
[α1, · · · , αN ]T and n = [n1, · · · , nN ]T , representing the
sampled version ofr(t), s(t− τ) andn(t), respectively taken
at the rateF/T . α and τ are assumed to be unknown,
respectively random and deterministic parameters. They can
be gathered in the following unknown parameter vector:

µ = [αT , τ ]T . (3)

Let µ̂(r) be an unbiased estimator of the hybrid parameter
µ = [α, τ ]T based on the observationsr . The HCRB can be
derived in an on-line context where the estimate ofµ only
depends on the current and the previous observations or in an
off-line context when the whole observation block is received.
This bound is defined as [23]:

Er ,α|τ

[

(µ̂(r)− µ) (µ̂(r)− µ)
H
]

≥ HCRB(µ), (4)

whereA ≥ B means thatA − B is a positive semi definite
matrix.

III. HCRB ANALYTICAL DERIVATION

From [19] and [24], the HCRB can be decomposed into
four block sub-matrices:

HCRB(µ) =

(

HCRB11(α) hcrb12(α, τ)

hcrb21(α, τ) hcrb22(τ)

)

. (5)

The HCRB is the inverse of the following hybrid information
matrix (HIM) [19]:

H(µ) = Eα [F (α, τ)] + Eα|τ

[

−△µ
µ log (P (α|τ))

]

, (6)

whereP (α|τ) is the a priori knowledge onα andF (α, τ)
is the Fisher information matrix (FIM) defined as:

F (α, τ) = Er |α,τ

[

−△µ
µ log (P (r |α, τ))

]

. (7)

P (r |α, τ) is the conditional pdf ofr givenα andτ .
Sinceα andτ are independent parameters, thenP (α|τ) =

P (α) and thus:

Eα|τ

[

−△µ
µ log (P (α|τ))

]

=

(

Eα [−△α
α log (P (α))] 0N,1

01,N 0

)

.

(8)
The channel fading follows a Rayleigh distribution, therefore,
α is a complex gaussian random variable of zero mean and
covariance matrixRα. Thea priori information onα is then
given by:

P (α) =
1

|πRα|
exp

(

−αHRα
−1α

)

. (9)

By evaluating the second derivative oflog (P (α)) with respect
to α and making the expectation, we obtain:

Eα [−△α
α log (P (α))] = Rα

−1. (10)

The covariance matrix can be computed using the following
expression [25]:

[Rα]n,m = σ2
αJ0 (2πfdT (n−m)) (11)

whereσα is the standard deviation of the channel fading,fd is
the channel Doppler frequency andJ0(.) is the Bessel function
of the first kind.

The FIM can be decomposed into the following block
matrices

F (α, τ) =

(

F 11(α) f12(α, τ)

f21(α, τ) f22(τ)

)

, (12)

where:

F 11(α) = Er |α,τ [−△α
α log (P (r |α, τ))] , (13)

f
12(α, τ) = Er |α,τ [−△τ

α log (P (r |α, τ))] , (14)

f
21(α, τ) = Er |α,τ [−△α

τ log (P (r |α, τ))] , (15)

f22(τ) = Er |α,τ [−△τ
τ log (P (r |α, τ))] . (16)

In order to obtain the FIM, we need to first derive the
likelihood of r expressed as,P (r |α, τ).

A. Observation Likelihood Function

Based on the whiteness of noise samples, the likelihood
function of r givenα andτ is:

P (r |α, τ) =

N
∏

k=1

P (rk|αk, τ), (17)

where:

P (rk|αk, τ) =
1

2πσ2
exp

(

−|rk − αksk(τ)|2
2σ2

)

. (18)

Then (17) leads to:

P (r |α, τ) =

(

1

2πσ2

)N

exp

(

−
∑N

k=1
|rk − αksk(τ)|2

2σ2

)

.

(19)
MakingN tend to infinity, the observation likelihood function
can be written in the continuous format:

P (r |α, τ)=
1

2πσ2
exp

(

−
∫

T0

|r(t) − α(t)s(t− τ)|2 dt
2σ2

)

=
1

2πσ2
exp

(

−
∫

T0

|r(t)|2 + |α(t)s(t − τ)|2 dt
2σ2

+

∫

T0

ℜ{α(t)∗s(t− τ)∗r(t)} dt
σ2

)

, (20)

whereT0 is the observation period. We note that|r(t)|2 does
not depend onτ . According to [26], [27], whenT0 is large
enough, the impact of the time delay on the integral of the
second squared term in (20) can be neglected and thus:
∫

T0

|α(t)s(t − τ)|2 dt ≃
∫

T0

|α(t)s(t)|2 dt =
N
∑

k=1

|αk|2|ak|2.

(21)



Considering:

xk(u) = yk(u) + vk(u), (22)

yk(u) = αk

∑

i

aig ((k − i)T − (τ − u)) , (23)

vk(u) =

∫

T0

h
∗(t− kT − u)n(t)dt, (24)

then after some mathematical derivations, the observation
likelihood becomes:

P (r |α, τ ) = C exp

(

−

∑N

k=1
|αkak|

2 − 2
∑N

k=1
ℜ{α∗

ka
∗
kxk(τ )}

2σ2

)

,

(25)
whereC is a constant term with respect toτ . xk(τ) is seen as
the matched filter output of the received signal taken at instant
kT + τ (time delay perfectly recovered) ,yk(τ) is the useful
part andvk(τ) is a colored gaussian noise of zero mean and
varianceσ2.

The symbolsak which appear in the updating term can be
known if some pilot symbols are sent within the data frame.
In this case, the TED is operating in a DA mode. In order
to enhance the spectral efficiency, these pilot symbols can
be limited to a short preamble or even omitted andak are
then estimated at the receiver. The TED is then operating in a
Decision Directed (DD) mode. To do so, we usually implement
a NDA mode in which a hard estimation of the symbolsak
is used. Nevertheless, this technique performance degrades
rapidly at low SNR, where modern systems are constrained
to work.

Since we obtained the expression of the observation likeli-
hood we can now compute the FIM following (13)-(16).

B. Derivation of the Fisher information matrix in the DA mode

Based on (13)-(16) and (25), we get:

F 11(α) = diag(J1, · · · , JN ), (26)

where:

Jk =
|ak|

2

σ2
, (27)

f22(τ ) = ρg̈(0), (28)

and ρ =
∑

N

k=1
|αk|2|ak|

2

σ2 is the received SNR. We also obtain
f12(α, τ ) = f21(α, τ )T = 0N,1. This is due to the fact thatα
andτ are two independent parameters.
In order to compute the analytical expression of the HIM given by
(6), we further need to average the obtained FIM components over
the vectorα. Given that only f22(τ ) depends onα, then only the
FIM related to the time delayτ has to be averaged overα.
Averaging (28) overα is equivalent to averaging it over the SNR.
We finally obtain:

Eα

[

f22(τ )
]

= ρ̄g̈(0), (29)

whereρ̄ is the SNR averaged over the fading channel.

C. Derivation of the Fisher information matrix in the NDA
mode

In this paragraph, we provide the expression of the FIM compo-
nents in the NDA mode for BPSK and QPSK modulated signals. In
comparison with the DA mode, only the expression of f22(τ ) changes.
For BPSK and QPSK signals,|ak|

2 = 1 in (27). The derivation
of f22(τ ) for BPSK and QPSK modulations when the transmitted

symbols are unknown at the receiver are given in [7] for an AWGN
channel by:

f22(τ)=4ρ

[(

1− 1√
2π

e−ρβ(ρ)

)

(

ρ

N
∑

m=1

N
∑

n=1

ġ((m − n)T )− N

2
g̈(0)

)

−ρ

N
∑

m=1

N
∑

n=1

ġ((m − n)T )

]

, (30)

for a BPSK modulation where:

β(ρ) =

∫ +∞

−∞

e−
x
2

2

cosh
(√

2ρx
)dx, (31)

and:

f22(τ)=

(

2ρ2
N
∑

m=1

N
∑

n=1

ġ2((m − n)T ) − 2Nρg̈(0)

)

× 1√
2π

∫

+∞

−∞

g2ρ(x)

Gρ(x)
e−

x
2

2 dx− ρ

π

(
∫

+∞

−∞
xgρ(x)

)2

e−
x
2

2 dx

×
N
∑

m=1

N
∑

n=1

ġ2((m − n)T ), (32)

for a QPSK modulation where:

gρ(x) = 2e−2ρ sinh (2
√
ρx) , (33)

and
Gρ(x) = 2e−2ρ cosh (2

√
ρx) . (34)

Having a Rayleigh fading channel, then the SNRρ is expo-
nentially distributed and the pdf ofρ is given by:

P (ρ) =
1

ρ̄
exp

(

−ρ

ρ̄

)

, for ρ ≥ 0. (35)

In order to obtain the final expression of the HIM, we need
to average the analytical expressions of f22(τ) for BPSK and
QPSK modulations over the pdf ofρ for ρ ≥ 0. Since it is
hard to obtain analytically a closed form expression of the
integrals given by (30) and (32) and to make the averaging
of the obtained result over the SNR distribution, a numerical
integration can be used to obtainEα

[

f22(τ)
]

. We note that
the integrals in (30) and (32) decrease rapidly in terms of
x. Thus, the integrand functions can be approximated by a
finite Riemann integration over an interval[−D,+D] instead
of ]−∞,+∞[ with an integration stepδ. The same technique
can be used to make the averaging over the SNR on the interval
[0, D] instead of[0,+∞[.

D. Inversion of the HIM
Based on (6) the HIM is given by:

H(µ) =

(

Eα

(

F 11(α)
)

+Rα
−1 0N,1

01,N Eα

[

f22(τ)
]

)

(36)

We note thatH(µ) is a block diagonal matrix thus using the
block matrices inversion formula [1], the HCRB is then given
by:

HCRB(µ)=

(

(

Eα

(

F 11(α)
)

+Rα
−1
)−1

0N,1

01,N

(

Eα

[

f22(τ)
])−1

)

=

(

HCRBα 0N,1

01,N hcrbτ

)

(37)



IV. SIMULATION RESULTS

In this section, we show simulation results of the HCRB
for the channel coefficients and the time delay estimation.
The diagonal elements of the inverse ofHCRB(µ) give
the HCRB with respect toα andτ . The results are provided
for BPSK and QPSK modulated signals passed through a root
raised cosine filter with a roll-off coefficient equal to0.3. The
up-sampling factor is equal to8.

Figure 1 shows the HCRBs related to the channel and the
time delay estimation versus the observation block length.
HCRBα is given in an on-line context, where only the
current and the previous samples are taken into account in
the channel estimation problem. hcrbτ is computed for both
DA and NDA modes and for BPSK and QPSK modulated
signals. We have also fixedfdT = 0.001, which means that
the channel varies slowly within the observation block. Theon-
line HCRBα is the same for the different modulations and
the transmission modes since it only depends on the channel
correlation matrix and the observation noise. We note that,like
could be expected, the DA outperforms the NDA mode and
that the BPSK modulation leads to lower time synchronization
errors than the QPSK modulation.
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Fig. 1: hcrbτ andHCRBα versus Observation block length
(N ), fdT = 0.001, SNR=5dB.

In Figure 2, we evaluate the on-line and the off-line
HCRBα for various observation block lengths and forfdT =
0.001. Figure 3 displays, for a SNR= 5dB, the on-line and the
off-line HCRBα for fdT = 0.1 (fast time varying channel)
andfdT = 0.001 (almost invariant channel). It is shown that
we can reach better estimation performance with an off-line
technique, since we can use the whole observation block. The
performances at the center of the symbols block are better
than that of the borders for an off-line technique because the
current, past and future observations are used at the same time
for the channel gain estimation. However, at the borders we
can only use the current and, according to the end or the
beginning of the block, either the past or the future observa-
tion. It is also shown that, at the beginning, the on-line bound
decreases, therefore the estimation performance is improved
since the estimator uses more and more observations. After
the reception of some signal samples, the bound converges
to an asymptote and this is due to the observation noise. For
instance, the asymptote is reached faster forfdT = 0.1 than

for fdT = 0.001.
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In Figure 4, we display the evolution of theHCRBα

with the SNR in the on-line and off-line scenarios and for
different Doppler frequency values. It is shown thatHCRBα

decreases with the SNR and increases with fast varying
channels.
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In Figures 5 and 6, we evaluate, for respectively BPSK and
QPSK modulations, the evolution of hcrbτ with the SNR for
fdT = 0.1 and fdT = 0.001 and for various transmission
modes (DA and NDA). The number of samples received within



the signal block is equal to40. As it could be expected, hcrbτ

decreases as a function of SNR. Similar results to the previous
cases are obtained by changing the SNR values.
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V. CONCLUSION

In this contribution, we derive the analytical expression of
the HCRB for time delay recovery under a random Rayleigh
fading channel in the DA and the NDA modes. Simulation
results have shown that we can reach better channel estimation
using an off-line technique, where all the observation block
is used. It is also shown that we can achieve a better time
synchronization performance using the DA mode and with a
slowly time varying channel.
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