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Abstract—1 Time delay synchronization is crucial for the recep-
tion quality in digital transmission systems. In this contribution,
we consider a maximum likelihood approach and incorporate a
soft-demapper to improve the synchronization performance. In
particular, the proposed scheme allows to update the time delay
at each symbol with an adaptive loop using the Log-Likelihood
Ratio (LLR) of each bit provided by the demapper. Simulation
results show that the proposed approach provides improvements
compared to non data aided approach while avoiding data aided
approach overhead.

I. I NTRODUCTION

Time and carrier phase synchronization is one of the most
important features in a communication system receiver to be
efficiently performed prior to detection and decoding in order
to correcly recover the transmitted data. The main issue in a
synchronization system is to work properly even at very low
SNR and this is a hard task as it is processed at the front end.
In this paper, we focus on time delay synchronization. Several
Data Aided (DA) and Non Data Aided (NDA) time delay
estimation techniques such as [1] and [2] have been proposed
in the literature. However, in a DA mode, pilot signals are
needed which leads to the increase of the overhead in the
communication network and reduces the spectrum efficiency.
In the NDA mode, some statistical information about the
transmitted signal are lost and this deteriorates the system
performance especially in bad channel conditions. Indeed,
deriving good reference signals may improve the performance
while preserving a high spectral efficiency.

Iterative receivers are able to compute soft information
about the received symbols which helps the synchronizer to
better estimate the time delay. This technique has been already
used for phase estimation in turbo decoding receivers [3]. It
was also exploited in [4] with an expectation maximization
algorithm in the Maximum Likelihood (ML) synchronization
framework. In [5]–[7], the authors derive the Bayesian and
hybrid Cramer-Rao bounds (BCRB and HCRB) for the code
aided (CA), the DA, and the NDA dynamical phase estima-
tion of QAM modulated signals and theoretically show the
possible improvement brought by a soft CA technique. In the
reference [8], a Forward Backward algorithm was proposed
to cope with the performance deterioration in the NDA mode.
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Although this technique has shown better performance than
the CA approach, it can only be implemented in an off-line
transmission system.

In this paper, we are interested in deriving a time delay
estimation algorithm which is based on the maximization
of the likelihood function with the use of soft demapping
information.

This paper is organized as follows. In section II, the
system model and the time delay estimation based on the ML
approach are presented. In section III, the derivation of the DA
and the NDA algorithms are first given and then, the new soft
algorithm for the time delay estimation is derived. Simulation
results are provided in section IV and confirm our analysis.
The last section concludes our work.

II. SYSTEM MODEL

Let us consider the transmitted signals(t) written as:

s(t) =

+∞
∑

i=−∞

aih(t− iT ), (1)

whereai denotes the BPSK transmitted symbols,h(t) is the
impulse response of the transmission filter andT is the symbol
period.

The received signal is

r(t) = s(t− τ) + n(t), (2)

where the channel introduces a random delayτ to the trans-
mitted signals(t). In (2) the received signal is disturbed by
an additive white Gaussian noise (AWGN)n(t) of zero mean
and of varianceσ2.

It is worth noting that without loss of generality, the
considered model can also be applied to multipath and fad-
ing channels, in which caseh(t) is the convolution of the
transmission filter and of the channel impulse response. The
time delay is estimated in the maximum likelihood sense by
maximizing the likelihood function according to the following
equation [9]



τ̂ = argmax
u

{Λ(u, a)} , (3)

wherea is the vector of the transmitted symbols and

Λ(u, a) =
1

2πσ2
exp

(

−
1

2σ2

∫

T0

|r(t)− s(t− u)|2 dt

)

,

(4)
is the likelihood function andT0 is the observation interval.
Equivalently, the log-likelihood functionΛL(u, a) can be used
instead ofΛ(u, a), where

ΛL(u, a) = −
1

2σ2

∫

T0

|r(t) − s(t− u)|
2
dt+ ln

(

1

2πσ2

)

.

(5)
Given that

∫

T0

|r(t)|2dt is independent of u and
∫

T0

|s(t− u)|
2
dt represents the transmitted signal energy

which is independent ofu (when T0 is large enough), one
has

ΛL(u, a) =
1

σ2
Re

(∫

T0

r(t)s∗(t− u)dt

)

+ C1, (6)

where(.)∗ is the complex conjugate andC1 is a constant term
independent ofu.

A further development of the log-likelihood function is
given by the following equations

ΛL(u, a) = Re

{

1

σ2

∫

T0

r(t)s∗(t− u)dt

}

= Re

{

1

σ2

∫

T0

(

∑

i

aih(t− iT − τ) + n(t)

)





∑

j

ajh(t− jT − u)





∗

dt

}

= Re

{

∑

i,j

a∗jai

σ2

∫

T0

h(t− iT − τ)h∗(t− jT − u)dt

+
∑

j

a∗j
σ2

∫

T0

h∗(t− jT − u)n(t)dt

}

, (7)

where we dropped the term independent ofu denoted byC1

in (6).
Let us consider

g(t) = h(t)⊗ h∗(−t), (8)

yj(u) =
∑

i

aig ((j − i)T − (τ − u)) , (9)

vj(u) =

∫

T0

h∗(t− jT − u)n(t)dt, (10)

xj(u) = yj(u) + vj(u), (11)

where⊗ denotes the convolution operation.
xj(u) is seen as the matched filter output of the received
signal,yj(u) is the useful part andvj(u) is a colored gaussian
noise. Then, the log-likelihood function becomes

ΛL(u, a) =
1

σ2
Re





∑

j

a∗jxj(u)



 . (12)

This is why, the estimate in the maximum likelihood sense is
obtained through the following equation

τ̂ = argmax
u

Re





∑

j

a∗jxj(u)



 . (13)

Since it is difficult in practice to maximize the previous
equation with respect tou analytically, adaptive algorithms
such that proposed by Mueller & Muller (M&M) [1] are
implemented whose objective is to converge iteratively to
the desired value of the parameter. From the classical ML
approach and the M&M algorithm, we hereafter derive a
new time delay estimation technique which uses the soft
demapping information from the decoder block. The new
algorithm derivation is going to be presented in the next
paragraph.

III. F EEDBACK SYMBOL TIMING DETECTOR

In this part, we are interested in deriving the Time Error
Detector (TED) equation that iteratively maximizes the log-
likelihood function (13). The traditional block diagram isgiven
in Fig. 1.
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Fig. 1. Tracking loop description

The tracking loop is given by the following equation

τj = τj−1 + εj(τj−1)⊗ lfj , (14)

whereεj(τj−1) is the updating error given by the timing de-
tector andlfj is the loop filter corresponding impulse response
coefficients.
By consideringF (z) the transfer function of the loop filter
(the Z-transform oflfj ), the transfer function fromτj−1 to τj
is

G(z) =
F (z)

z − 1 + F (z)
. (15)

A loop filter for which the steady state error vanishes can be
chosen as [10]

F (z) = β, (16)

where0 < β < 1. This leads to:

τj = τj−1 + βεj(τj−1). (17)



A. Data Aided M&M Algorithm

According to equation (13),xj(τ̂ ) should tend towards
aj in absence of noise and synchronization errors. Thus, by
considering the symbol errorej = xj(u)− aj and

J(u) =
∑

j

|ej|
2 (18)

=
∑

j

|aj |
2 +

∑

j

|xj(u)|
2 (19)

−2
∑

j

Re(a∗jxj(u)),

where the summation is carried along the observation interval,
the maximization of (13) is equivalent to the minimization of
J(u) with respect tou.
We can restrict our study to the minimization of the instan-
taneous error|ej |2 at any time indexj. Differentiating |ej |2

with respect tou gives:

∂|ej|
2

∂u
= (xj(u)− aj)

∂x∗

j (u)

∂u
+
(

x∗

j (u)− a∗j
) ∂xj(u)

∂u
,

(20)
where

∂xj(u)

∂u
=
∑

i

ai
∂g ((j − i)T − (τ − u))

∂u
+

∂vj(u)

∂u
. (21)

According to [11], considering that∂g(t)
∂t

= 0 around0 and
that it is equal toC and−C respectively in the vicinity of
−T and+T , whereC is a constant, in addition to neglecting
the contributions of∂g(t)

∂t
beyond±T and assuming that the

erroru− τ is very small, the tracking loop equation is given
by:

τj = τj−1 + µRe
(

a∗jxj−1(τj−1)− a∗j−1xj(τj−1)
)

, (22)

where µ is the step size. For better robustness in a non-
stationary context, this step size can be made adaptive as in
[12] and [13], however for simplicity reasons we here choose
a small constant value forµ.
This timing error detector was also derived by Mueller &
Muller [1].

B. Non Data Aided M&M Algorithm

In order to avoid the transmission of long training sequences
causing a spectral efficiency reduction, a NDA delay tracking
algorithm is obtained by replacing the true transmitted data aj
in the previous developments with its estimated valueâj ; âj is
obtained by making a hard decision on the received symbols.
The updating equation then becomes:

τj = τj−1 + µRe
(

â∗jxj−1(τj−1)− â∗j−1xj(τj−1))
)

, (23)

where
âj = sign(xj(τ)) . (24)

This timing detector is used with a BPSK or QPSK modula-
tion.

C. Soft M&M Algorithm

Instead of making unreliable hard decisions on the received
data (NDA approach) to still optimize the spectral efficiency,
we avoid sending preamble sequences (DA approach) and
propose to take advantage of the output of the system decoder
to enhance the time recovery performance. Let us consider,λj

the output of the soft demodulator at any time indexj.
For a BPSK modulated signal, we know that:

p(aj = ±A) =
exp

(

±
λj

2

)

2 cosh
(

λj

2

) , (25)

and

ΛL(u, a) = exp





1

σ2

N
∑

j=1

aj x̃j(u)



 , (26)

where

x̃j(u) = Re(xj(u)) (27)

By averaging the likelihood function over the dataaj

Λ(u) =
∏

j

1

2σ2

[

exp(
λj

2 )

cosh(
λj

2 )
exp

(

1

σ2
Ax̃j(u)

)

+

exp(
−λj

2 )

cosh(
λj

2 )
exp

(

−
1

σ2
Ax̃j(u)

)]

(28)

Λ(u) =
∏

j

cosh
(

λj

2 + 1
σ2Ax̃j(u)

)

σ2 cosh(
λj

2 )
(29)

The log-likelihood function becomes

ΛL(u) =
∑

j

ln





cosh
(

λj

2 + 1
σ2Ax̃j(u)

)

cosh(
λj

2 )



 + C2, (30)

whereC2 is a constant term. By differentiatingΛL(u) with
respect tou we obtain:

∂ΛL(u)

∂u
∝
∑

j

A

σ2

∂x̃j(u)

∂u
tanh

(

λj

2
+

1

σ2
Ax̃j(u)

)

. (31)

Unlike the NDA approach which replacesaj in (22) by the
hard decision, we propose to replace the dataaj by the soft
symbol

ãj = tanh

(

λj

2
+

1

σ2
Ax̃j(τj−1)

)

. (32)

In the next section simulation results of the proposed
technique are presented.



IV. SIMULATION RESULTS

We simulate the case of a BPSK signal with an up-sampling
factor equal to8, passed through a raised cosine filter, with
a roll-off factor α. Results are given for 100 symbol blocks
averaged over 400 Monte Carlo iterations. The LLRs are
calculated with a soft demapping of the received signal.τ is
initialized to 0 and its estimated value is depicted at the end
of the block when the steady state is achieved. We assume
having a new symbolxj(τ) at each iteration and the value of
xj(τj−1) is obtained via a quadratic interpolation.
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Fig. 2. MSE vs normalized time delay, BPSK signal, SNR=0 dB,α = 0.3
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Fig. 3. MSE vs normalized time delay, BPSK signal, SNR=10 dB,α = 0.3

Fig. 2 and 3 display the mean square error (MSE) in terms
of the normalized delayτ/T for an SNR which is equal to 0dB
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Fig. 4. MSE vs Roll-Off factor, BPSK signal, SNR=10 dB, normalized time
delay=0.1
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Fig. 5. MSE vs SNR, BPSK signal, normalized time delay=0.1,α = 0.5

and 10dB respectively. A first ascertainment is that compared
to the NDA mode, the MSE is decreased by exploiting the
soft information related to the symbols. This is particularly
true at low SNR for which modern systems are constrained
to work. The DA mode still achieves the best performances
however it leads to a higher loss of spectral efficiency due to
the transmission of pilot symbols. For instance, forτ/T = 0.1
and a SNR equal to0dB the MSE is equal to3×10−4 for the
DA mode,3.2×10−4 for the proposed technique and5×10−4

for the NDA mode.
Fig. 4 shows the mean square error in terms of the roll-off

factorα for a SNR= 10dB. This figure confirms the previous



results. Indeed, for any value of the roll-off factor, the soft
algorithm still has better performance than the NDA mode.
Similar and even better results could be obtained if the soft
information is provided by a soft channel decoder instead of
a demapper; however the results would be obtained at the
cost of a larger complexity (decoder’s architecture, number
of iterations).

Fig. 5 presents the mean square error as a function of the
SNR for τ/T equal to0.1 andα = 0.5. This figure shows
a decrease in the estimation error thanks to the introduction
of soft symbols compared to the NDA mode, and this is
especially appealing for low SNR values. In fact, for a MSE of
−40dB the proposed technique allows a gain of2dB compared
to the NDA approach whereas the gap is only of about0.5dB
with respect to the DA approach.

V. CONCLUSION

In this paper we presented a Maximum Likelihood time
delay recovery algorithm which uses some soft information.
The algorithm updates the time delay estimate at each received
symbol and this seems to be a promising way to deal with
low SNR. This technique has shown better synchronization
performance in comparison to the non data aided mode with
no need for pilot signals. In some future work, better results
are expected by calculating the soft information when powerful
channel codes are used [14]–[16].
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