
HAL Id: hal-01625444
https://hal.science/hal-01625444v1

Submitted on 27 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multiple Local Community Detection
Alexandre Hollocou, Thomas Bonald, Marc Lelarge

To cite this version:
Alexandre Hollocou, Thomas Bonald, Marc Lelarge. Multiple Local Community Detection. IFIP WG
7.3 Performance 2017 conference - International Symposium on Computer Performance, Modeling,
Measurements and Evaluation 2017, Nov 2017, New York City, United States. �hal-01625444�

https://hal.science/hal-01625444v1
https://hal.archives-ouvertes.fr

Multiple Local Community Detection

Alexandre Hollocou
INRIA, Paris, France

alexandre.hollocou
@inria.fr

Thomas Bonald
Telecom Paristech, Paris,

France
thomas.bonald

@telecom-paristech.fr

Marc Lelarge
INRIA-ENS, Paris, France
marc.lelarge@ens.fr

ABSTRACT
Community detection is a classical problem in the field of
graph mining. We are interested in local community detec-
tion where the objective is the recover the communities con-
taining some given set of nodes, called the seed set. While
existing approaches typically recover only one community
around the seed set, most nodes belong to multiple com-
munities in practice. In this paper, we introduce a new
algorithm for detecting multiple local communities, possi-
bly overlapping, by expanding the initial seed set. The new
nodes are selected by some local clustering of the graph em-
bedded in a vector space of low dimension. We validate our
approach on real graphs, and show that it provides more in-
formation than existing algorithms to recover the complex
graph structure that appears locally.

Keywords
Graphs; Clustering; Community detection; Random walks

1. INTRODUCTION
Community detection is a fundamental problem in the

field of graph mining, with applications to the analysis of
social, information or biological networks [12, 23]. The ob-
jective is to find dense clusters of nodes, the underlying com-
munities of the graph. While most existing algorithms work
on the entire graph [25, 4, 27, 17], it is often irrelevant in
practice to cluster all nodes. A more practically interesting
problem is to detect the communities containing some given
set of nodes, the so-called seed set. This problem, known as
local community detection, is particularly relevant in large
datasets where the exploration of the whole graph is com-
putationally expensive, if not impossible.

The problem of local community detection is generally
stated as follows: the objective to recover some unknown
community C in a graph given some subset S ⊂ C of these
nodes. The implicit assumption is that the communities
form a partition of the graph. However, nodes typically be-
long to multiple, overlapping communities in practice [26,
32]. The problem is then to recover all communities con-
taining the seed set S.

In the present paper, we propose a novel approach to this
problem by introducing the MULTICOM algorithm, which is
able to detect multiple communities nearby a given seed
set S. This algorithm uses local scoring metrics to define

IFIP WG 7.3 Performance 2017. Nov. 14-16, 2017, New York, NY USA
Copyright is held by author/owner(s).

an embedding of the graph around the seed set. Based on
this embedding, it picks new seeds in the neighborhood of
the original seed set, and uses these new seeds to recover
multiple communities.

The rest of the paper is organized as follows. In the next
section, we introduce some mathematical notations that we
use throughout the paper. Existing approaches for local
community detection are presented in Section 3. Our ap-
proach to multiple local community detection is presented
in Section 4. The algorithm itself is presented in Section 5
and tested on real graphs in Section 6. Section 7 concludes
the paper.

2. NOTATIONS
Let G = (V,E) be an undirected, unweighted graph. We

use n to denote the number of nodes and m the number
of edges in G. Without loss of generality we consider that
V = {1, ..., n}. We denote by A the adjacency matrix of the
graph. We use du to denote the degree of node u ∈ V and D
the diagonal matrix diag(d1, ..., dn). If U is a set of nodes,
its volume is defined by Vol(U) =

∑
u∈U du.

3. RELATED WORK
Local community detection has recently drawn the atten-

tion of many researchers, motivated both by the ever in-
creasing size of the datasets and the complex local structure
of real graphs [19, 14].

3.1 Scoring and sweeping
The classical approach to local community detection is

based on two steps [2]: first, nodes are scored according to
their proximity to the seed set; then, nodes are considered in
decreasing order of their score and added to the community,
with a stopping rule based on some goodness metric.

Formally, the algorithm is based on some scoring func-
tion f such that, for any seed set S ⊂ V , fS is a vector in
RV

+ whose component fS(v) characterizes the attachment of
node v to S. We expect that the higher the score fS(v), the
higher the probability that v is in the same community as
the nodes of S. Examples of scoring functions are the Per-
sonalized PageRank, the heat kernel diffusion and the local
spectral score, described below.

Given some seed set S, the score fS(v) of each node v ∈ V
is computed. The nodes are then numbered in decreasing
order of their score, so that fS(v1) ≥ fS(v2) ≥ . . . ≥ fS(vJ),
where J is the number of nodes with non-zero scores. This
numbering defines a sequence of nested sets S1, ..., SJ , with
Sj = {vi, i ≤ j}.

The second step consists in finding the set Sj that defines
the best community. To measure the quality of a community
C, a classical metric is the conductance, defined by

Φ(C) =

∑
u∈C

∑
v/∈C Auv

min(Vol(C),Vol(V \ C))
.

A community of good quality has low conductance. The
conductance of each set Sj+1 can be computed from the
conductance of Sj in time proportional to dvj+1 . This step is
called the sweep process [2]. The outcome of the algorithm is
the set Sj having the lowest conductance. This set is called
the sweep cut. Other goodness metrics like modularity or
density can also be used for the sweep cut [33].

3.2 Personalized PageRank
The Personalized PageRank is certainly the most com-

mon score used for local community detection [16]. It is
based on a random walk with restart. Given a parameter
α ∈ (0, 1), we consider the random walk X0, X1, X2, ... that
starts uniformly at random from seed set S and that, at each
step, moves from node u to node v with probability αAuv

du
and restarts with probability 1−α from a node of S chosen
uniformly at random. For all t ≥ 0 and all v ∈ V , we have

Pr(Xt+1 = v) = (1− α)
1S(v)

|S| + α

n∑
u=1

Auv

du
Pr(Xt = u).

There is a unique stationary distribution p for the Markov
chain (Xt)t≥0 and it is the limiting distribution of Xt when
t→∞. This distribution satisfies

p(v) = (1− α)
1S(v)

|S| + α

n∑
u=1

Auv

du
p(u). (1)

The vector p is known as the Personalized PageRank (PPR)
associated with the seed set S.

Solving the linear system (1) exactly is computationally
expensive. Efficient methods for approximating the PPR
have been proposed [1]. Recent experimental results show
that, in practice, a few iterations of the fixed-point equation
(1) are sufficient to get a very good ordering of the nodes
[16].

3.3 Heat kernel diffusion
The linear system (1) can be written in vector form

p = (1− α)χS + αPp,

where P = AD−1 and χS = 1S/|S|, leading to the following
expression for the PPR:

p = (1− α)(I − αP)−1χS = (1− α)

∞∑
k=0

αkP kχS .

Another form of diffusion has been introduced by Chung
in [6, 7]. It is called the heat kernel diffusion and is defined
by

h = e−t

(
∞∑

k=0

tk

k!
P k

)
χS = exp{−t(I − P)}χS ,

where t is a parameter capturing the spread of the diffusion.
A method of approximation of h is proposed in [15] and used
in the sweep method to detect local communities.

3.4 Local spectral analysis
Another class of algorithms applies spectral techniques to

detect local communities [21, 20]. In [20] for instance, the
LEMON algorithm is based on the extraction of a sparse vector
y in the span of the so-called local spectral subspace of the
graph around the seed set S. This vector y is then used as
the scoring function. Unlike the previous algorithms, the
LEMON algorithm is iterative: the nodes of highest scores are
used to expand the seed set S and to find a new vector y,
and so on. The iteration stops when the conductance starts
increasing.

3.5 Other approaches
A number of other approaches have been proposed for lo-

cal community detection. These include greedy algorithms
[8, 5, 22], flow-based algorithms [24], degree-based tech-
niques [28], motif detection [13, 34] and subgraph extraction
[30]. None recover multiple communities.

4. MULTIPLE COMMUNITY DETECTION

4.1 Scoring gap
Let v1, . . . , vJ be the nodes numbered in decreasing or-

der of their score, as described in §3.1, and S1, . . . , SJ be
the corresponding nested sets. For a strong community, the
scoring function should give high values to nodes belonging
to the community and small values for nodes outside the
community. As a result, we expect the existence of some
a > 0 such that

max (fS(v2)− fS(v1), . . . , fS(vj)− fS(vj−1)) ≤ a,
while fS(vj+1)− fS(vj) > a,

(2)

where j is the index of the target set Sj . The parameter a is
called the scoring gap. Conditions for the existence of such
a gap have been derived in [29, 2]. Experimental studies
showing the presence of a scoring gap in real graphs can be
found in [2, 9].

To illustrate this, we use the DBLP dataset presented in
[33] and available on the Stanford Social Network Analysis
Project (SNAP) website. DBLP is a database that collects
the main publications in computer science. The graph we
consider is a collaboration network: nodes correspond to au-
thors and there is an edge between two authors if they have
co-authored a paper. This dataset comes with ground-truth
communities that correspond to journals and conferences
(i.e., all authors having published in the same journal or
conference form a community).

In our experiment, we pick a ground-truth community C
in the graph and a seed node s ∈ C. We compute the attach-
ment scores fs to s with three different scoring functions:
Personal PageRank p, Heat Kernel score h and LEMON
score y, introduced in Section 3. We compare the corre-
sponding sets S1, S2, . . . to the ground-truth community C
with the F1-Score. The F1-Score F1(Ĉ, C) between two sets

C and Ĉ is defined as the harmonic mean of the precision
and the recall of Ĉ with respect to C:

F1(Ĉ, C) = H(precision(Ĉ, C), recall(Ĉ, C))

where H(a, b) = 2ab
a+b

and

precision(Ĉ, C) =
|Ĉ ∩ C|
|Ĉ|

, recall(Ĉ, C) =
|Ĉ ∩ C|
|C| .

0 5 10 15 20 25

0

1

2

·10−2

Sweep index j

P
er

so
n
a
li
ze

d
P

a
g
eR

a
n
k
p

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

F
1
-s

co
re

0 5 10 15

0

0.1

0.2

0.3

Sweep index j

H
ea

t
k
er

n
el

sc
o
re
h

0 5 10 15
0

0.2

0.4

0.6

0.8

1

F
1
-s

co
re

0 5 10 15

0

0.2

0.4

0.6

0.8

1

Sweep index j

L
E

M
O

N
sc

o
re
y

0 5 10 15
0

0.2

0.4

0.6

0.8

1

F
1
-s

co
re

Figure 1: Attachment scores and F1 scores for the
sweep sets in a ground-truth community of DBLP.
We consider three scoring functions to compute the at-
tachment scores: Personalized PageRank, Heat Kernel and
LEMON. The attachment score curves are drawn in orange
and the F1 Score curves in grey.

In Figure 1, we jointly plot for a given target community
C and seed node s ∈ C the values of the score fs(vj) and the
F1 score F1(Sj , C), for each scoring function. We observe in
each case the existence of a clear scoring gap. Moreover we

observe that the drop in the scoring function corresponds
each time to a peak in the F1 Score, which means that the
associated set is actually the best candidate for a commu-
nity among all the nested sets. In order to find multiple
communities, we elaborate on this idea as described in the
next section.

4.2 Local embedding
The main idea of our algorithm is to use the scoring func-

tion to get a local embedding of the graph around the seed
set S. Specifically, each node v is embedded into the vector
(fs(v))s∈S . Note that for a node far from the seed set S,
this vector will be the all zero vector and it can be safely
removed since we are only interested in local communities.
We then cluster nodes with respect to their mutual distances
in the embedding space.

To motivate the proposed embedding, let us consider the
case of a perfect scoring function f such that fs(v) = cs if
v is in the same community as s and 0 otherwise, where cs
is some positive constant that depends on s. Let us as-
sume that we have disjoint communities C1, . . . , CK and
seed nodes s1, . . . , sK in each of these communities (sk ∈
Ck). Then, we see that the embedding (fsk (v))1≤k≤K asso-
ciated with these seed nodes and this perfect scoring func-
tion takes exactly K distinct non-zero values and that each
of these values corresponds to a community Ck. Thus, by
using a clustering algorithm on the vectors in the embedding
space, we can exactly recover the communities (Ck)k=1,...,K .
The scoring gap property presented above for Personalized
PageRank, LEMON and Heat Kernel guarantees that these
three functions are close to the perfect scoring function de-
fined above. Therefore, applying clustering on the embed-
ding (fs(v))s∈S should lead to results similar to these perfect
setup.

To illustrate the behavior of such embeddings, we show in
Figure 2 the result of a local embedding using the Personal
PageRank scoring function on a random graph generated
from a mixture of two gaussian vectors in R2 by putting
an edge between two points if they are within distance r
from each other. We choose a seed node in each gaussian.
We observe that the local embedding from these seed nodes
clearly separates the nodes from the different groups and
that a clustering algorithm can be used in order to recover
each gaussian.

4.3 Finding new seeds
We use the local embedding introduced in the previous

section to iteratively find new seeds S around the original
seed set S. The main idea of the algorithm is simple: we
start with S = S and we grow this new seed set by repeating
the following three steps:

1. Perform the local embedding using S: (fs(v))s∈S .

2. Cluster the nodes in the embedding space.

3. Pick a new seed node in each unexplored cluster and
add it to S.

The new seed nodes of S are then used to detect multi-
ple communities in the neighborhood of the initial seed set
S. We define more formally the algorithm in the next sec-
tion, and, in particular, we clarify the notion of unexplored
cluster.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x1

x
2

(a) Mixture of two gaussian vectors in R2

(one seed is picked in each cluster)

s1

s2

(b) Corresponding graph for r = 0.2

0 1 2 3 4 5
·10−2

0

1

2

3

4

5
·10−2

fs1

f s
2

(c)
Graph embedding using PPR

Figure 2: Example of local graph embedding for a
random graph. The graph is generated from a mixture of
two gaussians in R2 by putting an edge between two points if
they are within a given distance r from each other. The local
embedding is performed using the Personalized PageRank
scoring function and two seed nodes s1 and s2 picked in
each gaussian.

5. ALGORITHM
We now present our algorithm, named MULTICOM, that re-

covers multiple local communities.

5.1 Inputs
The inputs of MULTICOM are a graph G = (V,E) and a seed

set S ⊂ V . Our algorithm also takes a scoring function f ,
which is typically one of the functions presented in Section
3, and a local community detection function local that,
given a seed node s and a score fs, returns a local commu-
nity around S. For instance, this local function may re-
turn the sweep set with the lowest conductance by applying
the sweep process described in §3.1. Finally the algorithm
takes an integer parameter I that controls the number of
detected communities and a re-seeding threshold β ∈ [0, 1]
that controls the number of new seeds at each iteration of
the algorithm.

5.2 Description
In order to find multiple communities in the neighborhood

of the initial seed set S, the algorithm uses a larger seed set
S that contains S at the end of the algorithm. The new
seed nodes found during a step of the algorithm are stored
in Snew. Initially, Snew is initialized with S.

Step 1: Local community detection for new seeds
The algorithm starts by computing the score vectors fs for
each new seed node s ∈ Snew. Then, for each s ∈ Snew we
use the local algorithm to extract a local community Cs

around s. Thus, at the end of this step of the algorithm,
we obtain one community Cs per seed node s. In particular,
if the set Snew is a singleton, we only recover one community
at this stage.

Step 2: Embedding and clustering
We use the scores fs for s ∈ S to define an embedding which

maps each node v ∈ V to a vector xv = (fs(v))s∈S in R|S|+ .
We then apply the popular clustering algorithm DBSCAN
[11] to the non-zero vectors xv and obtain K clusters of
nodes, D1, ..., DK .

Step 3: Picking new seeds
The second step of the algorithm applies the ideas of Sec-
tion 4 to find new seeds. We expect to obtain two types of
clusters in Step 2:

• clusters with significant overlap with the communities
Cs, s ∈ S, already detected;

• clusters with low overlap with these communities.

We want to select seed nodes in the later clusters in order
to detect new communities. To identify these clusters, we
compute for each cluster Dk the ratio

|Dk ∩ ∪s∈SCs|
|Dk|

.

Clusters with a ratio lower that the threshold β are consid-
ered as new directions that are worth exploring: a new seed
node is picked in each of them. In order to have a central
node in each cluster, we simply choose the node with the
highest degree.

Loop
The seeds selected at the end of step 3 form the new seed
set Snew to which we apply the same three steps. We stop
the algorithm when the number of communities is greater
than I or if there is no new seed.

Finally we output all the communities Cs found from the
seed nodes s ∈ S. The pseudo-code of our algorithm is given
below.

Algorithm 1 MULTICOM

Require: GraphG = (V,E), seed set S ⊂ V , score function
f , function local, parameters I, β.

1: S ← ∅ (all seed nodes)
2: Snew ← S (new seed nodes)
3: C ← [] (list of communities)
4: while Snew 6= ∅ and |C| ≤ I do
5: # Detecting communities from new seeds
6: for s ∈ Snew do
7: fs ← compute score function
8: Cs ← local(fs) (local community detection)
9: C.push(Cs)

10: end for
11: S ← S ∪ Snew (add new seeds)
12: # Embedding and clustering
13: ∀v ∈ V , xv ← (fs(v))s∈S

14: D1,, DK ← clustering of (xv)v∈V in R|S|+ \ {0}
15: # Picking new seeds
16: Snew ← ∅
17: E ← ∪C∈CC (explored nodes)
18: for k = 1, ...,K do
19: if |Dk ∩ E| < β|Dk| then
20: snew ← node with highest degree in Dk \ E
21: Snew ← Snew ∪ {snew}
22: end if
23: end for
24: end while
25: return C

5.3 Post-processing
Note that the communities returned by MULTICOM might

intersect. This is consistent with the fact that nodes often
belong to multiple communities in practice [26, 32]. How-
ever, we might want to limit the number of nodes that the
communities have in common, and consider that if two com-
munities Ci, Cj share too many nodes, then they form only
one community Ci∪Cj . To do so, we apply a post-processing
step, called MERGE, at the end of MULTICOM that merges two
communities Ci and Cj if their F1 score F1(Ci, Cj) is greater
than a given threshold γ ∈ [0, 1]. In the following experi-
ments we use MERGE with parameter γ = 1

2
.

6. EXPERIMENTS
We now analyse the performance of our algorithm, both

qualitatively and quantitatively, on real graphs.

6.1 Case study: Wikipedia
First, we illustrate the interest of our algorithm on an

extract of Wikipedia presented in [31]. The dataset is built
from a selection of articles from the English version of Wikipedia
that matches the UK National Curriculum1. The nodes of
the graph corresponds to Wikipedia articles, and we put an

edge between two articles a and a′ if there is an hyperlink
to article a′ in article a. We apply MULTICOM with a Person-
alized PageRank scoring function and using a cut based on
conductance on the seed set S = {Albert Einstein}. With
the parameter I = 5, the algorithm returns 6 communities,
for a total of 153 nodes. For each of these communities, we
list the top-5 nodes according to their PageRank:

• C1 = {Albert Einstein, Special relativity, Euclid, Wave,
String theory}

• C2 = {Light, Electric field, Contact lens, Maxwell’s
equations, Semiconductor device}

• C3 = {Gottfried Leibniz, Algebra, Pi, Game theory,
Thermo- dynamics}

• C4 = {Star, Red dwarf, Open cluster, Orion Nebula,
Gliese 876}

• C5 = {Quantum mechanics, Photon, Electromagnetic
radiation, Electric charge, Linus Pauling}

• C6 = {Atom, Renormalization, Mechanical work, Quark,
Ununpentium}

The top node of each community C2, . . . , C6 turns out
to be a seed found by MULTICOM. We see that each com-
munity corresponds to a different facet of Einstein’s work.
Note that the state-of-the-art algorithms like Personalized
PageRank only recover community C1, as it corresponds to
the first step of the MULTICOM algorithm. We see that we gain
precious information by considering additional communities
around the Albert Einstein article.

6.2 Real-world data

Datasets
For a quantitative evaluation of our algorithm on real-world
graphs, we use the datasets available on the SNAP web-
site [33]. All these datasets include ground-truth commu-
nity memberships. We consider graphs of different types:
the social network YouTube [3], the product co-purchasing
graph built from Amazon data [18], and the DBLP dataset
described in Section 5.

Algorithms
We compare MUTLTICOM to the three state-of-the-art algo-
rithms presented in Section 3: Personalized PageRank (PPR),
Heat Kernel (HK) and LEMON (LEMON). For MULTICOM we
use a function cut that finds the local minimum for the
conductance Φ(Sj), and we take Personalized PageRank for
the scoring function f . We have implemented MULTICOM in
Python and made it available on GitHub2.

Performance evaluation
In order to evaluate the performance of the algorithms, we
measure for each returned community Ĉ its conductance
Φ(Ĉ) and the maximum F1-score between Ĉ and any ground-
truth community.

The state-of-the-art algorithms return only one commu-
nity so the computation of these scores is straightforward.

1http://schools-wikipedia.org
2https://github.com/ahollocou/multicom

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(a) Detected seed nodes
(initial seed in red)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(b) Detected communities

Figure 3: Seeds and communities detected by
MULTICOM in a SBM. The algorithm has been applied to
a SBM random graph with an initial seed displayed in red
in Figure (a). Figure (a) shows the new seeds detected by
MULTICOM. Figure (b) shows the communities detected from
these seeds. Note that some nodes belong to several com-
munities (bi-colored nodes).

MUTLTICOM generally outputs several communities, so we con-
sider the average values of conductance and F1-score for
these communities.

We also compute the total number of nodes |E| labeled or
explored by each algorithm, i.e. the total number of nodes
that belong to a community at the end of each algorithm.

Benchmark
For each dataset, we pick 100 seed nodes uniformly at ran-
dom and run the algorithms on each of these seed nodes.
We use the parameter I = 5 and β = 0.8 for MULTICOM. The
results are shown in Table 1.

DBLP

Algo. |E| Φ F1

MULTICOM 103 0.45± 0.14 0.23± 0.15
PPR 21 0.41± 0.17 0.23± 0.22
HK 15 0.32± 0.14 0.23± 0.26
LEMON 18 0.43± 0.20 0.26± 0.24

Amazon

Algo. |E| Φ F1

MULTICOM 80 0.35± 0.14 0.44± 0.19
PPR 26 0.31± 0.16 0.46± 0.24
HK 24 0.27± 0.16 0.49± 0.26
LEMON 21 0.40± 0.27 0.48± 0.25

YouTube

Algo. |E| Φ F1

MULTICOM 284 0.69± 0.11 0.05± 0.03
PPR 95 0.56± 0.25 0.05± 0.11
HK 100 0.55± 0.33 0.04± 0.11
LEMON 5 0.96± 0.12 0.12± 0.20

Table 1: Benchmark results on SNAP datasets

Observe that the total number of nodes found by MULTICOM,
corresponding to multiple communities, is much higher than
those found by the other algorithms. In other words, the
volume of information that MULTICOM collects in the neigh-
borhood of the seed set is much more important. Moreover,
the quality of this information is not too much downgraded
by the multi-directional approach. Indeed, the average F1-
score measured on the multiple communities returned by
MULTICOM is essentially the same as the F1-scores of the
other algorithms. The much higher F1-score of LEMON for
the YouTube dataset is due to the much smaller communi-
ties detected by this algorithm.

6.3 Synthetic data
We evaluate our algorithm on synthetic graphs generated

with the Stochastic Block Model (SBM) [10]. We illustrate
the results of MULTICOM on such a synthetic graph in Figure
3. In the sub-figure (a), we display the new seeds found by
the algorithm when initialized with an initial seed colored in
red in the figure. In the sub-figure (b), we display the corre-
sponding communities returned by the algorithm. Note that
some communities are overlapping i.e. some nodes belong
to more than one community.

In order to numerically evaluate the results of MULTICOM

on the SBM model, we generate 100 graphs with 100 nodes
and 5 communities of equal size. We pick a random seed
node in each of these graphs and run MULTICOM starting
from this seed with the same parameters as in §6.2. We use
the same performance metrics (average conductance, aver-
age F1-score and number of explored nodes) to evaluate the

performance of MULTICOM and we compare it to PPR. The
results are shown in Table 2. We observe that MULTICOM re-
covers almost perfectly all 5 communities in each generated
graph, whereas PPR recover only one of these communities.

Algo. |E| Φ F1

MULTICOM 98 0.11 0.98
PPR 20 0.11 0.97

Table 2: Benchmark results on a SBM model. Graph
generated have 100 nodes and 5 equal-sized communities.

7. CONCLUSION
In this paper, we have presented an algorithm for multiple

local community detection. The approach relies on the local
embedding of the graph near the seed set, using a scoring
function such as Personal PageRank. We have seen that
the target communities are typically well separated in the
embedding space. Building on this observation, we have
proposed a clustering method to identify new seeds in the
neighborhood of the initial seed set, so as to recover different
communities in various directions of the graph.

For future work, we would like to compare the local em-
bedding obtained with MULTICOM with the existing local spec-
tral embedding, and use it for other tasks such as network
visualization and link prediction.

8. REFERENCES
[1] R. Andersen, F. Chung, and K. Lang. Local graph

partitioning using pagerank vectors. In Foundations of
Computer Science, 2006. FOCS’06. 47th Annual
IEEE Symposium on, pages 475–486. IEEE, 2006.

[2] R. Andersen and K. J. Lang. Communities from seed
sets. In Proceedings of the 15th international
conference on World Wide Web, pages 223–232. ACM,
2006.

[3] L. Backstrom, D. Huttenlocher, J. Kleinberg, and
X. Lan. Group formation in large social networks:
membership, growth, and evolution. In Proceedings of
the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 44–54.
ACM, 2006.

[4] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and
E. Lefebvre. Fast unfolding of communities in large
networks. Journal of statistical mechanics: theory and
experiment, 2008(10):P10008, 2008.

[5] C.-S. Chang, C.-J. Chang, W.-T. Hsieh, D.-S. Lee,
L.-H. Liou, and W. Liao. Relative centrality and local
community detection. Network Science, 3(4):445–479,
2015.

[6] F. Chung. The heat kernel as the pagerank of a graph.
Proceedings of the National Academy of Sciences,
104(50):19735–19740, 2007.

[7] F. Chung. A local graph partitioning algorithm using
heat kernel pagerank. Internet Mathematics,
6(3):315–330, 2009.

[8] A. Clauset. Finding local community structure in
networks. Physical review E, 72(2):026132, 2005.

[9] M. Danisch, J.-L. Guillaume, and B. Le Grand.
Learning a proximity measure to complete a

community. In Data Science and Advanced Analytics
(DSAA), 2014 International Conference on, pages
90–96. IEEE, 2014.

[10] A. Decelle, F. Krzakala, C. Moore, and L. Zdeborová.
Asymptotic analysis of the stochastic block model for
modular networks and its algorithmic applications.
Physical Review E, 84(6):066106, 2011.

[11] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al. A
density-based algorithm for discovering clusters in
large spatial databases with noise. In Kdd, volume 96,
pages 226–231, 1996.

[12] S. Fortunato. Community detection in graphs. Physics
reports, 486(3):75–174, 2010.

[13] X. Huang, H. Cheng, L. Qin, W. Tian, and J. X. Yu.
Querying k-truss community in large and dynamic
graphs. In Proceedings of the 2014 ACM SIGMOD
international conference on Management of data,
pages 1311–1322. ACM, 2014.

[14] L. G. Jeub, P. Balachandran, M. A. Porter, P. J.
Mucha, and M. W. Mahoney. Think locally, act
locally: Detection of small, medium-sized, and large
communities in large networks. Physical Review E,
91(1):012821, 2015.

[15] K. Kloster and D. F. Gleich. Heat kernel based
community detection. In Proceedings of the 20th ACM
SIGKDD international conference on Knowledge
discovery and data mining, pages 1386–1395. ACM,
2014.

[16] I. M. Kloumann and J. M. Kleinberg. Community
membership identification from small seed sets. In
Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining,
pages 1366–1375. ACM, 2014.

[17] A. Lancichinetti, F. Radicchi, J. J. Ramasco, and
S. Fortunato. Finding statistically significant
communities in networks. PloS one, 6(4):e18961, 2011.

[18] J. Leskovec, L. A. Adamic, and B. A. Huberman. The
dynamics of viral marketing. ACM Transactions on
the Web (TWEB), 1(1):5, 2007.

[19] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W.
Mahoney. Statistical properties of community
structure in large social and information networks. In
Proceedings of the 17th international conference on
World Wide Web, pages 695–704. ACM, 2008.

[20] Y. Li, K. He, D. Bindel, and J. E. Hopcroft.
Uncovering the small community structure in large
networks: A local spectral approach. In Proceedings of
the 24th international conference on world wide web,
pages 658–668. International World Wide Web
Conferences Steering Committee, 2015.

[21] M. W. Mahoney, L. Orecchia, and N. K. Vishnoi. A
local spectral method for graphs: With applications to
improving graph partitions and exploring data graphs
locally. Journal of Machine Learning Research,
13(Aug):2339–2365, 2012.

[22] A. Mehler and S. Skiena. Expanding network
communities from representative examples. ACM
Transactions on Knowledge Discovery from Data
(TKDD), 3(2):7, 2009.

[23] M. E. Newman. Modularity and community structure
in networks. Proceedings of the national academy of
sciences, 103(23):8577–8582, 2006.

[24] L. Orecchia and Z. A. Zhu. Flow-based algorithms for
local graph clustering. In Proceedings of the
twenty-fifth annual ACM-SIAM symposium on
Discrete algorithms, pages 1267–1286. Society for
Industrial and Applied Mathematics, 2014.

[25] P. Pons and M. Latapy. Computing communities in
large networks using random walks. In International
Symposium on Computer and Information Sciences,
pages 284–293. Springer, 2005.

[26] F. Reid, A. McDaid, and N. Hurley. Partitioning
breaks communities. In Mining Social Networks and
Security Informatics, pages 79–105. Springer, 2013.

[27] M. Rosvall and C. T. Bergstrom. Maps of random
walks on complex networks reveal community
structure. Proceedings of the National Academy of
Sciences, 105(4):1118–1123, 2008.

[28] M. Sozio and A. Gionis. The community-search
problem and how to plan a successful cocktail party.
In Proceedings of the 16th ACM SIGKDD
international conference on Knowledge discovery and
data mining, pages 939–948. ACM, 2010.

[29] D. A. Spielman and S.-H. Teng. Nearly-linear time

algorithms for graph partitioning, graph sparsification,
and solving linear systems. In Proceedings of the
thirty-sixth annual ACM symposium on Theory of
computing, pages 81–90. ACM, 2004.

[30] H. Tong and C. Faloutsos. Center-piece subgraphs:
problem definition and fast solutions. In Proceedings
of the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 404–413.
ACM, 2006.

[31] R. West, J. Pineau, and D. Precup. Wikispeedia: An
online game for inferring semantic distances between
concepts. In IJCAI, pages 1598–1603, 2009.

[32] J. Xie, S. Kelley, and B. K. Szymanski. Overlapping
community detection in networks: The state-of-the-art
and comparative study. Acm computing surveys
(csur), 45(4):43, 2013.

[33] J. Yang and J. Leskovec. Defining and evaluating
network communities based on ground-truth.
Knowledge and Information Systems, 42(1):181–213,
2015.

[34] H. Yin, A. R. Benson, J. Leskovec, and D. F. Gleich.
Local higher-order graph clustering. 2017.

