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Abstract

In this paper, we propose a pedestrian attribute recog-
nition approach and a CNN-based person re-identification
framework enhanced by pedestrian attributes. The know-
ledge of person attributes can help video surveillance tasks
like person re-identification as well as person search, se-
mantic video indexing and retrieval to overcome viewpoint
changes with their robustness to the inherent visual appear-
ance variations. Compared to previous approaches, our
attribute recognition method using Local Maximal Occur-
rence (LOMO) features and a Multi-Label Multi-Layer Per-
ceptron (MLMLP) classifier proves to be more robust to
different view points and is computationally more efficient.
The experiments on three public benchmarks show that the
proposed method improves the state-of-the art on attribute
recognition. Furthermore, we integrate our attribute re-
cognition algorithm into a triplet CNN similarity learning
framework for person re-identification fusing both learned
CNN features and attributes. This fusion leads to an over-
all improvement, and we achieve state-of-the-art results on
person re-identification.

1. Introduction
Recognizing persons is one of the main tasks in video

surveillance. As one of the most important cue for human
beings to recognize people or objects, visual attributes got
a lot of attention recently and have also been used for ob-
ject recognition [3], action recognition [19], face recogni-
tion [10] etc. Pedestrian attributes are defined as semantic
mid-level descriptions of people, such as gender, accessor-
ies, clothing and so on. The advantage of attributes is that
they are more robust to visual changes and that they can
be used for “zero-shot” identification. Moreover, other bio-
metric features, like faces, are often not visible or of too low
resolution to be useful. The main challenge of visual attrib-

ute recognition is the very large intra-class variation. This
is due to two reasons. Firstly, attributes, like clothing, can
have very diverse appearance. Secondly, images from video
surveillance cameras can have drastically different viewing
angles. This can lead to very different appearances of the
same person and very large spatial shifts of attributes in im-
ages. Furthermore, illumination changes, occlusions and
low resolution of images make the problem even harder.

Person re-identification consists in matching the same
individuals across multiple camera views. The person re-
identification task faces similar difficulties as attribute re-
cognition like variations of camera viewpoints, lighting
conditions and human pose.

This paper proposes two main contributions:

• An attribute recognition approach based on LOMO
features and an MLMLP classifier outperforming the
state-of-the-art on three public benchmarks. LOMO
features maximize the occurrence in a horizontal stripe
forming a representation that is robust to very large ho-
rizontal shifts. The MLMLP jointly learns all attrib-
utes and thus implicitly their interrelation. Further, our
method shows good performance across datasets, i.e.
learning on one dataset and testing on another.

• A novel person re-identification framework integrating
our attribute recognition network with a CNN to ex-
tract strong discriminant low-level features. This com-
bined approach enhances the invariance of the system
to viewpoint changes and achieves state-of-the-art res-
ults on the CUHK03 dataset.

2. Related work
In the pioneering work of Vaquero et al. [23], mid-level

attributes were first used for human recognition. A human
parsing technique is employed to segment the regions, and
each region is associated with a classifier based on Haar-
like features and the dominant colours. The performance
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of this approach is rather limited as it depends on the ac-
curacy of the human parsing and requires a frontal image
of the person which is not guaranteed in real-world applic-
ations. Layne et al. [12] define 15 binary attributes related
to clothing, hair style, carried objects and gender. A 2 784-
dimensional low-level colour and texture feature vector is
extracted from each image, and an SVM is trained for each
attribute. To exploit the attributes for re-identification, the
attribute distance in conjunction with a conventional dis-
tance between low-level features such as SDALF [4] is
used. The method presented by Zhu et al. [31] extract HSV
histograms and MB-LBP and HOG features in the lower
body and upper body regions. Adaboost is chosen to per-
form feature selection and a weighted k-NN for classifica-
tion. However, for these approaches, the recognition of each
attribute is totally independent, i.e. their interrelation is not
taken into account. Li et al. [13] proposed two CNN archi-
tectures, one for simple and one for multiple attribute recog-
nition. However, the max-pooling layers in CNNs can only
guarantee the spatial invariance to some extent. Finally, Zhu
et al. [32] proposed to divide the pedestrian images into 15
overlapping parts where each part connects to several CNN
pipelines. They further pre-define connections between the
parts and the attributes in the fully-connected layers to deal
with the shift problem. However, these connections are de-
termined manually, and the model is relatively complex.

Person re-identification approaches generally build a
robust feature representation or learn a distance metric.
The features used for re-identification are mainly vari-
ants of color histograms [14, 30], Local Binary Patterns
(LBP)[14, 30] or Gabor features[14]. For example, Gray et
al. [6] proposed to use Adaboost to select optimal features
among color and texture features. Ma et al. [20] use local
descriptors based on color and gradient information and en-
code them using high-dimensional Fisher vectors. The main
metric learning methods include Mahalanobis metrics like
KISSME [7], Local Fisher discriminant Analysis (LFDA)
[21], Marginal Fisher Analysis(MFA) [27] and Cross-view
Quadratic Discriminant Analysis (XQDA) [16].

With the recent success of deep learning for computer
vision applications, some convolution neural network mod-
els are proposed for person re-identification. Yi et al. [28]
first proposed to apply a Siamese network to person re-
identification. To handle geometric problems, DeepReId
[15] implements a novel architecture where a patch match-
ing layer models the displacement of body parts. Amed
et al. [1] introduced an improved Siamese architecture us-
ing the difference of feature maps to measure the similar-
ity. Cheng et al. [2] proposed a variant of the triplet loss
function and a CNN network processing parts and the en-
tire body. Varior et al. [24] integrated a gate layer in a Sia-
mese CNN to capture effective subtle patterns in the feature
map. And Su et al. [22] proposed a three-stage procedure

Figure 1. Overview of attribute recognition approach

that pre-trains a CNN with attribute labels of an independ-
ent dataset, then fine-tunes the network with ID labels and
finally re-trains the network with learned attribute feature
embedding on the combined dataset.

3. Proposed Method
3.1. Attribute recognition

The overall procedure of our attribute recognition ap-
proach is shown in Fig. 1. Given a cropped pedestrian im-
age, LOMO features are first extracted and projected to a
lower-dimensional space, previously learnt by PCA. This
feature vector is then classified by an MLMLP, that has been
trained off-line on a separate dataset. The output is a vector
whose elements represent the scores for each attribute.

3.1.1 LOMO feature

In the LOMO feature proposed by [16], the Retinex al-
gorithm is integrated to produce a colour image that is con-
sistent with human perception. To construct the LOMO
features, two scales of Scale Invariant Local Ternary Pat-
terns (SILTP) [17] and an 8×8×8-bin joint HSV histogram
are extracted in sliding windows. Following the same pro-
cedure, the features are extracted at 3 different scales. For
all subwindows on the same image line, only the maximal
value of the local occurrence of each pattern among these
subwindows is retained. The resulting histogram achieves
a large invariance to view point changes and, at the same
time, captures local region characteristics of a person.

3.1.2 Multi-Label MLP

To classify the extracted features, we propose to use a fully-
connected MLP with a hidden layer and Rectified Linear
Units (ReLU)[9]. Pedestrian attribute classification is a
multi-label problem, i.e. contrary to a standard multi-class
classification problem, pedestrian attributes are not mutu-
ally exclusive. Further, compared to modern CNN archi-
tectures, we have much fewer parameters to learn, which
improves its generalisation capacity and reduces the risk
of over-fitting and the need of a strong regularisation. For



Figure 2. Overview of our person re-identification approach.

training the neural network, we use the multi-label version
of the sigmoid cross entropy loss:

E = − 1

N

N∑
i=1

L∑
l=1

[wlyil log(σ(xil))+(1−yil) log(1−σ(xil)]

with σ(x) =
1

1 + exp(−x)
,

where L is the number of labels (attributes), N is the num-
ber of training examples, and yil, xil are respectively the lth

label and classifier output for the ith image. In the training
set, the positive label appears generally less frequently than
the negative one. To handle this imbalance, we added the
weight w to the loss function: w = −log2(pl) , where pl is
the positive proportion of attribute l in the dataset.

3.2. Attribute-integrated person re-identification

As illustrated in Fig. 2, the proposed person re-
identification method uses triplets of examples to train the
network with an anchor image a, a positive image p from
the same person as a and a negative image n from a differ-
ent person. The weights of the network for the three input
images are shared, and to train the network, the following
triplet loss function is minimised:

Etriplet = −
1

N

N∑
i=1

[max(‖f(ai)− f(pi)‖22

− ‖f(ai)− f(ni)‖22+m, 0)] ,

whereN is the number of triplets, f is the output of the net-
work, and m is a margin. With the triplet loss function, the
network learns a semantic distance metric by ”pushing” the
negative image pair apart and ”pulling” the positive images
closer in the feature space. For each input image, there are
two branches (see Fig. 3): one for the MLMLP attribute re-
cognition presented in section 3.1, another for a CNN-based
low-level feature extraction. In the CNN part, there are
three repeated convolution, batch normalization and pool-
ing layers. ReLU activation functions are used. The size
of the first convolution is 5×5. The two following are of

Figure 3. The structure of one branch of the triplet network (blue
box in Fig. 2). There are two sub-branches. One is a deep CNN,
another is our attribute MLMLP.

size 3×3. The kernel size of max-pooling is 2×2, and the
number of channels of convolution and pooling layers is 32.
Then, similar to [24], we use two layers 1D horizontal con-
volutions of size 3×1 without zero-padding to reduce the
feature maps to a single column. These layers have less
parameters and are able to model the displacement in hori-
zontal stripes. Then, the final CNN output vector extracts
one feature for each horizontal stripe. In the last convo-
lution layer, the number of channels is increased to 150.
This feature is fed to a fully-connected layer to generate
an output of 400 dimension. The CNN output and attrib-
ute vector are normalized and concatenated. Another fully-
connected layer is put on the top of the concatenated vec-
tor and learns the optimal fusion of the two representations
with output dimension of 400. Dropout [9] is applied to the
fully-connected layers to reduce the risk of over-fitting.

4. Experiments
In this section, the proposed methods are evaluated on

the VIPeR [5] and GRID [18] datasets with the annotation
from [11] and the APiS dataset [31] (see Fig. 4). Finally,
we test the attribute-integrated triplet CNN for person re-
identification on the CUHK03 dataset [15].

4.1. Intra-dataset attribute recognition

The VIPeR dataset [5] contains 632 pedestrian images
captured in an outdoor environment, each having 2 images
from 2 different view points. GRID [18] contains 1 275 ped-
estrian images captured in an underground station. These
two datasets are annotated with 21 attributes by [11]. How-
ever, in GRID only 250 pedestrians who have two images
from different cameras have attribute annotations. We will
only use these images for our attribute recognition experi-
ments. We follow the experiment setting of [32]. All images
are scaled to 128x48 pixels, and each dataset is divided into
two equal-size disjoint parts for training and testing (im-
ages from the same person are not separated). We repeat
the process 10 times and report the average result. For Vi-



Figure 4. Some image examples from pedestrian attribute datasets

PER, one more repetition is performed to determine hyper-
parameters like the number of hidden neurons, learning rate
and the number of iterations (100, 0.003 and 20 000 in our
experiment).

For GRID, the same hyper-parameters are used. The fea-
ture vectors are projected into a 500 dimensional sub-space
computed by PCA on respectively the VIPeR training im-
ages and the GRID training images plus some additional im-
ages. For some attributes, there are not enough positive ex-
amples like “bald”. Thus, we tested 20 attributes in VIPeR
and 18 attributes in GRID. We compared to the CNN-based
methods in [32] and the SVM-based method in [12] recon-
structed by [32]. The accuracy rate with default threshold
and the recall with a false positive rate of 0.2 are used as
evaluation measures.

The APiS dataset [31] contains 3 661 images, and 11 bin-
ary attributes are annotated. We followed the experiment
setting of [31]. A 5-fold cross-validation is performed, and
the final result is the average of the five tests. We used the
same parameter setting as we used in VIPeR dataset, and
as performance measure we use the average recall rate at a
false positive rate of 0.1.

The results are shown in Tables 1 and 2 on the VIPeR
and GRID test sets, Our methods achieves respectively 9%
and 6% points improvement in accuracy and 2.4% and 3.4%
points on recall compared to the mlcnn-p approach, and
even more compared to the SVM approaches. Results on
APiS dataset are shown in Table 3, where our approach
obtains a 1.2% point improvement on recall compared to
the baseline approach of the benchmark which is based on
Adaboost and a k-NN classifier. We obtained better results
on most of attributes in the three benchmarks. This result
demonstrates the robustness against view point changes and
the effectiveness of interrelation between attributes of our

attribute
Accuracy Rate (%) Recall Rate (%)@FPR=0.2

average ± std average ± std
SVM mlcnn-p Ours SVM mlcnn-p Ours

redshirt 85.5±2.3 91.9±1.0 94.4±1.2 88.4±3.9 88.9±4.8 93.0±3.2
blueshirt 73.0±5.2 69.1±3.3 91.6±1.0 60.8±3.9 70.8±5.1 72.1±6.3
lightshirt 83.7±1.0 83.0±1.2 85.1±1.3 87.8±1.3 85.3±2.3 89.6±1.8
darkshirt 84.2±0.9 82.3±1.4 84.4±1.6 87.5±1.2 85.8±2.1 88.0±2.2
greenshirt 71.4±5.2 75.9±5.9 94.7±1.0 54.3±9.5 69.4±8.0 71.9±8.0
nocoat 70.6±1.9 71.3±0.8 72.9±1.2 59.3±2.4 57.2±3.2 61.7±2.0
notlightdark
jeanscolor 70.3±7.3 90.7±2.0 95.7±1.1 57.2±7.9 78.6±7.5 89.1±3.7

darkbottoms 75.7±1.7 78.4±0.7 78.0±1.8 70.2±4.7 76.2±1.9 72.9±3.2
lightbottoms 74.7±1.2 76.4±1.2 77.3±1.7 69.5±3.0 73.3±2.5 74.9±4.1
hassatchel 47.8±4.8 57.8±2.7 70.2±1.7 22.0±4.9 31.7±4.3 39.3±3.7
barelegs 75.6±3.8 84.1±1.1 89.5±1.2 68.7±6.5 85.4±4.5 92.6±3.3
shorts 70.4±5.2 81.7±1.3 90.8±1.3 59.8±6.5 82.9±4.7 86.3±3.3
jeans 76.4±1.3 77.5±0.6 79.4±2.0 72.7±3.4 74.7±2.8 78.8±4.3
male 66.5±1.1 69.6±2.6 70.3±1.2 48.2±3.5 57.2±3.7 58.6±2.6
skirt 63.6±8.8 78.1±3.5 94.4±0.8 40.7±13.9 60.7±9.9 71.8±7.8
patterned 46.9±15.1 57.9±9.2 90.3±1.0 26.3±6.0 41.0±9.0 43.0±4.8
midhair 64.1±2.3 76.1±1.8 73.5±2.1 43.0±3.9 63.5±4.2 51.1±4.0
darkhair 63.9±1.8 73.1±2.1 67.4±1.2 39.6±2.7 58.4±5.8 50.3±3.6
hashandbag
carrierbag 45.3±3.8 42.0±6.5 90.9±0.8 17.4±3.5 18.5±5.8 25.9±6.1

hasbackpack 67.5±1.4 64.9±1.2 71.3±1.3 47.9±4.7 49.9±3.7 53.9±5.1
average 68.9±1.1 74.1±1.0 83.1±0.5 56.1±1.3 65.5±1.5 68.2±1.1

Table 1. Attribute recognition results on VIPeR

attribute
Accuracy Rate (%) Recall Rate (%)@FPR=0.2

average ± std average ± std
SVM mlcnn-p Ours SVM mlcnn-p Ours

redshirt 74.3±4.9 90.4±2.9 91.7±2.7 65.8±10.4 87.3±7.1 80.0±4.1
blueshirt 77.8±5.9 84.8±2.8 92.1±1.4 70.8±8.9 85.2±6.9 72.6±8.1
darkshirt 77.5±2.1 81.2±1.9 81.6±2.3 78.1±4.5 84.4±5.9 76.7±4.7
darkbottoms 83.8±2.4 83.8±2.6 84.2±1.8 86.8±3.7 86.6±4.9 88.2±3.6
lightbottoms 83.6±2.3 83.5±2.9 84.1±2.3 87.0±4.2 86.8±5.2 89.1±2.6
hassatchel 55.4±1.8 55.8±3.6 65.0±2.2 29.6±3.6 26.9±4.8 37.9±5.7
barelegs 62.0±5.5 76.4±2.4 82.7±2.9 40.0±7.6 65.4±5.7 67.6±5.3
shorts 62.3±5.5 67.4±5.0 86.0±2.2 39.5±10.5 22.0±5.5 61.1±8.6
jeans 60.6±3.1 62.4±1.8 66.4±2.1 40.7±5.4 42.2±6.9 50.0±5.3
male 63.2±2.9 68.4±1.8 70.2±2.7 42.8±8.2 52.8±4.9 57.1±6.1
skirt 27.0±31.7 73.8±4.9 88.4±2.2 17.3±5.7 44.4±13.6 60.5±10.3
patterned 58.5±13.7 74.3±3.3 86.1±1.9 38.3±13.7 44.7±13.3 45.1±7.1
midhair 61.1±2.8 72.4±3.4 73.6±3.4 38.4±8.5 60.9±7.8 49.9±8.5
darkhair 59.6±5.0 71.8±3.6 71.7±2.7 37.6±9.3 58.3±6.2 49.8±7.7
hashandbag
carrierbag 54.6±8.8 61.8±2.8 70.1±3.8 30.1±5.1 34.7±8.5 45.0±9.5

hasbackpack 61.8±2.4 63.1±3.4 73.0±3.4 43.3±3.4 33.7±6.2 39.9±6.9
16attributes
average 63.9±2.3 73.2±0.7 79.3±0.4 49.1±1.8 57.3±0.9 60.7±2.2

lightshirt 78.5±3.0 77.5±5.9
nocoat 82.2±4.2 51.9±20.1
18attributes
average 79.2±0.5 61.1±1.8

Table 2. Attribute recognition results on GRID

attribute
Recall Rate (%)@FPR=0.1 Accuracy Rate (%)
Baseline Ours Ours

T-shirt 55.22 50.60 73.56
backpack 56.16 51.74 89.27

gender 58.30 50.08 74.11
hand carrying 52.14 53.68 84.46

longhair 55.15 56.10 86.64
longjeans 89.85 89.15 67.71
longpants 76.68 84.41 89.89
M-s Pants 78.65 85.71 89.76

shirt 54.62 56.37 83.17
s-s bag 38.45 41.49 78.04

skirt 68.23 73.52 93.12
average 61.75 62.99 82.70

Table 3. Attribute recognition results on APiS



Training set Test set recall accuracy
SVM GRID GRID 49.1 63.9

mlcnn-p GRID GRID 57.3 73.2
ours VIPeR GRID 57.8 73.9

Table 4. Cross-dataset attribute recognition results.

MLMLP-based method.
Moreover, the proposed method achieves a good res-

ult on GRID and APiS without cross-validating the hyper-
parameters with this dataset demonstrating a good general-
ization capacity of our model.

In terms of computational speed, for all images of one
trial on the VIPeR, the training time is 43.9s and the test
time is 2.1s. The LOMO feature extraction for the training
and test sets (632 images) takes only 5.6s (< 0.01s/image).
For comparison, the CNN approach [32] needs 28.1 minutes
for training and 3.6 minutes for test. Thus our system is
much more efficient and suitable for real-time applications
of video surveillance. And this generates very little extra
cost for the proposed re-identification system.

4.2. Cross-dataset attribute recognition

In this section, we conduct an experiment in a cross-
dataset setting which is more realistic for practical applic-
ations. All images in the VIPeR dataset are used for train-
ing, and we use the 500 images with attribute annotation
in Grid as the test set. We take the same parameter setting
in the section 4.1. As the results in Table 4 show, even in
the cross-dataset setting, our method can still get a slightly
better result than the SVM-based and CNN-based methods
trained on the same data set. This demonstrates the excel-
lent generalization capacity of our system.

4.3. Person Re-identification

The CUHK03 dataset [15] includes 13 164 images of
1 360 pedestrians and is one of the largest publicly available
person re-identification dataset. Each person is taken from
two different views. There are two settings labelled with
human-annotated bounding boxes and the more challenging
detected with automatically generated bounding boxes. In
this experiment, we use the latter as this is closer to real-
world scenarios. There are 100 identities for test and the
rest for training and validation, with 20 training/test splits
(provided by [15]). Finally, we report the average result
over all splits.

Our attribute MLMLP is pre-trained on VIPeR dataset.
Then, the training process on CUHK03 is performed in two
stages. In the first stage, we train the CNN branch from
scratch. In the second stage, we add the attribute branch
and the last fully-connected layer. The learning rate is set
to 0.01, and we apply a much lower learning rate (0,000 5)
to the attribute branch for fine-tuning to the CUHK03 data-
set. The weights are initialized from zero-mean Gaussian

Method rank=1 rank =5 rank =10
KISSME [8] 11.7 33.3 48.0
FPNN [15] 19.9 49.3 64.7
Convnet [1] 45.0 75.3 83.4

LOMO+XQDA [16] 46.3 78.9 88.6
SS-SVM [29] 51.2 80.8 89.6

SI-CI [26] 52.2 84.3 92.3
S-lSTM [25] 57.3 80.1 88.3

S-CNN SQ [24] 61.8 80.9 88.3
our triplet CNN without attr 53.9 85.4 93.1

our triplet CNN with attr 55.1 86.1 93.3

Table 5. Re-identification result on CUHK03 (“detected”).

distribution with a standard deviation of 0.01. We randomly
generate 50 triplets in each iteration. The margin of triplet
loss is set to 1. All the inputs are resized to a resolution
128×48, and we perform data augmentation by randomly
flipping the images and by cropping 120×40 regions with
random perturbation. For evaluation, we follow the stand-
ard protocol and report the one-shot single query Cumulat-
ive Match Curve (CMC) on the test set as [15].

The comparison to the state-of-the-art on CUHK03 is
shown in Table 5. Our approach achieves the best score
at rank 5 and rank 10. And, at rank 1, we are just behind
two best methods but still superior to most of the recent
state-of-art results. Compared to the baseline, integrating
the attributes in the CNN framework could get 1.2% point
and 0.7% point improvement on rank 1 and rank 5. This
demonstrates the effectiveness of fusing the low-level CNN
features and high-level attributes.

5. Conclusion

In this paper, a pedestrian attribute classification ap-
proach based on LOMO features and a Multi-Label MLP
has been proposed. This approach has the properties of both
being robust to large view point variations as well as be-
ing computationally efficient. We performed experiments
on three public datasets and outperformed the state-of-art
methods. We further proposed a framework for person re-
identification integrating our attribute recognition method
with a triplet CNN similarity metric learning architecture.
We obtained results that are equivalent or superior to most
state-of-the-art re-identification methods, and show that the
high-level attribute information can help improving person
re-identification with low-level features.
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