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Hybrid Cramer Rao Bound on Time Delay Estimation in Rayleigh Fading Channels

We propose to derive the analytical expression of the Hybrid Cramer-Rao Bound HCRB for the joint time delay and channel fading estimation. The time delay is considered as a deterministic parameter and the channel is considered as a complex gaussian random variable. The HCRB expression is computed for both the data-aided (DA) and the non dataaided (NDA) modes. The obtained result allows us to assess the performance of on-line and off-line dynamical Rayleigh channel gains estimation. It also evaluates timing recovery techniques under a time varying fading channel.

I. INTRODUCTION

The standard Cramer-Rao Bound (CRB) [START_REF] Kay | Fundamentals of Statistical Signal Processing: Estimation Theory[END_REF] and the Bayesian Cramer-Rao Bound (BCRB) [START_REF] Muravchik | Posterior Cramer-Rao bounds for discrete-time nonlinear filtering[END_REF] have been introduced in the literature to find a theoretical minimum mean square error (MSE) limit for respectively, deterministic and stochastic parameter estimation. Closed form expressions of the CRB have been derived in [START_REF] Bellili | Closed-form CRLBs for CFO and phase estimation from turbo-coded square-qam-modulated transmissions[END_REF] for carrier frequency and phase offset estimation for turbo-coded Square-QAM modulated signals. It was also evaluated in [START_REF]Closed-form Cramer Rao lower bound for SNR estimation from turbo-coded BPSK-, MSK-, and square-QAM-modulated signals[END_REF] and [START_REF] Bellili | Cramer-Rao Lower Bounds for Frequency and Phase NDA Estimation From Arbitrary Square QAM-Modulated Signals[END_REF] respectively for SNR and for frequency and phase NDA estimation. For the timing recovery problem, the CRB has been evaluated for DA [START_REF] Jesupret | Digital demodulator synchronization -Performance analysis[END_REF], NDA [START_REF] Masmoudi | Closed-form expressions for the exact Cramer-Rao bounds of timing recovery estimators from BPSK, MSK and square-QAM transmissions[END_REF] and with the help of soft information [START_REF] Geller | Block turbo codes: From architecture to application[END_REF], [START_REF] Diatta | Reed Solomon turbo codes for high data rate transmission[END_REF] in code-aided (CA) [START_REF] Nasr | Performance study of a near maximum likelihood code-aided timing recovery technique[END_REF], [START_REF] Nasr | CRB derivation and new code-aided timing recovery technique for QAM modulated signals[END_REF] only for a constant delay. The BCRB has been derived for the unknown random phase offset problem [START_REF] Geller | Advanced synchronization techniques for the internet of things[END_REF], [START_REF] Geller | Proc. of OCEANS IEEE Oceanic engineering, title=Equalizer for High Rate Transmission[END_REF] in [START_REF] Yang | Bayesian and hybrid Cramer-Rao bounds for the carrier recovery under dynamic phase uncertain channels[END_REF]- [START_REF] Yang | Bayesian and hybrid Cramer-Rao bounds for QAM dynamical phase estimation[END_REF] and for dynamical timing recovery [START_REF] Nasr | A soft maximum likelihood technique for time delay recovery[END_REF], [START_REF] Nasr | Near MAP Dynamical Delay Estimator and Bayesian CRB for Coded QAM Signals[END_REF].

However, it is frequent that a mixture of deterministic and stochastic parameters has to be jointly estimated. For instance, in real systems, time delay recovery is often associated to dynamic channel estimation. CRB and BCRB are then no more relevant for such estimators designed to jointly recover deterministic and random parameters. By the introduction of a general framework to derive the analytical expression of the BCRB suited for a vector of parameters estimation [START_REF] Muravchik | Posterior Cramer-Rao bounds for discrete-time nonlinear filtering[END_REF], an extension has been proposed [START_REF] Rockah | Array shape calibration using sources in unknown locations-part i: Far-field sources[END_REF] for some practical cases where the vector to be estimated is composed of a mixture of random and deterministic parts. This theoretical bound is called the Hybrid CRB (HCRB).

In [START_REF] Hijazi | Analytical Analysis of Bayesian Cramer-Rao Bound for Dynamical Rayleigh Channel Complex Gains Estimation in OFDM System[END_REF] a HCRB has been introduced for a dynamical time varying channel, modeled by a random variable, and a deterministic carrier frequency offset estimation in OFDM systems. In [START_REF] Yang | Bayesian and hybrid Cramer-Rao bounds for the carrier recovery under dynamic phase uncertain channels[END_REF], [START_REF] Bay | On the hybrid Cramer-Rao bound and its application to dynamical phase estimation[END_REF], this bound has been computed for a dynamical phase offset estimation following a brownian model with a linear unknown drift. The authors of [START_REF] Vilà-Valls | On-line Hybrid Cramér-Rao Bound for oversampled dynamical phase and frequency offset estimation[END_REF] proposed a HCRB for the joint estimation of the pair of dynamical carrier phase-Doppler shift (random part) and the constant time delay (deterministic part). In this proposal, we provide an analytical derivation of the HCRB for a joint estimation of a Rayleigh fading channel and a deterministic time delay.

This paper is organized as follows. In section II, the system model is presented. In section III, closed form expressions of the HCRB for both the DA and the NDA modes are derived. Simulation results are provided in section IV and validate our analysis. The last section concludes our work.

GLOSSARY OF PRINCIPAL NOTATIONS

• ℜ{z} and ℑ{z}: the real and imaginary parts of z • z * : the conjugate of z • X T : the transpose of the matrix X • ḟ (resp. f ): the first (resp. the second) derivative of f , for any function f • f X (x): the probability density function (pdf) of the random variable X • P (X): the probability of the random variable X • Ey(X): the mean value of the random variable X over y • |X|: the determinant of the matrix X • ∇ x : the gradient with respect to x • △ y x = ∇x∇y: the Laplace operator with repect to yand x

II. SYSTEM MODEL

Let us consider the linearly modulated transmitted signal s(t) such as:

s(t) = i a i h(t -iT ), (1) 
where a i denotes the transmitted symbols which are assumed to be statistically independent and equally likely, with normalized energy, h(t) is the impulse response of the root Nyquist transmission filter and T is the symbol period. Generally, propagation in a radio channel is characterized by a very slowly varying time delay with respect to the channel gains affecting the signal amplitude and phase. Hence, it is reasonable to assume that the time delay remains constant and 978-1-5386-3531-5/17/$31.00 c 2017 IEEE the channel gain varies from one measurement to another. The received signal can thus be written as:

r(t) = α(t)s(t -τ ) + n(t), (2) 
where τ is an unknown delay introduced by the channel, α(t) is a complex gaussian process representing the channel fading and n(t) is an additive white Gaussian noise (AWGN) of zero mean and variance σ 2 . The Nyquist pulse g(t) obtained from h(t), with g(t) = h(t) ⊗ h * (-t), satisfies the first Nyquist criterion (g(nT ) = 0 for any integer n = 0).

Let us consider the N -dimensional truncated vectors

r = [r 1 , • • • , r N ] T , s(τ ) = [s 1 (τ ), • • • , s N (τ )] T , α = [α 1 , • • • , α N ] T and n = [n 1 , • • • , n N ] T ,
representing the sampled version of r(t), s(t -τ ) and n(t), respectively taken at the rate F/T . α and τ are assumed to be unknown, respectively random and deterministic parameters. They can be gathered in the following unknown parameter vector:

µ = [α T , τ ] T . (3) 
Let μ(r) be an unbiased estimator of the hybrid parameter µ = [α, τ ] T based on the observations r. The HCRB can be derived in an on-line context where the estimate of µ only depends on the current and the previous observations or in an off-line context when the whole observation block is received. This bound is defined as [START_REF] Trees | Detection, Estimation, and Modulation Theory: Radar-Sonar Signal Processing and Gaussian Signals in Noise[END_REF]:

E r,α|τ (μ(r) -µ) (μ(r) -µ) H ≥ HCRB(µ), (4) 
where A ≥ B means that A -B is a positive semi definite matrix.

III. HCRB ANALYTICAL DERIVATION

From [START_REF] Rockah | Array shape calibration using sources in unknown locations-part i: Far-field sources[END_REF] and [START_REF] Hijazi | Bayesian Cramér-Rao Bound for ofdm rapidly time-varying channel complex gains estimation[END_REF], the HCRB can be decomposed into four block sub-matrices:

HCRB(µ) = HCRB 11 (α) hcrb 12 (α, τ ) hcrb 21 (α, τ ) hcrb 22 (τ ) . (5) 
The HCRB is the inverse of the following hybrid information matrix (HIM) [START_REF] Rockah | Array shape calibration using sources in unknown locations-part i: Far-field sources[END_REF]:

H(µ) = E α [F (α, τ )] + E α|τ -△ µ µ log (P (α|τ )) , (6) 
where P (α|τ ) is the a priori knowledge on α and F (α, τ ) is the Fisher information matrix (FIM) defined as:

F (α, τ ) = E r|α,τ -△ µ µ log (P (r|α, τ )) . (7) 
P (r|α, τ ) is the conditional pdf of r given α and τ . Since α and τ are independent parameters, then P (α|τ ) = P (α) and thus:

E α|τ -△ µ µ log (P (α|τ )) = E α [-△ α α log (P (α))] 0 N,1 0 1,N 0 . (8) 
The channel fading follows a Rayleigh distribution, therefore, α is a complex gaussian random variable of zero mean and covariance matrix R α . The a priori information on α is then given by:

P (α) = 1 |πR α | exp -α H R α -1 α . ( 9 
)
By evaluating the second derivative of log (P (α)) with respect to α and making the expectation, we obtain:

E α [-△ α α log (P (α))] = R α -1 . (10) 
The covariance matrix can be computed using the following expression [START_REF] Stüber | Principles of Mobile Communication[END_REF]:

[R α ] n,m = σ 2 α J 0 (2πf d T (n -m)) (11) 
where σ α is the standard deviation of the channel fading, f d is the channel Doppler frequency and J 0 (.) is the Bessel function of the first kind.

The FIM can be decomposed into the following block matrices

F (α, τ ) = F 11 (α) f 12 (α, τ ) f 21 (α, τ ) f 22 (τ ) , (12) 
where:

F 11 (α) = E r|α,τ [-△ α α log (P (r|α, τ ))] , (13) f 12 (α, τ ) = E r|α,τ [-△ τ α log (P (r|α, τ ))] , (14) f 21 (α, τ ) = E r|α,τ [-△ α τ log (P (r|α, τ ))] , (15) f 22 (τ ) = E r|α,τ [-△ τ τ log (P (r|α, τ ))] . (16 
) In order to obtain the FIM, we need to first derive the likelihood of r expressed as, P (r|α, τ ).

A. Observation Likelihood Function

Based on the whiteness of noise samples, the likelihood function of r given α and τ is:

P (r|α, τ ) = N k=1 P (r k |α k , τ ), (17) 
where:

P (r k |α k , τ ) = 1 2πσ 2 exp - |r k -α k s k (τ )| 2 2σ 2 . ( 18 
)
Then ( 17) leads to:

P (r|α, τ ) = 1 2πσ 2 N exp - N k=1 |r k -α k s k (τ )| 2 2σ 2 .
(19) Making N tend to infinity, the observation likelihood function can be written in the continuous format:

P (r|α, τ )= 1 2πσ 2 exp -T0 |r(t) -α(t)s(t -τ )| 2 dt 2σ 2 = 1 2πσ 2 exp -T0 |r(t)| 2 + |α(t)s(t -τ )| 2 dt 2σ 2 + T0 ℜ {α(t) * s(t -τ ) * r(t)} dt σ 2 , ( 20 
)
where T 0 is the observation period. We note that |r(t)| 2 does not depend on τ . According to [START_REF] Proakis | Digital Communications[END_REF], [START_REF] Mengali | Synchronization Techniques for Digital Receivers[END_REF], when T 0 is large enough, the impact of the time delay on the integral of the second squared term in [START_REF] Hijazi | Analytical Analysis of Bayesian Cramer-Rao Bound for Dynamical Rayleigh Channel Complex Gains Estimation in OFDM System[END_REF] can be neglected and thus:

T0 |α(t)s(t -τ )| 2 dt ≃ T0 |α(t)s(t)| 2 dt = N k=1 |α k | 2 |a k | 2 . ( 21 
)
Considering:

x k (u) = y k (u) + v k (u), (22) 
y k (u) = α k i aig ((k -i)T -(τ -u)) , (23) 
v k (u) = T 0 h * (t -kT -u)n(t)dt, (24) 
then after some mathematical derivations, the observation likelihood becomes:

P (r|α, τ ) = C exp - N k=1 |α k a k | 2 -2 N k=1 ℜ {α * k a * k x k (τ )} 2σ 2 , ( 25 
)
where C is a constant term with respect to τ . x k (τ ) is seen as the matched filter output of the received signal taken at instant kT + τ (time delay perfectly recovered) , y k (τ ) is the useful part and v k (τ ) is a colored gaussian noise of zero mean and variance σ 2 . The symbols a k which appear in the updating term can be known if some pilot symbols are sent within the data frame. In this case, the TED is operating in a DA mode. In order to enhance the spectral efficiency, these pilot symbols can be limited to a short preamble or even omitted and a k are then estimated at the receiver. The TED is then operating in a Decision Directed (DD) mode. To do so, we usually implement a NDA mode in which a hard estimation of the symbols a k is used. Nevertheless, this technique performance degrades rapidly at low SNR, where modern systems are constrained to work.

Since we obtained the expression of the observation likelihood we can now compute the FIM following ( 13)- [START_REF] Yang | Bayesian and hybrid Cramer-Rao bounds for QAM dynamical phase estimation[END_REF].

B. Derivation of the Fisher information matrix in the DA mode

Based on ( 13)-( 16) and ( 25), we get:

F 11 (α) = diag(J 1 , • • • , J N ), (26) 
where:

J k = |a k | 2 σ 2 , (27) 
f 22 (τ ) = ρg(0), (28) 
and

ρ = N k=1 |α k | 2 |a k | 2 σ 2
is the received SNR. We also obtain f 12 (α, τ ) = f 21 (α, τ ) T = 0N,1. This is due to the fact that α and τ are two independent parameters. In order to compute the analytical expression of the HIM given by ( 6), we further need to average the obtained FIM components over the vector α. Given that only f 22 (τ ) depends on α, then only the FIM related to the time delay τ has to be averaged over α. Averaging (28) over α is equivalent to averaging it over the SNR. We finally obtain:

Eα f 22 (τ ) = ρg(0), ( 29 
)
where ρ is the SNR averaged over the fading channel.

C. Derivation of the Fisher information matrix in the NDA mode

In this paragraph, we provide the expression of the FIM components in the NDA mode for BPSK and QPSK modulated signals. In comparison with the DA mode, only the expression of f 22 (τ ) changes. For BPSK and QPSK signals, [START_REF] Mengali | Synchronization Techniques for Digital Receivers[END_REF]. The derivation of f 22 (τ ) for BPSK and QPSK modulations when the transmitted symbols are unknown at the receiver are given in [START_REF] Masmoudi | Closed-form expressions for the exact Cramer-Rao bounds of timing recovery estimators from BPSK, MSK and square-QAM transmissions[END_REF] for an AWGN channel by:

|a k | 2 = 1 in
f 22 (τ )=4ρ 1 - 1 √ 2π e -ρ β(ρ) ρ N m=1 N n=1 ġ((m -n)T ) - N 2 g(0) -ρ N m=1 N n=1 ġ((m -n)T ) , (30) 
for a BPSK modulation where:

β(ρ) = +∞ -∞ e -x 2 2 cosh √ 2ρx dx, (31) 
and:

f 22 (τ )= 2ρ 2 N m=1 N n=1 ġ2 ((m -n)T ) -2N ρg(0) × 1 √ 2π +∞ -∞ g 2 ρ (x) Gρ(x) e -x 2 2 dx - ρ π +∞ -∞ xgρ(x) 2 e -x 2 2 dx × N m=1 N n=1 ġ2 ((m -n)T ), (32) 
for a QPSK modulation where:

g ρ (x) = 2e -2ρ sinh (2 √ ρx) , (33) 
and

G ρ (x) = 2e -2ρ cosh (2 √ ρx) . (34) 
Having a Rayleigh fading channel, then the SNR ρ is exponentially distributed and the pdf of ρ is given by:

P (ρ) = 1 ρ exp - ρ ρ , for ρ ≥ 0. ( 35 
)
In order to obtain the final expression of the HIM, we need to average the analytical expressions of f 22 (τ ) for BPSK and QPSK modulations over the pdf of ρ for ρ ≥ 0. Since it is hard to obtain analytically a closed form expression of the integrals given by ( 30) and (32) and to make the averaging of the obtained result over the SNR distribution, a numerical integration can be used to obtain E α f 22 (τ ) . We note that the integrals in (30) and (32) decrease rapidly in terms of x. Thus, the integrand functions can be approximated by a finite Riemann integration over an interval [-D, +D] instead of ] -∞, +∞[ with an integration step δ. The same technique can be used to make the averaging over the SNR on the interval

[0, D] instead of [0, +∞[.

D. Inversion of the HIM

Based on (6) the HIM is given by:

H(µ) = Eα F 11 (α) + Rα -1 0 N,1 0 1,N Eα f 22 (τ ) (36) 
We note that H(µ) is a block diagonal matrix thus using the block matrices inversion formula [START_REF] Kay | Fundamentals of Statistical Signal Processing: Estimation Theory[END_REF], the HCRB is then given by:

HCRB(µ)= Eα F 11 (α) + Rα -1 -1 0 N,1 0 1,N Eα f 22 (τ ) -1 = HCRBα 0 N,1 0 1,N hcrbτ (37) 
IV. SIMULATION RESULTS

In this section, we show simulation results of the HCRB for the channel coefficients and the time delay estimation. The diagonal elements of the inverse of HCRB(µ) give the HCRB with respect to α and τ . The results are provided for BPSK and QPSK modulated signals passed through a root raised cosine filter with a roll-off coefficient equal to 0.3. The up-sampling factor is equal to 8.

Figure 1 shows the HCRBs related to the channel and the time delay estimation versus the observation block length. HCRB α is given in an on-line context, where only the current and the previous samples are taken into account in the channel estimation problem. hcrb τ is computed for both DA and NDA modes and for BPSK and QPSK modulated signals. We have also fixed f d T = 0.001, which means that the channel varies slowly within the observation block. The online HCRB α is the same for the different modulations and the transmission modes since it only depends on the channel correlation matrix and the observation noise. We note that, like could be expected, the DA outperforms the NDA mode and that the BPSK modulation leads to lower time synchronization errors than the QPSK modulation. In Figure 2, we evaluate the on-line and the off-line HCRB α for various observation block lengths and for f d T = 0.001. Figure 3 displays, for a SNR= 5dB, the on-line and the off-line HCRB α for f d T = 0.1 (fast time varying channel) and f d T = 0.001 (almost invariant channel). It is shown that we can reach better estimation performance with an off-line technique, since we can use the whole observation block. The performances at the center of the symbols block are better than that of the borders for an off-line technique because the current, past and future observations are used at the same time for the channel gain estimation. However, at the borders we can only use the current and, according to the end or the beginning of the block, either the past or the future observation. It is also shown that, at the beginning, the on-line bound decreases, therefore the estimation performance is improved since the estimator uses more and more observations. After the reception of some signal samples, the bound converges to an asymptote and this is due to the observation noise. For instance, the asymptote is reached faster for f d T = 0.1 than for f d T = 0.001. In Figure 4, we display the evolution of the HCRB α with the SNR in the on-line and off-line scenarios and for different Doppler frequency values. It is shown that HCRB α decreases with the SNR and increases with fast varying channels. In Figures 5 and6, we evaluate, for respectively BPSK and QPSK modulations, the evolution of hcrb τ with the SNR for f d T = 0.1 and f d T = 0.001 and for various transmission modes (DA and NDA). The number of samples received within the signal block is equal to 40. As it could be expected, hcrb τ decreases as a function of SNR. Similar results to the previous cases are obtained by changing the SNR values. 

V. CONCLUSION

In this contribution, we derive the analytical expression of the HCRB for time delay recovery under a random Rayleigh fading channel in the DA and the NDA modes. Simulation results have shown that we can reach better channel estimation using an off-line technique, where all the observation block is used. It is also shown that we can achieve a better time synchronization performance using the DA mode and with a slowly time varying channel.
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 1 Fig. 1: hcrb τ and HCRB α versus Observation block length (N ), f d T = 0.001, SNR=5dB.
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 23 Fig. 2: On-line and Off-line HCRB α versus Observation block length (N ), SNR=5dB.
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 4 Fig. 4: On-line and Off-line HCRB α versus SNR, N = 40.
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