
HAL Id: hal-01625402
https://hal.science/hal-01625402v1

Submitted on 27 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Combining Range and Inequality Information for
Pointer Disambiguation

Maroua Maalej, Vitor Paisante, Fernando Magno Quintão Pereira, Laure
Gonnord

To cite this version:
Maroua Maalej, Vitor Paisante, Fernando Magno Quintão Pereira, Laure Gonnord. Combining Range
and Inequality Information for Pointer Disambiguation. Science of Computer Programming, 2017.
�hal-01625402�

https://hal.science/hal-01625402v1
https://hal.archives-ouvertes.fr

Author Version of «Combining Range and Inequality Information
for Pointer Disambiguation », accepted in Science of Computer Programming, 2017

Combining Range and Inequality Information

for Pointer Disambiguation

Maroua Maaleja, Vitor Paisanteb, Fernando Magno Quintão Pereirab, Laure
Gonnorda

aUniversity of Lyon & LIP (UMR CNRS/ENS Lyon/UCB Lyon1/INRIA)
F-69000 Lyon, France

bLaboratório de Compiladores, UFMG, Brazil

Abstract

Pentagons is an abstract domain invented by Logozzo and Fähndrich to
validate array accesses in low-level programming languages. This algebraic
structure provides a cheap “less-than check”, which builds a partial order
between the integer variables used in a program. In this paper, we show how
we have used the ideas available in Pentagons to design and implement a
novel alias analysis.

With this new algorithm, we are able to disambiguate pointers with off-
sets, that commonly occur in C programs, in a precise and efficient way.
Together with this new abstract domain we describe several implementation
decisions that let us produce a practical pointer disambiguation algorithm on
top of the LLVM compiler. Our alias analysis is able to handle programs as
large as SPEC CPU2006’s gcc in a few minutes. Furthermore, it improves
on LLVM’s industrial quality analyses. As an extreme example, we have
observed a 4x improvement when analyzing SPEC’s lbm.

Keywords: Points-to Analysis, Pentagons, Less-Than Check, Abstract
Interpretation, Compiler Construction, Static Analysis

1. Introduction

Pointers are a staple feature in imperative programming languages. Among
the many abstractions that exist around this notion, pointer arithmetics
stands out. Although a popular feature, it yields programs that are particu-
larly difficult to analyze statically. We call pointer arithmetics the ability to
add an offset to a pointer, as in p[i], or *(p + i). Pointer arithmetics is

Preprint submitted to Science of Computer Programming October 20, 2017

Author Version of «Combining Range and Inequality Information
for Pointer Disambiguation », accepted in Science of Computer Programming, 2017

present in programming languages including C, C++ and some assembly di-
alects; thus, it is commonly found in some of the most popular software used
in the world, such as operating system kernels, browsers, compilers and web-
servers. Therefore, it is important that compilers, as well as static analysis
tools, understand and analyze programs supporting this kind of construction.

However, designing and implementing alias analyses that disambiguate
pointers with offsets is very challenging. The problem of statically disam-
biguating pointers p0 + e0 and p1 + e1 involves two challenges: distinguishing
references p0 and p1, and comparing the integer expressions e0 and e1. The
first task is the traditional alias analysis problem, and bears a vast set of diffi-
culties well studied in the literature [Hind (2001)]. The second task amounts
to solving Hilbert’s Tenth Problem [Davis et al. (1976)], which is undecidable
in general. Whereas we find plenty of techniques to deal with the former task
in the literature, the latter is not as popular. Testimony to this observation is
the fact that the most well-known alias analyses, such as Andersen’s [Ander-
sen (1994)] or Steensgard’s [Steensgaard (1996)] formulation, do not address
this problem. This paper, which subsumes three years of research partially
published in two previous works [Maalej et al. (2017); Paisante et al. (2016)],
provides a theoretical and practical framework that fills this omission.

Our tool of choice to disambiguate pointers with offsets is Pentagons, an
abstract domain invented by Logozzo and Fähndrich to infer symbolic bounds
to integer variables [Logozzo and Fähndrich (2008); Logozzo and Fähndrich
(2010)]. This abstract domain is formed by the combination of two lattices.
The first lattice is the integer interval domain [Cousot and Cousot (1977)],
which maps integer variables to an approximation of the range of values that
they can assume throughout the program’s execution. The second lattice is
the strict upper bound domain, which maps each variable v to LT(v), a set of
other variables with the following property: if u ∈ LT(v), at a given program
point p, then u < v at p.

In this paper, we show that the key idea behind the Pentagon domain:
a cheap and relatively precise “less-than” check, is effective to distinguish
memory locations at compilation time. However, we had to adapt the def-
inition of the abstract domain in non-trivial ways instead of simply reusing
it. Firstly, we have added new operations to the abstract domain, that came
from the necessity to separate variables used as pointers from variables used
as integers. Secondly, we have adapted the original transfer functions and
the control flow graph statements into simpler structures, which enable the
information to be stored in a more economic way (in terms of space), and to

2

Author Version of «Combining Range and Inequality Information
for Pointer Disambiguation », accepted in Science of Computer Programming, 2017

be run in less time. The output is a sparse Pentagon Analysis. A sparse anal-
ysis associates information with variable names. By information we mean the
product of the static analysis, e.g., less-than relations, ranges, etc. In con-
trast, a dense analysis associates information with pairs formed by variables
and program points. Therefore, our implementation maps O(|V |) objects to
less-than relations – each object representing a single variable name. On the
other hand, the original description of Pentagons maps O(|V |× |P |) objects,
formed by variable names and program points, to less-than relations.

Our apparatus lets us perform different pointer disambiguation checks.
As we explain in Section 5, we use three different checks to verify if two point-
ers might alias. All these checks emerge naturally from the data-structures
that we build in the effort to find less-than relations between variables. In a
nutshell, we can prove that two pointers, p1 and p2, do not reference overlap-
ping memory locations if one of three conditions is met. First, there will be
no aliasing if p1 and p2 point to different abstract objects created at separate
program sites. This check is what the compiler literature typically calls alias
analysis. The other two checks give us the directions along which our work
departs from previous state-of-the-art, because we analyze pointers that ref-
erence parts of the same abstract object. Our second check tells that p1 and
p2 cannot alias if either p1 < p2 or p2 < p1, whenever these two variables
are simultaneously alive in the program. Notice that the inequality p1 < p2
means that the address pointed by p1, i.e., the contents of the variable p1, is
less than the address pointed by p2. To solve this inequality, we use the “less-
than” domain of Pentagons. Finally, our third check says that p1 and p2 refer
to distinct chunks of memory if these chunks comprise ranges of addresses
that never overlap at any moment during the execution of the program. To
demonstrate this fact, we rely on the “range” domain of Pentagons.

To validate our ideas, we have implemented them in LLVM [Lattner and
Adve (2004)]. Our new alias analysis increases the ability of this compiler to
disambiguate pointers by a significant margin. As an example, we increase
by almost 2.5x the number of pairs of pointers that we distinguish in SPEC’s
hmmer and bzip2. In SPEC’s lbm, this growth is almost 4-fold. Furthermore,
contrary to several algebraic pointer disambiguation techniques, our imple-
mentation scales up to programs with millions of assembly instructions. We
emphasize that these numbers have not been obtained by comparing our im-
plementation against a straw man: LLVM is an industrial-quality compiler,
which provides its users with a rich collection of pointer analyses.

3

Author Version of «Combining Range and Inequality Information
for Pointer Disambiguation », accepted in Science of Computer Programming, 2017

2. Overview

The algorithms in Figure 1 shall motivate the need for a new points-to
analysis. These two C programs make heavy use of arrays. In both cases,
we know that memory positions v[i] and v[j] can never alias within the
same iteration of the loop. However, traditional points-to analyses cannot
prove this fact. Typical implementations of these analyses that are built on
top of the work of Andersen [Andersen (1994)] or Steensgaard [Steensgaard
(1996)], can distinguish pointers that dereference different memory blocks.
However, they do not say much about references to the same array.

1 void ins sort(int∗ v, int N) {
2 int i, j;
3 for (i = 0; i < N − 1; i++) {
4 for (j = i + 1; j < N; j++) {
5 if (v[i] > v[j]) {
6 int tmp = v[i];
7 v[i] = v[j];
8 v[j] = tmp;
9 }

10 }
11 }
12 }

(a) Insertion sort

1 void partition(int ∗v, int N) {
2 int i, j, p, tmp;
3 p = v[N/2];
4 for (i = 0, j = N − 1;; i++, j−−) {
5 while (v[i] < p) i++;
6 while (p < v[j]) j−−;
7 if (i >= j)
8 break;
9 tmp = v[i];

10 v[i] = v[j];
11 v[j] = tmp;
12 }
13 }

(b) Partition

Figure 1: Two programs that challenge traditional pointer disambiguation analyses.

A more precise alias analysis brings many advantages to programming
language tools, including compilers. One of such benefits is optimizations:
the extra precision gives compilers information to carry out more extensive
transformations in programs. Figure 2 illustrates this benefit. The figure
shows the result of applying Surendran’s [Surendran et al. (2014)] inter-
iteration scalar replacement on the insertion sort algorithm shown in Fig-
ure 1. Scalar replacement is a compiler optimization that consists in moving
memory locations to registers as much as possible. This optimization tends
to speed up programs because it removes memory accesses from their source
code. In this example, if we can prove that v[i] and v[j] do not reference
overlapping memory locations, we can move these locations to temporary
variables. For instance, we have loaded location v[j] into tmp j at line 6.
We update the value of v[i] at line 13.

4

Author Version of «Combining Range and Inequality Information
for Pointer Disambiguation », accepted in Science of Computer Programming, 2017

1 void ins sort goal(int∗ v, int N) {
2 int i, j,tmp i,tmp j,tmp;
3 for (i = 0; i < N − 1; i++) {
4 tmp i=v[i];
5 for (j = i + 1; j < N; j++) {
6 tmp j=v[j];
7 if (tmp i > tmp j) {
8 tmp = tmp i;
9 tmp i = tmp j;

10 v[j] = tmp;
11 }
12 }
13 v[i]=tmp i;
14 }
15 }

Figure 2: Scalar replacement applied on Figure 1a. This kind of optimization is enabled
by more precise alias analyses.

There exist points-to analyses designed specifically to deal with pointer
arithmetics [Balakrishnan and Reps (2004); van Engelen et al. (2004); Paisante
et al. (2016); Rugina and Rinard (2000)]. Nevertheless, none of them works
satisfactorily for the two examples seen in Figure 1 and thus fail to enable
the optimization in Figure 2. The reason for this ineffectiveness lies on the
fact that these analyses use range intervals to disambiguate pointers. In our
examples, the ranges of integer variables i and j overlap. Therefore, any
conservative range analysis, à la Cousot [Cousot and Cousot (1977)], once
applied on Figure 1a, will conclude that i exists on the interval [0, N − 2],
and that j exists on the interval [1, N− 1]. Because these two intervals have
non-empty intersections, points-to analyses based on the interval lattice will
not be able to disambiguate the memory accesses at lines 6-8 of Figure 1a.

The techniques from this paper disambiguate v[i] and v[j] in both
examples. Key to this ability is the observation that i < j at every program
point where we access v. We conclude that i < j by means of a “less-than
check”. A less-than check is a relation between two variables, e.g., v1 and
v2, that is true whenever we can prove – statically – that one holds a value
less than the value stored into the other. In Figure 1a, we know that i < j

because of the way that j is initialized, within the for statement at line 4.
In Figure 1b, we know that i < j due to the conditional check at line 7.

The design space of constructing less-than relations between program
variables is large. In this paper, we chose to use the Pentagon lattice to

5

Author Version of «Combining Range and Inequality Information
for Pointer Disambiguation », accepted in Science of Computer Programming, 2017

build such relations. However, a straightforward application of Pentagons,
as originally defined by Logozzo and Fähndrich, would not be able to deduce
the disambiguation between v[i] and v[j]. The syntax v[i] denotes a
memory address given by v + i. Pentagons combine range analysis with a
less-than check. The range of v, a pointer, is [0,+∞]. Therefore, this will
be also the range of v + i and v + j. In other words, even though we know
that i < j, we cannot conclude that v + i < v + j. A way to solve this
problem is to separate the analysis of pointers from the analysis of integers.
In Section 4, we shall describe an abstract interpreter that does it.

In terms of implementation, our approach focuses on “top-level vari-
ables”: variables that we can represent in Static Single Assignment (SSA)
form [Alpern et al. (1988); Cytron et al. (1989)]. In this representation, each
variable has a single definition site, and special instructions, the φ-functions,
join the live ranges of names that, in the original program, represent the
same variable. Compilers such as gcc, icc and clang represent pointers
with offsets in this format. However, memory itself, i.e., regions pointed by
pointers, are not in the SSA representation. Thus, the developments that
we shall introduce in this paper do not disambiguate pointers to pointers:
this problem pertains to the domain of standard alias analyses, à la Ander-
sen [Andersen (1994)]. This fact does not compromise our implementation in
any way: range and inequality checks are only used to disambiguate pointers
that belong into the same memory unit, such as an array or a C-like struct.

This Paper in Five Examples. This section has explained the need for tech-
niques able to disambiguate pointers with offsets. The rest of this paper de-
scribes an implementation of such a technique. Our implementation involves
several steps. Throughout the paper, we use five examples to illustrate each
of these steps, when applied onto the program in Figure 1a. The first step
consists in converting the program to a suitable intermediate representation.
Example 1 illustrates this step for function ins sort. From this representation
we extract a data-structure called a Program Dependence Graph, as shown in
Example 3. The main purpose of this graph is to give us the means to disam-
biguate non related pointers and to enable comparing related ones using the
less-than relations. Such process is the subject of Example 4. The solution
of this constraint system gives us, for each variable v, a set of other variables
that are known to be less than v. Example 9 shows the sets that we obtain
for Figure 1a’s routine. Finally, we have different ways to perform queries on
these “less-than” sets. Example 11 clarifies this usage of our analysis.

6

Author Version of «Combining Range and Inequality Information
for Pointer Disambiguation », accepted in Science of Computer Programming, 2017

3. Program representation for sparsity and range pre-analysis

In this paper we shall work at a low-level representation of programs.
The syntax of this assembly-like language is given in Figure 3. The figure
also gives, informally, the semantics of each instruction. Throughout the
paper, we shall return to the high-level C notation whenever necessary to
explain examples; however, our formalization will happen onto the syntax
in Figure 3. Most of that syntax bears an intuitive semantics, except for
conditionals and φ-functions, which we use to make our analysis sparse, as
we discuss in Section 3.1. The instruction p0 = malloc(i0) creates a block of
i0 bytes of memory, and assigns the address of the first byte to pointer p0.
A load such as v = ∗p reads the contents of the memory cell pointed by p,
and assigns that value to v. The store instruction ∗p = v puts the value of
variable v into the address pointed by p. The notation v0 = φ(v1 : `1, v2 : `2)
assigns either v1 or v2 to v0, depending on the program flow reaching this
instruction through `1 or `2, respectively. The syntax of branches is more
convoluted, because it lets us infer “less-than” facts about the variables used
in the conditional test. We shall provide more details about this syntax in
the next section.

Prog ::= I∗ ; Program

I ::= ; Instruction

| p0 = malloc(i0) ; Memory allocation

| v0 = v1 + i0 ; Addition

| v = ∗p ; Load

| ∗p = v ; Store

| v0 = φ(v1 : `1, v2 : `2) ; Phi-function (Phi) (See [Cytron et al. (1989)])

| (v0 R v1) ? S∗B S∗B ; Branch (R ∈ {<,≤,=, 6=, >,≥})
B ::= ` : Phi∗I∗ ; Basic Block

S ::= v0 = σ(v1) ; Sigma-function (See [Singer (2006)])

Figure 3: The syntax of our language of pointers. Whenever a variable must be explicitly
a pointer, we name it p. Variables that need to be integers are named i. Variables that
can be either an integer or a pointer are named v. We use the Kleene Star (∗) to indicate
zero or more repetitions of a non-terminal.

7

Author Version of «Combining Range and Inequality Information
for Pointer Disambiguation », accepted in Science of Computer Programming, 2017

3.1. Sparse Analysis

The implementation that we discuss in this paper is a sparse analysis.
According to Tavares et al. [Tavares et al. (2014)], a data-flow analysis is
sparse if the abstract state associated with a variable is constant throughout
the entire live range of that variable. Notice that this information might not
be true for every program. As an example, consider the program in Figure 1b.
We know that i < j within lines 8-10. However, this fact is false at line 7.
To make a data-flow analysis sparse, we resort to live range splitting.

The live range of a variable v is the set of program points where v is alive.
To split the live range of a variable v, at a program point x, we insert a new
instruction v′ = v at x, where v′ is a fresh name. After that, we rename
every use of v that is dominated by x to v′. We say that a program point x
dominates a program point y if every path from the program’s entry point to
y must go across x. Live range splitting is a well-known technique to sparsify
data-flow analyses. There are several program representations that naturally
implement this trick. The most celebrated among these representations is
the Static Single Information form, which ensures that each variable has at
most one definition point.

The SSA format is not enough to ensure sparsity to the analysis that we
propose in this paper. Therefore, we use a different flavor of this program
representation: the Extended Static Single Assignment form [Bodik et al.
(2000)] (e-SSA). The e-SSA form can be computed cheaply from an SSA form
program. This extension introduces σ-functions to redefine program variables
at split points such as branches and switches1. These special instructions, the
σ-functions, rename variables at the out-edges of conditional branches. They
ensure that each outcome of a conditional is associated with a distinct name.
In our case, this property lets us bind to each variable name the information
that we learn about it as the result of comparisons performed in conditional
statements.

Example 1. Figure 4 shows the Control Flow Graph (CFG) of the program
seen in Figure 1a, in e-SSA form. The σ-functions rename every variable
used in a comparison. Renaming lets us, for instance, infer that xiT > xjT ,

1The original description of e-SSA form uses the name π-function. We have adopted
the name σ-functions, instead, following the work of Jeremy Singer on Static Single Infor-
mation (SSI) form [Singer (2006)]. Both notations define live range splitting instructions,
which work for the same purpose

8

Author Version of «Combining Range and Inequality Information
for Pointer Disambiguation », accepted in Science of Computer Programming, 2017

i0 = 0
N ′ = N − 1

i = φ(i0, i1)
i < N ′?

iT = σ(i)
N ′T = σ(N ′)
j0 = iT + 1

N ′F = σ(N ′)
iF = σ(i′)
halt

j = φ(j0, j1)
j < N?

jF = σ(j)
NF = σ(N)
i1 = iT + 1

jT = σ(j)
NT = σ(N)
vi = v + iT
vj = v + jT

xi = ∗vi

xj = ∗vj

xi > xj?

xiT = σ(xi)
xjT = σ(xj)
v′i = v + iT
v′j = v + jT

tmp = ∗v′i∗v′i = ∗v′j
∗v′j = ∗tmp

j1 = jT + 1

Figure 4: Control Flow Graph of program in Figure 1a. iT = σ(i) denotes the “true”
version of i after the test i < N . i = φ(i0, i1) denotes the value of i inside the first
loop, its value is i0 if the flow comes from the first block, or i1 if the flow comes
from the returning edge i1 = iT + 1.

because: (i) these variables are copies of xi and xj; and (ii) they only exist
in the true side of the test xi > xj.

3.2. Range Analysis for integer variables

A core component of our pointer disambiguation method is a range anal-
ysis for scalar variables, which can be symbolic or numeric. In this con-
text, a symbol is any name in the program syntax that cannot be built as
an expression of other names. Range analysis is not a contribution of this
work. There are several different implementations already described in the
compiler-related literature [Alves et al. (2015); Blume and Eigenmann (1994);
Nazaré et al. (2014); Rodrigues et al. (2013); Rugina and Rinard (2005)]. In
this paper, we have adopted a non-relational range analysis [Rodrigues et al.
(2013)] on the classic integer interval [Cousot and Cousot (1977)]. A non-
relational range analysis associates variable names with ranges that are not
function of other variables. Relational analyses, on the other hand, associate
sets of variable names with ranges. As an example, Miné’s Octagons create

9

Author Version of «Combining Range and Inequality Information
for Pointer Disambiguation », accepted in Science of Computer Programming, 2017

relations between pairs of variables and range information [Miné (2006)]. Our
approach to build this range analysis is less precise than a relational approach,
but has lower asymptotic complexity. In the sequel, we let R(v) = [l, u] be
the (symbolic) range of variable v computed by any range analysis.

Example 2. Considering the program in Figure 4, the analysis of Blume et
al. [Blume and Eigenmann (1994)] finds the following ranges for the variables
in that program: R(i0) = [0, 0], R(i1) = [1, N − 1], R(i) = [0, N − 1], R(j0) =
[1, N − 1], R(j1) = [2, N], R(j) = [1, N]. The ranges of integer variables
given by Rodrigues et al. [Rodrigues et al. (2013)] are R(i0) = [0, 0], R(i1) =
[1,+∞], R(i) = [0,+∞], R(j0) = [1,+∞], R(j1) = [2,+∞], R(j) = [1,+∞].

We would like to emphasize that the range analysis that we shall use to
obtain intervals for integer variables is immaterial for the correctness of our
work. The only difference they make is in terms of precision and scalability.
The more precise the range analysis that we use, the more precise the pointer
analysis that we produce, as we will see in Section 5.3. However, precision
has an impact on the runtime of the analysis. Given that range analysis is
not a contribution of this work, we shall omit details related to its implemen-
tation, and refer the reader to the original discussion about our particular
choice [Rodrigues et al. (2013)].

4. Pointer Disambiguation Based on Strict Inequalities

The technique that we introduce in this paper to disambiguate pointers
is semi-relational, i.e., it maps variables to ranges that might contain other
variables as symbolic limits; however, contrary to relational analysis, it does
not map groups of variables to abstract states. Our analysis lets us compare
two pointers, p1 and p2, and show that they are different, whenever we can
prove a core property, which we define below:

Definition 1 (The Strict Inequality Property). We say that two point-
ers, p1 and p2 are strictly different whenever we can prove that either p1 < p2,
or p2 < p1, at every program point where these two pointers are simultane-
ously alive.

Definition 1 touches several concepts pertaining to the vocabulary of com-
pilation theory. A program point is a region between two consecutive instruc-
tions in assembly code. We say that a variable v is alive at a program point

10

Author Version of «Combining Range and Inequality Information
for Pointer Disambiguation », accepted in Science of Computer Programming, 2017

x if, and only if, there exists a path from x to another program point where
v is used, and this path does not cross any redefinition of v. Computing
live ranges of variables is a classical dataflow analysis (Nielson et al., 2005,
Sec-2.1.4).

We call the alias analysis approach we describe in this paper “staged”,
because it works in successive stages. It consists of the following four parts,
which we describe in the rest of the paper:

1. Group pointers related to the same memory location. We describe this
step in Section 4.1

2. Collect constraints by traversing the program’s control flow graph. Sec-
tion 4.3 provides more details about this stage.

3. Solve the constraints produced in phase 3. Section 4.4 explains this
phase of our approach.

4. Answer pointer disambiguation queries. We describe our method of
answering queries in Section 5.

4.1. Grouping Pointers in Pointer Digraphs

Recalling Definition 1, we know that we can disambiguate two pointers, p1
and p2, whenever we can prove that p1 < p2. This relation is only meaningful
for pointers that are offsets from the same base pointer2. A base pointer is a
reference to the beginning of a memory block (address zero). As an example,
a statement like “u = malloc(4)” will create a base pointer referenced by u.
Formal arguments of functions, such as v in Figure 1a, are also base-pointers.

We call a Pointer Dependence Digraph (PDD) a directed acyclic graph
(DAG) with origin at one or more base-pointers. All other nodes in this data-
structure that are not base-pointers are variables that can be defined by an
offset o from the base pointers. We let o be a symbol, such as a constant or
the name of a variable, as defined in Section 3.2. For instance, the relation
p = p0 + o is represented, in the PDD, by an edge from the node p to the
node p0 labeled by ωp,p0 = o. We denote this edge by p→o p0.

When analyzing a program, we build as many PDDs as the number of
pointer definition sites in the program. Notice that this number is a static
concept. A memory allocation site within a loop still gives us only one
allocation site, even if the loop iterates many times. Such a data-structure

2The ISO C Standard forbids relational comparisons between pointers that refer to
different allocation blocks, even if said pointers have the same type (ISO, 9899:2011, Sec-
6.5.8p5).

11

Author Version of «Combining Range and Inequality Information
for Pointer Disambiguation », accepted in Science of Computer Programming, 2017

p = malloc() p

p = p0 + x p0 p

p = σ(p0) p0 p

p = φ(p0, p1) p0 p1

p

x

0

Figure 5: Rules to generate the pointer dependence digraph.

is constructed according to the rules in Figure 5, during a traversal of the
program’s control flow graph. Notice that we have a special treatment for
φ-functions. A φ-function is a special instruction used in the SSA format to
join the live ranges of variables that represent the same name in the original
program, before the SSA transformation. We mark nodes created by φ-
functions as dashed edges in the PDD. In this way, we ensure that a PDD
has no cycles, because in an SSA-form program, the only way a variable can
update itself is through a φ-function.

Example 3. The rules seen in Figure 5, once applied onto the control flow
graph given in Figure 4, give us the PDD shown in Figure 6.

v

vi vj

viT vjT

iT jT

00

Figure 6: Pointer dependence graph of program in Figure 1a.

12

Author Version of «Combining Range and Inequality Information
for Pointer Disambiguation », accepted in Science of Computer Programming, 2017

4.2. Constraint System

We solve the less-than analysis via a constraint system. This constraint
system is formed by five different kinds of constraints, which involve two
variables, and a relational operator. Valid relational operators are R ∈ {=
, <≤,≥, >}, each one giving origin to one of the five types of constraints.
If Prog is a program formed according to the syntax seen in Figure 3, and
{v1, v2} ∈ Prog are two variables, then we let v1 R v2 be a constraint. We
use the same names to denote program variables and constraint variables.
Program variables are elements that exist in the syntax of Prog ; constraint
variables are symbols, which, as we shall see in Section 4.4, are mapped to
“less-than” information. Because it is always possible to know which entity
we refer to, given the context of the discussion, we shall not use any notation
to distinguish them.

To explain the semantics of constraints, we describe the semantics of
programs. A program Prog is formed by instructions, which operate on
states σ : Var 7→ Int . We say that a variable v is defined at a state σ,
if σ(v) = n; otherwise, the variable is undefined at that state, a fact that
we denote by σ(v) = ⊥. Constraints determine relations between defined
variables, given a state σ. Definition 2 express this notion.

Definition 2 (Intuitive Semantics). We say that a constraint v1 R v2
satisfies a state σ if σ(v1) R σ(v2) whenever v1 and v2 are defined for σ.

4.3. Collecting Constraints

During this phase, we collect a set C of constraints according to the rules
in Figure 7. Recall that R(v) denotes the numeric range of variable v given
by a pre-analysis. We let R(v)↓ and R(v)↑ be the lower and upper bounds of
interval R(v), respectively. All the constraints that we produce in this stage
follow the template p1Rp2, where R ∈ {<,≤,=}. The rules in Figure 7
are syntax-directed. For instance, an assignment p=q+v lets us derive the
fact p > q, if the range analysis of Section 3.2 is capable of proving that v is
always strictly greater than zero. The “=” equality models set inclusion, and
is asymmetric as we shall explain in details in Section 4.4.

Constraints are simple, the syntax of the constraints is self-explanatory
using standard semantics ; however, some comments follow.

13

Author Version of «Combining Range and Inequality Information
for Pointer Disambiguation », accepted in Science of Computer Programming, 2017

Initialization ⇒ C = ∅

gep : q1 = p+ v1 ⇒

if R(v1)↓ > 0 C ∪ = {p < q1}
if R(v1)↓ > 0 C ∪ = {p 6 q1}
if R(v1)↑ < 0 C ∪ = {q1 < p}
if R(v1)↑ 6 0 C ∪ = {q1 6 p}

add : v = v1 + v2

similar for v and v2

with v = v2 + v1

⇒

if R(v2)↓ > 0 C ∪ = {v1 < v}
if R(v2)↓ > 0 C ∪ = {v1 6 v}
if R(v2)↑ < 0 C ∪ = {v < v1}
if R(v2)↑ 6 0 C ∪ = {v 6 v1}

sub : v = v1 − v2 ⇒

if R(v2)↓ > 0 C ∪ = {v < v1}
if R(v2)↓ > 0 C ∪ = {v 6 v1}
if R(v2)↑ < 0 C ∪ = {v1 < v}
if R(v2)↑ 6 0 C ∪ = {v1 6 v}

icmp : p1Rp2 ⇒

if R = “<”, then C ∪ = {pT1 < pT2 } ∪ {pF2 6 pF1 }
if R = “6”, then C ∪ = {pT1 6 pT2 } ∪ {pF2 < pF1 }
C ∪ = {pT1 = p1} ∪ {pF1 = p1} ∪ {pT2 = p2} ∪ {pF2 = p2}

union : v = φ(vi) ⇒ C ∪ = {v = φ(vi)}

v = c− v1, c ∈ N
q = ∗p
∗q = p

⇒ nothing

Figure 7: Constraints produced for different statements in our language. The notation
C ∪ = S is a shorthand for C = C ∪ S. v1 and v2 are constants or scalar variables.

Firstly, the difference between add and gep3 is the fact that the latter
represents an addition on a pointer p plus an offset v1, whereas the former
represents general integer arithmetics. We distinguish both because the C
standard forbids any arithmetic operation on pointers other than adding or
subtracting an integer to it. Therefore, to avoid comparing a pointer to an

3The name gep is a short form for get element pointer, the expression used to define a
new pointer address in the LLVM compiler.

14

Author Version of «Combining Range and Inequality Information
for Pointer Disambiguation », accepted in Science of Computer Programming, 2017

integer variable, the constraints that we produce for arithmetic operations
involving pointers are different from those we produce for similar instructions
that involve only integers, as Figure 7 shows.

A second aspect of our constraint system, which is worth mentioning, is
the fact that we do not try to track less-than information throughout point-
ers. Hence, as Figure 7 shows, we do not generate constraints for loads and
stores, which means that we do not build less-than relations for data stored
in memory. Consequently, our current implementation of the less-than lattice
misses opportunities to disambiguate second-order pointers, i.e., pointers to
pointers. This omission is not a limitation of the theory that we present in
this paper. Rather, it is an implementation decision, which we took to sim-
plify the design of our algorithm. Handling pointers to pointers is possible
in different ways. For instance, we can use some pre-analysis, à la Ander-
sen [Andersen (1994)] or à la Steensgaard [Steensgaard (1996)], to group
memory references into single locations. After this bootstrapping phase, we
can treat these memory locations as variables, and extract constraints for
them using the rules in Figure 7.

The construction of constraints for tests is more involved. The e-SSA
form, which we have discussed in Section 4, provides us explicit new versions
of variables, e.g.: pT, qT, pF, qF, after a test such as p < q. We use T as
a subscript for the new variable name created at the true branch; F has
similar use for the false branch. Thus, this conditional test for instance gives
us two constraints: pT < qT and pF ≥ qF.

Example 4. The rules in Figure 7, when applied onto the CFG seen in
Figure 4, give us that C = {N ′ < N , i = φ(i0, i1), iT < N ′

T , N ′
F ≤ iF ;

iT < j0, j = φ(j0, j1), iT = i, jT = j, jT < NT , NF ≤ jF , v ≤ vi, v < vj,
v ≤ v′i, v < v′j, jT < j1, iT < i1, xjT < xiT , xiF ≤ xjF}

The Relation between PDDs and Constraints. The purpose of the PDDs of
Section 4.1 is to avoid comparing pointers that are not related by C-style
arithmetics. They do not bear influence on the production of constraints;
rather, they are only used in the queries that we shall describe in Section 4.4.
This fact means that the grouping of pointers in digraphs is not an essential
part of the idea of using strict inequalities to disambiguate pointers. However,
PDDs are important from an operational standpoint: they provide a way of
separating pointers that are not related by arithmetic operations; hence, are
incomparable. Thus, the phases described in Section 4.1 and in this section
are independent, and can be performed in any order.

15

Author Version of «Combining Range and Inequality Information
for Pointer Disambiguation », accepted in Science of Computer Programming, 2017

strict less than : x < y ⇒

{
LT(y) ∪ = LT(x) ∪ {x}
GT(x) ∪ = GT(y) ∪ {y}

less than : x 6 y ⇒

{
LT(y) ∪ = LT(x)

GT(x) ∪ = GT(y)

non reflexive eq : x = y ⇒

{
LT(x) ∪ = LT(y)

GT(x) ∪ = GT(y)

Figure 8: Rules to solve constraints.

4.4. Solving Constraints

The objective of this phase is to obtain Pentagon-like abstract values for
each variable or pointer of the target program. Henceforth, we shall call the
set of program variables V . The product of solving constraints is a relation
LT. Given v ∈ V , LT(v) will keep track of all the variables that are strictly
less than v. In addition to LT, we build an auxiliary set GT. Set GT(v)
keeps track of all the variables that are strictly greater than v. Ordering
relations are reflexive; hence, if x < y, then y > x. This fact means that we
can build GT from LT, or vice-versa; hence, we could write our solver with
only one of these relations. However, using just one of them would result in
an unnecessarily heavy notation. Consequently, throughout the rest of this
section we shall assume that the following two equations are always true:

GT(v) = {vi | v ∈ LT(vi)} ∧ LT(v) = {vi | v ∈ GT(vi)}
Figures 8 and 10 contain the definition of our constraint solver. Con-

straints are solved via chaotic iterations: we compute for each program vari-
able a sequence of abstract values until reaching a fixpoint. The non-reflexive
equal is used to model relations that are known to be true before sigma nodes.
A given relational information which is true about variables before a condi-
tional branch continues to hold also in the “then” and “else” paths that
sprout from that branch. Example 5 illustrates this fact:

Example 5. If the relation (x < y) holds before a conditional node that uses
the predicate (x < z?), then these two relations are also true: (xT < y and

16

Author Version of «Combining Range and Inequality Information
for Pointer Disambiguation », accepted in Science of Computer Programming, 2017

xF < y), where xT is the new name of x in the “then” branch of the conditional,
and xF is the new name of x in the “else” branch.

Dealing with φ-functions. Join nodes are program points that denote loops
and conditional branches. In SSA-form programs, these nodes are created by
φ-functions. These instructions give us special constraints, as Figure 7 shows.
A φ-function such as v = φ(v1, v2) yields the constraint {v = φ(vi)}, 1 ≤ i ≤
2. When used in the head of loops, φ-functions may join variables that
represent initialization values and loop variant values for a given variable v.
To build a less-than relation between these variables, we must find out how
the value of v evolves during the execution of the program. It might increase,
it might decrease, or it might oscillate. If v only decreases, then it will be less
than or equal to the maximum among its initialization values. In the opposite
case, in which v only increases, the variable produced by the φ-function will
be greater than or equal to the minimum among its initialization values.

To infer relations between the variable defined by a φ-function, and the
variables used as arguments of that φ-function, we perform a growth check.
On the resolution of each join constraint such as x = φ(x1, . . . , xn), we check
if x is present in the LT or GT sets of some xi which is loop variant. If x is
present in the LT of each loop-variant right-side operand, then the program
contains only execution paths in which x grows. That is to say that x is
always receiving a value that is greater than itself. Dually, if x is present in
the GT of each loop-variant xi, then there exist only paths in the program
along which x decreases.

In order to detect if a given xi is loop-variant, we use the dominance in-
formation: if the definition of a φ-function, e.g., x, dominates the definition
point of one of its arguments, e.g., xi, then we know that this φ-function oc-
curs in a loop, and we say that xi is loop-variant. This observation holds for
the so called natural loops, which characterize reducible control flow graphs.
For the definition of these concepts, we refer the reader to the work of Fer-
rante et al. [Ferrante et al. (1987)]. Example 6 illustrates these observations.

Example 6. Variable x in Figure 9 (a) increases along the execution of the
program. Differently, variable x in Figure 9 (b) oscillates: it might increase
or decrease, depending on the path along which the program flows. Both
φ-functions exist in natural loops.

Figure 10 illustrates the use of constraints imposed by φ-functions. We
use conditional constraints to deal with them. A conditional constraint is

17

Author Version of «Combining Range and Inequality Information
for Pointer Disambiguation », accepted in Science of Computer Programming, 2017

z = 1

x1 = z + 1 x2 = z + 4

x =ϕ (x1, x2, x3)

x3 = x + 1

LT(z) = {}
LT(x1) = {z}

LT(x2) = {z}

LT(x) = {z}
LT(x3) = {x, z}

z = 1

x1 = z + 1

x =ϕ (x1, x2, x3)

x2 = x + 1

LT(z) = {}

LT(x1) = {z}1

LT(x2) = {x} 1

LT(x) = {x3}

LT(x3) = {}

GT(z) = {x1}

GT(x1) = {} 1

GT(x2) = {} 1

GT(x) = {x2}

GT(x3) = {x} 1

x3 = x − 1

(a) (b)

Figure 9: Less-than and greater-than sets built by our analysis.

formed by a trigger T and an action a, denoted by the notation T ⇒ a. The
action a is evaluated only if the trigger T is true. The constraint x = φ(xi)
has three different triggers, and at any moment, at least one of them is
true. Triggers check if particular LT and GT sets contain specific variables.
Example 7 explains how we compute the less-than set of x.

join : x = φ(xi)

0 6 i 6 n
⇒

i : A⇒ LT(x) ∪ =
⋂
LT(xj)

xj /∈Dom(x)

ii : B ⇒ GT(x) ∪ =
⋂
GT(xj)

xj /∈Dom(x)

iii : Otherwise⇒

LT(x) ∪ =

n⋂
i=0

LT(xi)

GT(x) ∪ =
n⋂

i=0

GT(xi)

Figure 10: Solving constraints for φ-functions. We let x′ ∈ {x, xT , xF } and Dom(x) =
{xi s.th. x dominates xi}, A ≡ ∀xj ∈ Dom(x), x′ ∈ LT(xj) and B ≡ ∀xj ∈ Dom(x), x′ ∈
GT(xj). A indicates that x increases in the loop, and B indicates that x decreases.
Variables xT and xF are new names of x created by σ-functions after conditional branches.

Example 7. Variable x, defined in Figure 9 (a) has increasing value, be-
cause it belongs into LT (x3) and Dom(x) = {x3}. Therefore, trigger i,

18

Author Version of «Combining Range and Inequality Information
for Pointer Disambiguation », accepted in Science of Computer Programming, 2017

in Figure 10 applies, and we know that LT(x) = LT(x) ∪ (LT(x1) ∩ LT(x2)).
Thus, LT(x) = LT(x) ∪ ({z} ∩ {z}) = {z}.

Implementation of the Constraint Solver. We solve the constraint set C via
the method of Chaotic Iterations (Nielson et al., 2005, p-176). We repeatedly
insert constraints into a worklist W , and solve them in the order they are
inserted. The evaluation of a constraint might lead to the insertion of other
constraints into W . This insertion is guided by a Constraint Dependence
Graph (CDG). Each vertex v of the CDG represents a constraint, and we
have an edge from v1 to v2 if, and only if, the constraint represented by v2
reads a set produced by the constraint represented by v1. Upon popping a
constraint such as x < y, we verify if its resolution changes the current state
of LT sets. If it does, then we insert back into the worklist every constraint
that depends on y, i.e., that reads LT(y). This algorithm has asymptotic
complexity O(n3). However, in practice our implementation runs in time
linear on the number of constraints, as we show empirically in Section 7.
The process of constraint resolution is guaranteed to terminate as shown in
Theorem 1. Example 8 illustrates this approach.

Example 8. We let C = {x < y, y < z}. The result of solving C to build
LT sets is given in Figure 11. Our worklist is initialized to the constraint set
C. Each variable v is bound to an abstract state LT(v) = ∅ and GT(v) = ∅.
Resolution reaches a fixpoint when the worklist is empty. In each iteration,
a constraint is popped, and abstract states are updated following the rules in
Figures 8 and 10. We also update the worklist according to the constraint
dependence graph.

WLi pop(WLi) LT(x) LT(y) LT(z)
{x < y, y < z} − ∅ ∅ ∅
{x < y, y < z} x < y ∅ {x} ∅
{y < z, y < z} y < z ∅ {x} {y, x}
{y < z} y < z ∅ {x} {y, x}
{} − ∅ {x} {y, x}

x < y y < z

Figure 11: Resolution of the constraints produced in Example 8. The order in which we
solve constraints is dictated by their dependences in the CDG shown on the right. Each
line depicts one step of the algorithm. WLi shows the worklist before we pop it.

19

Author Version of «Combining Range and Inequality Information
for Pointer Disambiguation », accepted in Science of Computer Programming, 2017

Theorem 1 (Termination). Constraint resolution always terminates.

Proof:4 The worklist based solver reaches a fixpoint, because of

two reasons. First, the updating of abstract states is monotonic. The

inspection of Figures 8 and 10 shows that the abstract state of variable

v, e.g., LT(v) and GT(v) is only updated via union with itself plus extra

information, if available. Second, abstract states are represented by

points in a lattice of finite height: at most the less-than or greater-than

set of a variable will contain all the other variables in the program.

Example 9. Example 4 showed us the constraints that we produce for the
program in Figure 4. The solution that we find for that constraint sys-
tem is the following: LT(i0) = LT(N ′) = LT(jF) = LT(iF) = LT(N ′

F) =
LT(xjT) = LT(xiF) = LT(xjF) = LT(i) = ∅, LT(i1) = {iT}, LT(N) = {N ′},
LT(j0) = {iT , i0}, LT(j1) = {jT , j0, iT}, LT(iT) = {i0}, LT(j) = {iT},
LT(jT) = {j0, iT}, LT(N ′

T) = {iT , i0}, LT(xiT) = {xjT}, LT(vj) = {v},
LT(v′j) = {v}. For brevity, we omit GT sets.

Valid Solutions. We say that LT is a valid solution for a constraint system
C, which models a program Prog if it meets the requirements in Definition 3.
Program states, i.e., σ, are defined in Section 4.2.

Definition 3 (Valid Solution). We say that LT |= σ if, for any v1 and v2,
well-defined at σ, we have that: LT |= σ ∧ v1 ∈ LT(v2)⇒ σ(v1) < σ(v2)

Theorem 2 states that the solution that we find for a constraint system
is valid. The proof of the theorem relies on the semantics of instructions.
Each instruction I transforms a state σ into a new state σ′. We shall not
provide transition rules for these instructions, because they have an obvious
semantics, which has been described elsewhere [(Nazaré et al., 2014, Fig.3)].

Theorem 2 (Correctness of the Strict Less-Than Relations). Our al-
gorithm produces valid solutions to the constraint system.

4We have not mechanized any of the proofs we present in this paper; hence, they
remain mostly informal. However, we believe that the intuition they provide helps readers
to understand the essential components of our technique.

20

Author Version of «Combining Range and Inequality Information
for Pointer Disambiguation », accepted in Science of Computer Programming, 2017

Proof: The proof of Theorem 2 consists in a case analysis on the
different constraints that can create the relation v1 ∈ LT(v2) in Fig-
ure 8 and 10. We go over a few cases. The proof goes by induction on
the size of LT; if LT is empty, the property is trivially verified.

• The constraint Strict less than x < v2 updates the strict less than
set of v2. LT(v2) = LT(v2)∪ LT(x)∪ {x}. For the sake of clarity,
we let LT′(v2) be the strict less than set of v2 before the update
introduced by the constraint x < v2. Henceforth, v1 ∈ LT(v2) if
v1 ∈ LT′(v2) or v1 ∈ LT(x), or v1 = x. If v1 = x, then we are
done, due to the constraint x < v2. Otherwise, if v1 ∈ LT(x), by
induction, v1 < x, and by transitivity we get v1 < v2. In case
v1 ∈ LT′(v2), by induction on LT′(v2), v1 < v2. In fact, since the
strict less than set of v2 is only growing up if updated, then if a
property holds for its members once, it holds even after updates.
In other words, LT′(v2) may be an update of LT′′(v2) in which
we have inserted v1 after resolving a constraint. In this case,
LT′′(v2) ⊆ LT′(v2) ⊆ LT(v2) with v1 ∈ LT′′(v2). In the remaining
of the proof, we shall be interested only on elements updating
LT(v2).

• The constraint non reflexive equal v2 = x, updates LT(v2) with
LT(x): LT(v2) = LT(v2) ∪ LT(x). We focus on v1 ∈ LT(x). By
induction, we get v1 < x. From Figure 7 we know that the
constraint comes from a test. Thus, w.l.o.g, we can assume that
this constraint is xT1 = x, coming from a test x < x2. The
condition v1 < x is true before the test. Because the e-SSA
conversion does not change the semantics of the target program,
the condition is still true after renaming the operands of the test,
thus v1 < xT1 = v2.

• The constraint x = φ(xi). We show the proof for the first case of
Figure 10, the second one is similar and the third one is straight-
forward. In this case we have ∀xj ∈ Dom(x), x′ ∈ LT(xj) imply-
ing LT(x) ∪ =

⋂
LT(xj)

xj /∈Dom(x)

. x′ ∈ {x, xT , xF }. In the general case

we would have: LT(x) ∪ =
n⋂

i=0
LT(xi) that we can write

LT(x) ∪ =

(⋂
LT(xj)

xj /∈Dom(x)

)⋃(⋂
LT(xj)

xj∈Dom(x)

)
since x may take any of xi values. We want to prove that if

21

Author Version of «Combining Range and Inequality Information
for Pointer Disambiguation », accepted in Science of Computer Programming, 2017

y ∈
⋂
LT(xj)

xj /∈Dom(x)

, then y < x under condition A. We let xj0 ∈

Dom(x) such that x′ ∈ LT(xj0). This means that xj0 is defined
as follows: xj0 = x′ + a; a > 0. Hence, there exists a redefinition
x′i of x among φ operands such that 〈x = x′i〉 and xj0 = x′i + a.
Since a > 0 we obtain x′i < xj0 with two possible situations for
x′i:

– x′i ∈ Dom(x), then x′ ∈ LT(x′i) which gives again ∃x′′i such
that x′′i < x′i < xj0 .

– x′i /∈ Dom(x), then y ∈ LT(x′i). As there cannot be any
infinite descending sequence of φ redefinitions, all instances
of variable x are greater than x′i. By induction on LT,
y ∈ LT(x′i) gives y < xi and therefore y < x.

5. Answering Alias Queries

The final product of the techniques discussed in the previous section, is a
table that associates each variable v with a set LT(v) of other variables that
are less than v. This table gives us the means to prove that some pairs of
pointers cannot dereference overlapping memory regions. We call this process
pointer disambiguation. We use three different tests to show that pointers
cannot alias each other. We define a query as the process of applying such
test on a given pair of pointers.

Figure 12 illustrates the relationship between the three tests that we use
to answer queries. If we cannot conclude that two pointers always refer to
distinct regions, then we say – conservatively – that they may alias. Cur-
rently, we do not use our infra-structure to prove that two pointers must alias
each other.

(p1, p2) PDD LTC

No alias No alias

Ranges

No alias;May alias

Alias query May alias May alias

Different Digraphs p1 ∈ LT(p2) ∨ p2 ∈ LT(p1)

Figure 12: Steps used in the resolution of pointer disambiguation queries.

The three pointer disambiguation checks that Figure 12 outlines are com-
plementary and definitive. By complementary, we mean that none of them

22

Author Version of «Combining Range and Inequality Information
for Pointer Disambiguation », accepted in Science of Computer Programming, 2017

subsumes the others. By definitive, we mean that they all are conservatively
safe: if any of these checks reports that pointers p1 and p2 do not alias, then
this information, regardless of the results produced by the other checks, is
enough to ensure that p1 and p2 refer to different locations. In the rest of
this section, we provide further details about the three pointer disambigua-
tion tests that we use. Briefly, we summarize them as follows, assuming that
we want to disambiguate pointers p1 and p2:

PDD: If p1 and p2 belong into different pointer dependence digraphs, then
they are said to be unrelated. PDDs are described in Section 4.1.

Less-Than: We consider two disambiguation criteria:

1. If p1 ∈ LT(p2), or vice-versa, then these pointers cannot point to
overlapping memory regions.

2. Memory locations p1 = p + x1 and p2 = p + x2 will not alias if
x1 ∈ LT(x2) or x2 ∈ LT(x1).

Ranges: If we can reconstruct the ranges covered by p1 and p2, and these
ranges do not overlap, then p1 and p2 cannot alias each other.

5.1. The Digraph Test

We have seen, in Section 4.1, how to group pointers that are related
by C-style pointer arithmetics into digraphs. Pointers that belong to the
same PDD can dereference overlapping memory regions. However, pointers
that are in different digraphs cannot alias, because they reference different
memory allocation blocks. Memory blocks are different if they have been
allocated at different program sites. Example 10 illustrates this observation.

Example 10. The program in Figure 13 contains two different memory al-
location sites. The first is due to the argument argv. The second is due to
the malloc operation that initializes pointer s1. These two different locations
will give origin to two different pointer dependence digraphs, as we show in
the figure.

23

Author Version of «Combining Range and Inequality Information
for Pointer Disambiguation », accepted in Science of Computer Programming, 2017

1 int main(int argc, char∗∗ argv) {
2 int n = strlen(argv[1]);
3 char∗ s1 = (char∗) malloc(n);
4 char∗ s2 = argv[1];
5 char∗ s3 = s1;
6 char∗ s4 = s2 + n;
7 while (s2 < s4) {
8 ∗s3 = ∗s2;
9 s2++;

10 s3++;
11 }
12 }

argv[1]

s2

s4

s1

s3

0

n

n

Figure 13: Program that contains two different memory locations, which
will give origin to two unconnected pointer dependence digraphs. For the

sake of brevity, the program is kept in high level language.

We do not track abstract information that flows through memory loca-
tions (cf. Section 4.3). In other words, we do not generate constraints for
information that comes out of load and store instructions. Similarly, our
current implementation of the Digraph Test also does not consider point-
ers to pointers when building PDDs. Thus, our PDDs contain vertices that
represent only top-level variables, e.g., variables that our baseline compiler,
LLVM, represents in Static Single Assignment form. The consequence of this
implementation decision is that currently we do not disambiguate pointers
p1 and p2 in the following code snippet: {p1 = v + 4; *x = v; p2 = *x

+ 8;}, because we forgot the fact that v and *x represent the same memory
location.

5.2. The Less-Than Test

The less-than test relies on the relations constructed in Section 4.4 to
disambiguate pointers. This test is only applied onto pointers that belong
to the same pointer dependence digraph. From Theorem 2, we know that if
p1 ∈ LT(p2), then p1 < p2 whenever these two variables exist in the program.
Along similar lines, we have p1 < p2 if x < y with p1 = p+ x and p2 = p+ y.
Therefore, they cannot dereference aliasing locations. Example 11 illustrates
the application of this test.

Example 11. We want to show that locations v[i] and v[j] in Figure 1a can-
not alias each other. The CFG of function ins sort appears in Figure 4. In the

24

Author Version of «Combining Range and Inequality Information
for Pointer Disambiguation », accepted in Science of Computer Programming, 2017

CFG’s low-level representation, v[i] corresponds to vi, and v[j] corresponds to
vj. We know that LT(jT) = {j0, iT} (as seen in Example 9) and vi = v + iT
and vj = v + jT . Therefore, we can conclude that these two pointers vi and
vj do not alias.

5.3. The Ranges Test

The so called Ranges test is a byproduct of the key components of the
previous PDD test. This test consists in determining an expression of the
range of intervals covered by two pointers, p1 and p2, which share the same
pointer digraph. If these two ranges do not intersect, then we can conclude
that p1 and p2 do not alias. Algorithmically, this test proceeds as follows:

1. Find the closest common ancestor pa of p1 and p2. We say that pa is
the closest common ancestor of these pointers if, and only if, (i) it is an
ancestor, e.g., dominates both p1 and p2; and (ii) for any other pointer
p′ 6= pa that dominates p1 and p2, we have that p′ dominates pa.

2. Rewrite p1 and p2 as function of pa. To this end, we repeat the following
re-writing rule:

(a) If px →e pi, i ∈ {1, 2} in the pointer dependence digraph, then we
replace pi by px + e.

(b) If px 6= pa, then repeat step 2a.

3. Let pa + e1 and pa + e2 be the final expressions that we obtain for
pointers p1 and p2. If R(e1)∩R(e2) = ∅, then we report that p1 and p2
do not alias. Otherwise, we report that these pointers might alias.

Step 2 above is collapsing a path P(pi, pa) = (pi, . . . , pa) in the pointer
digraph into a single edge pi → pa. This technique relies on the same ideas
introduced by Paisante et al [Paisante et al. (2016)] to disambiguate point-
ers: if two pointers cover non-overlapping ranges, then they cannot alias.
However, in terms of implementation, we use range analysis on the integer
interval lattice. Paisante et al. use a symbolic range analysis. There is no
theoretical limitation that prevents us from using a symbolic lattice to reuse
Paisante et al.’s test. We have opted to use the simpler interval lattice be-
cause it is already available in LLVM, the compiler that we have used to
implement our alias analysis. Example 12 shows how the range test works
concretely.

25

Author Version of «Combining Range and Inequality Information
for Pointer Disambiguation », accepted in Science of Computer Programming, 2017

Example 12. Consider the program in Figure14a. Our goal in this example
is to disambiguate pointers p2 and p3. We have that LT(p0) = ∅, LT(p1) =
{p0}, LT(p2) = {p0, p1} and LT(p3) = {p0}. p2 /∈ LT(p3) and p3 /∈ LT(p2). The
simple less than check is not able to disambiguate these pointers; hence, we re-
sort to the range test. The dependence graph of Figure14a reveals that the low-
est common ancestor of p3 and p2 is p0. P(p2, p0) = (p2, p1, p0) P(p3, p0) =
(p3, p0). Our re-writing algorithm gives us that p2 = p0+y+x, and p3 = p0+z.
Using range information, we get that: R(y + x) = R(y) + R(x) = [3, 4] and
R(z) = [5, 7]. These ranges do not intersect; therefore, p2 and p3 do not
alias.

1 void pdd ex(int N){
2 if (N>0){
3 int ∗p0=malloc(N);
4 int x = 1;
5 int y = (rand()%2) + 2;
6 int z= (rand()%3) + 5;
7 int∗ p1=p0+x;
8 int∗ p2=p1+y;
9 int∗ p3=p0+z;

10 }
11 }

(a) A program.

p0

p1 p3

p2

x

yT

z′T

(b) Its Pointer Dependence Digraph.

Figure 14: Disambiguating pointers with PDD and Ranges

The impact of range analysis on the precision of our method. In Section 3.2
we emphasized that the more precise the range analysis for integer variables
that we use, the more precise the pointer analysis that we produce. Let us
now detail how the difference in precision affects our analysis of pointers.
In Figure 15, we give a simple program where our goal is to disambiguate
memory locations p[i] and p[i + 1]. Suppose that we have renamed variable
i to i0 at line `3 and to i1 at `4 and memory locations p[i] and p[i + 1] to
respectively p0 and p1. We have P(p0, p) = (p0, p) and P(p1, p) = (p1, p).
The re-writing algorithm gives us that p0 = p+ i0 and p1 = p+ i1.

The range analysis we use gives: R(i0) = [0, N − 1] and R(i1) = [1, N].
These ranges are over-approximated and make i0 and i1 possibly have the
same value. Therefore, pointers p0 and p1 may dereference overlapping mem-
ory regions which is clearly not the case. However, if we adopt a more

26

Author Version of «Combining Range and Inequality Information
for Pointer Disambiguation », accepted in Science of Computer Programming, 2017

precise abstract interpretation to generate i0 and i1 possible values such as
A(i0) = [0, N − 1] ∩ 2x;x ∈ N and A(i1) = [1, N] ∩ (2x + 1);x ∈ N, then
we can disambiguate p0 and p1 since A(i0) ∩ A(i1) = ∅

1 void range(int N, int∗ p){
2 for(int i = 0; i < N ; i += 2){
3 p[i] = i; // i0 = i; p0 = p + i0
4 p[i + 1] = i + 1; // i1 = i; p1 = p + i1
5 }
6 }

Figure 15: Program to show the effect of precision of integer analysis on pointer
disambiguation.

We close this section with an example in which all the three tests that we
have fail. In this case, we say that pointers may alias. In Example 13, below,
we fail to disambiguate pointers, but they alias indeed. We might also fail
to disambiguate pointers that do not alias. This type of omission is called a
false positive.

Example 13. The program in Figure 16 is the same as the program in Fig-
ure 14a, except that the ranges of variables x, y and z have been modified.
Due to this modification, none of our three previous tests can prove that p2
and p3 do not alias. The tests fail for the following reasons:

• Pointers p2 and p3 are derived from the same base pointer p0; hence,
they may alias due to Section 5.1’s test.

• Neither p3 ∈ LT(p2) nor p2 ∈ LT(p3). Variables y and z, p2 and
p3’offsets, are not compared since the pointers are not directly related
to the same base pointer; hence, p2 and p3 may alias according to the
less-than check of Section 5.2.

• The range test of Section 5.3 does not fare better. We have that p2 =
p0 + x+ y and p3 = p0 + z. R(x+ y) = [3, 6] and R(z) = [3, 7]. These
two intervals intersect; hence, the range test reports that p2 and p3 may
alias.

27

Author Version of «Combining Range and Inequality Information
for Pointer Disambiguation », accepted in Science of Computer Programming, 2017

1 int may alias(int N, int C) {
2 int∗ p0 = malloc(N);
3 int x = 1;
4 int y = C ? 2 : 5;
5 int z = C ? 3 : 7;
6 int∗ p1 = p0 + x;
7 int∗ p2 = p1 + y;
8 int∗ p3 = p0 + z;
9 }

Figure 16: Our analysis reports that pointers p2 and p3 may alias.

6. Complexity of our Analysis

Our analysis can be divided into preprocessing steps and the actual alias
tests. The first step in the preprocessing phase is the collection of constraints.
It runs in linear time on the number of program instructions (O(i)), because
it traverses the code, verifying if each instruction defines constraints. The
second step of the preprocessing phase consists in building a pointer de-
pendence graph. Additionally, pointer attributes are propagated along the
graph. This step’s complexity is O(i + p + e), with i being the number of
program instructions, p the number of pointers and e the number of edges
in the dependence graph. The final preprocessing step consists in running
the work-list algorithm, and is equivalent to the problem of building transi-
tive closures of graphs. Its worst case complexity is O(c3 ∗ v); c being the
number of constraints and v the number of variables. Nevertheless, we have
not observed this complexity empirically. The experiments that we perform
in Section 7.2 will demonstrate that our algorithm runs in O(c) in general.
This lower complexity is justified by a simple observation: a program variable
tends to interact with only a handful of other variables. Thus, the number
of possible dependencies between variables, in practice, is limited by their
scope in the source code of programs that we analyze.

After all the preprocessing, each of our three alias tests has constant
complexity. In other words, the relevant computations have been already
performed on the preprocessing steps. Thus, each test just checks pointers
attributes in a table. Keeping this table requires O(v2) space, as the num-
ber of possible relations between variables is quadratic in the worst case.
However, usually this table shall demand linear space.

28

Author Version of «Combining Range and Inequality Information
for Pointer Disambiguation », accepted in Science of Computer Programming, 2017

7. Evaluation

In this section, we discuss the empirical evaluation of our analysis and its
implementation in the LLVM compiler, version 3.7.

All our experiments have been performed on an Intel i7-5500U, with 16GB
of memory, running Ubuntu 15.10. The goal of these experiments is to show
that: (i) our alias analysis increases the capacity of LLVM to disambiguate
pointers; (ii) the asymptotic complexity of our algorithm is linear in practice
and (iii) the three pointer disambiguation tests are useful.

7.1. Evaluation of the Precision of our Analysis

In this section, we compare our analysis against a pointer analysis that
is available in LLVM 3.7: the so called basic alias analysis, or basicaa for
short. This algorithm is currently the most effective alias analysis in LLVM,
and is the default choice at the -O3 optimization level. It relies on a number
of heuristics to disambiguate pointers5:
• Distinct globals, stack allocations, and heap allocations can never alias.
• Globals, stack allocations, and heap allocations never alias the null

pointer.
• Different fields of a structure do not alias.
• Indexes into arrays with statically distinct subscripts cannot alias.
• Many common standard C library functions never access memory or,

if they do it, then these accesses are read-only.
• Stack allocations which never escape the function that allocates them

cannot be referenced outside said function.
Figure 17 shows how the LLVM’s basic alias analysis, Andersen’s inclusion-

based analysis [And94], and our approach fare when applied on the integer
programs in SPEC CPU2006 [Henning (2006)]. Henceforth, we shall call
our analysis sraa, to distinguish it from LLVM’s basicaa and Andersen’s
analysis called CF (because it uses context free languages (CFL) to model
the inclusion-based resolution of constraints). Our algorithm sraa is imple-
mented in LLVM 3.7.1. However, CF is distributed in LLVM 3.9.0. Thus, in
Figure 17, CF’s numbers have been produced via LLVM 3.9.0. We empha-
size that both versions of this compiler produce exactly the same number

5This list has been taken from the LLVM documentation, available at
http://llvm.org/docs/AliasAnalysis.html in November 2016

29

Author Version of «Combining Range and Inequality Information
for Pointer Disambiguation », accepted in Science of Computer Programming, 2017

Program #Queries %basicaa %sraa %(s + b) %CF
473.astar 90686 40.68 52.15 62.14 X
445.gobmk 3556322 45.16 12.01 48.81 49.91
458.sjeng 528928 67.51 49.65 73.29 73.82
456.hmmer 2894984 8.55 19.60 22.86 53
464.h264ref 19809278 12.37 6.96 14.59 18.64
471.omnetpp 13987157 18.72 1.49 19.67 X
429.mcf 66687 10.70 31.56 34.37 14.05
462.libquantum 120479 39.41 30.27 53.04 42.16
401.bzip2 2485116 20.84 50.67 51.88 22.75
403.gcc 198350037 3.97 13.09 15.51 12.3
483.xalancbmk 11674531 15.35 27.40 32.41 X
400.perlbench 31129433 7.37 12.98 16.28 21.11
470.lbm 31193 3.45 40.17 41.70 3.81

Figure 17: Comparison between three different alias analyses. We let s + b be the combi-
nation of our technique and the basic alias analysis of LLVM. Numbers in basicaa, sraa,
s+b, and CF show percentage of queries that answer “no-alias”. The X sign indicates
that the exhaustive evaluator could not run with Andersen’s analysis and aborted.

of alias queries. We notice that, even though the basic alias analysis dis-
ambiguates more pointers in several programs, our approach surpasses it in
some benchmarks. It does better than basicaa on lbm and bzip2. Moreover,
we improve basicaa’s results considerably when both analyses run together
on gobmk. Visual inspection of lbm’s code reveals a large number of hard-
coded constants. These constants, which are used to index memory, give our
analysis the ability to go beyond what basicaa can do. This fact shows that
LLVM still lacks the capacity to benefit from the presence of constants in the
target code to disambiguate pointers. LLVM 3.9.0 uses the basic alias anal-
ysis by default, in contrast to LLVM 3.7.1, which does not use any pointer
disambiguation strategy by default. Therefore, to fairly compare against CF,
we consider numbers that both analyses get when combined with basicaa.
This experiment reveals that there is no clear winner between our analysis
and CF. In terms of total number of pointers disambiguated, our analysis is
slightly more precise than Andersen’s. We did not combine the two analyses,
because they do not run in the same version of LLVM. However, we expect
our analysis to increase the precision of Andersen’s, as the latter does not
deal with pointers with offsets.

Figure 18 compares our analysis against basicaa in terms of the absolute
number of queries that they can resolve. A query consists of a pair of point-

30

Author Version of «Combining Range and Inequality Information
for Pointer Disambiguation », accepted in Science of Computer Programming, 2017

bz
ip

2

om
ne

tp
p

hm
m

er

h2
64

re
f

gc
c

sje
ng

as
ta

r

xa
la
nc

bm
k

go
bm

k
m

cf

pe
rlb

en
ch

lib
qu

an
tu

m
lb

m
103

104

105

106

107

108

basicaa
SRAA
basicaa+SRAA

Figure 18: Comparison between SRAA and LLVM’s basic alias analysis, showing how it
increases LLVM’s capacity to disambiguate pointers. The X-axis shows SPEC CPU2006
benchmarks. The Y-axis shows the number of queries answering no alias. The higher the
bar, the better for the algorithm that we introduce in this paper.

ers. We say that an analysis solves a query if it is able to answer no alias for
the pair of pointers that the query represents. When applied onto the pro-
grams available in SPEC CPU2006, both analyses, basicaa and sraa, are
able to solve several queries. There is no clear winner in this competition,
because each analysis outperforms the other in some benchmarks. However,
in absolute terms, sraa is able to solve about twice more queries (3.6 107 vs
1.9 107) than basicaa. Because neither analysis is a superset of the other,
when combined they deliver even more precision. The obvious conclusion of
this experiment is that sraa adds a non-trivial amount of precision on top
of basicaa. A measure of this precision is the number of queries missed by
the latter analysis, and solved by the former.

Similar numbers are produced by benchmarks other than SPEC CPU2006.
For instance, Figure 19 shows the same comparison between basicaa and

31

Author Version of «Combining Range and Inequality Information
for Pointer Disambiguation », accepted in Science of Computer Programming, 2017

0 20 40 60 80 100
102

103

104

105

106

107

108

109

pairs
sraa
basicaa
basicaa+sraa

Figure 19: Effectiveness of our alias analysis (SRAA), when compared to LLVMs basic
alias analysis on the 100 largest benchmarks in the LLVM test suite (TSCV removed).
Each tick in the X-axis represents one benchmark. The Y-axis represents total number of
queries (one query per pair of pointers), and number of queries in which each algorithm
got a no-alias response.

sraa, this time on the 100 largest benchmarks available in the LLVM’s test
suite. Nevertheless, the results found in Figure 19 are similar to those found
in Figure 18. Our sraa outperforms basicaa in the majority of the tests,
and their combination outperforms each of these analyses separately in ev-
ery one of the 100 samples. We have included the total number of queries in
Figure 19, to show that, in general, the number of queries that we solve is
proportional to the total number of queries found in each benchmark.

The Role of the Three Disambiguation Tests. Figure 20 shows how effective is
each one of the three disambiguation tests that we have discussed in Section 5.
In our staged approach, these tests work in succession: given a query q, first
we use the PDD test of Section 5.1 to solve it. If this test fails, then we use
the less-than test of Section 5.2 to solve q. If this second method still fails to
disambiguate that pair of pointers, then we invoke the third test, based on
range analysis and discussed in Section 5.3. As Figure 20 shows, most of the
queries can be answered by simply checking that different pointers belong
into different pointer dependence digraphs (PDDs). We should remind the
reader that, out of our three checks, only PDD can disambiguate pointers to
pointers: the other two checks are applied only on top-level variables, e.g.,

32

Author Version of «Combining Range and Inequality Information
for Pointer Disambiguation », accepted in Science of Computer Programming, 2017

bz
ip

2

om
ne

tp
p

hm
m

er

h2
64

re
f

gc
c

sje
ng

as
ta

r

xa
la
nc

bm
k

go
bm

k
m

cf

pe
rlb

en
ch

lib
qu

an
tu

m
lb

m

103

104

105

106

107

108
Total SRAA
PDD
LTC
Ranges
basicaa

Figure 20: How the three tests in SRAA compete to disambiguate pairs of pointers. The
Y-axis denotes the number of disambiguated pairs of pointers.

pointers allocated on the stack, which are represented in SSA form. Thus, it
is expected that they will be less effective, as they have a more constrained
data space to operate. Yet, the algebraic rules present in these two tests are
essential in some benchmarks. In particular, the less-than check improves
the PDD test by more than 30% on average, and in some cases, such as
SPEC’s lbm, it more than doubles its precision. In some cases, e.g., astar,
perlbench and lbm, it is thanks to this test that we outperform basicaa.

Figure 20 shows that the range analysis test is not very effective when
compared to the other two tests. This behavior is due to two reasons. First,
the range test is based solely on a numeric range analysis. Even though a
numeric range analysis is enough to distinguish p1 and p2 defined as p1 = p+1
and p2 = p + 2, usually most of the offsets are symbols, not constants. The
ability to use symbols to distinguish pointers is one of the key factors that led
us to use a less-than check in this work. Second, the range test is the last one
to be applied. Therefore, most of the queries have already been solved by the
other two approaches by the time the range test is called. Specifically, there
is a large overlap between the less-than test and the range test. We have
observed that 11.97% of all the queries solved by the less-than check could
also be solved by the range test. To fundament this last point, Figure 21
shows the total number of queries solved by each test. In this experiment,

33

Author Version of «Combining Range and Inequality Information
for Pointer Disambiguation », accepted in Science of Computer Programming, 2017

bz
ip

2

om
ne

tp
p

hm
m

er

h2
64

re
f

gc
c

sje
ng

as
ta

r

xa
la
nc

bm
k

go
bm

k
m

cf

pe
rlb

en
ch

lib
qu

an
tu

m
lb

m
102

103

104

105

106

107

108

Total SRAA
PDD
LTC
Ranges

Figure 21: How three tests in SRAA separately compete to disambiguate pairs of pointers.
The Y-axis denotes the number of disambiguated pairs of pointers.

we run each test independently; hence, the success of one resolution strategy
does not prevent the others from being applied. Nevertheless, the range test
of Section 5.3 is still the least effective of the three approaches that we have
discussed in this paper.

7.2. Runtime experiments

Figure 22 shows the runtime of our alias analysis on the 100 largest bench-
marks in the LLVM test suite. As the figure shows, we are able to run our
three tests for all the benchmarks, but eleven, in less than one second. Nev-
ertheless, we observe a linear behavior. In Figure 22, the coefficient of de-
termination (R2) between the number of instructions and the runtime of our
analysis is 0.8284. The closer to 1.0 is this metric, the more linear is the
correlation between these two quantities.

Figure 23 discriminates the runtime of each disambiguation test. Our
largest benchmark, 403.gcc, took about 200 seconds to finish. Such long
time happens because, in the process of solving constraints, we build the

34

Author Version of «Combining Range and Inequality Information
for Pointer Disambiguation », accepted in Science of Computer Programming, 2017

0 20 40 60 80 100

10-1

100

101

102

103

104

105

106

107

108 #Pointers
Number of Instructions
SRAA runtime

Figure 22: Comparison between the number of queries and total runtime (3 tests) per
benchmark. X-axis represents LLVM benchmarks, sorted by number of instructions. We
measure the SRAA runtime in seconds.

bz
ip

2

om
ne

tp
p

hm
m

er

h2
64

re
f

gc
c

sje
ng

as
ta

r

xa
la
nc

bm
k

go
bm

k
m

cf

pe
rlb

en
ch

lib
qu

an
tu

m
lb

m

10-2

10-1

100

101

102

Total Time SRAA

Time_PDD

Time_LTC

Time_Ranges

Figure 23: Time in seconds that each check (PDD, LTC, and Ranges) of our analysis takes
to disambiguate all SPEC CPU2006 pairs of pointers.

transitive closure of the less-than relations between variables. The graph that
represents this transitive closure might be cubic on the number of program

35

Author Version of «Combining Range and Inequality Information
for Pointer Disambiguation », accepted in Science of Computer Programming, 2017

bz
ip

2

om
ne

tp
p

hm
m

er

h2
64

re
f

gc
c

sje
ng

as
ta

r

xa
la
nc

bm
k

go
bm

k
m

cf

pe
rlb

en
ch

lib
qu

an
tu

m
lb

m
10-3

10-2

10-1

100

101

102

Total Time SRAA
Time_PDD

Time_LTC

Time_Ranges

Figure 24: Time in seconds needed by each test (PDD, LTC, and Ranges) when run
selectively to disambiguate pairs of pointers in SPEC CPU2006.

variables. The figure also shows the total time taken by our alias analysis,
which includes the time to construct the transitive closure of the pointer
dependence digraph and collecting constraints. The LTC test accounts for
most of the execution time within the pointer disambiguation phase of this
experiment. This behavior is due to the growth check that we use to solve
φ-functions. The range and PDD tests take similar runtimes. In Figure 24,
the less-than check runs only if the PDD test fails. Once we have built LT
relations, this test amounts to consulting hash-tables. As a final observation,
we notice that the range test tends to be the least time-intensive among the
three disambiguation strategies that we have. It takes less time because it
only runs on pairs of pointers within the same PDD.

Figure 25 compares the time to run the three disambiguation tests in a
staged fashion against the time to run these tests independently. The non-
staged approach is theoretically slower, because it always runs 3 × Q tests,
whereas the staged approach runs Q + (Q − S1) + (Q − S1 − S2), where S1

are the queries solved by the first test, and S2 are the queries solved by the
second. Nevertheless, Figure 25 does not show a clear winner. The fact that
the three test are relatively fast explains this result.

36

Author Version of «Combining Range and Inequality Information
for Pointer Disambiguation », accepted in Science of Computer Programming, 2017

bz
ip

2

om
ne

tp
p

hm
m

er

h2
64

re
f

gc
c

sje
ng

as
ta

r

xa
la
nc

bm
k

go
bm

k
m

cf

pe
rlb

en
ch

lib
qu

an
tu

m
lb

m

10-2

10-1

100

101

102

Total Time SRAA
Total Time Selective SRAA

Figure 25: Comparison between time (in seconds) needed to run SRAA selectively (non
overlapping tests) and separately (disjoint tests)

8. Related Work

Although alias analysis is an old subject in the compiler literature, it
still draws the attention of researchers, who are interested in extending it to
new domains [Petrashko et al. (2016)], making it yet more efficient [Dietrich
et al. (2015)], or using it as a fundamental building block of new optimiza-
tions [Alves et al. (2015)] and static analyses [Johnson et al. (2015)]. In such
context, this work has the goal of designing a more precise alias analysis for
languages with pointer arithmetics. To this end, we join two techniques that
compilers use to understand programs: alias and less-than analyses. Both
these techniques have spurred a long string of publications within the pro-
gramming languages literature. We do not know of another work that joins
both these research directions into a single path, except for the two papers
that we have recently published, and that this document expands [Maalej
et al. (2017); Paisante et al. (2016)]. In the rest of this section we discuss
how we extend that previous work or ours, and how we differ from the current
state-of-the-art literature on alias and less-than analyses.

37

Author Version of «Combining Range and Inequality Information
for Pointer Disambiguation », accepted in Science of Computer Programming, 2017

8.1. A Comparison Against our Previous Work

As we have mentioned before, this paper extends two previous publica-
tions of ours. We believe that the current materialization of our ideas is more
solid than our first two endeavors in the field of pointer disambiguation. To
fundament this claim, in what follows we describe our previous work, and
explain how we have extended it.

Symbolic Range Analysis of Pointers. Our first attempt to disambiguate
pointers with offsets appeared in CGO’16 [Paisante et al. (2016)]. In that
work, we have used a symbolic range analysis to place bounds on memory re-
gions. Here, we use a combination of numeric range analysis and a less-than
analysis to achieve such a goal. Therefore, whereas in [Paisante et al. (2016)]
we have adopted an algebraic implementation, based on symbolic ranges, to
associate pointers with allocation sites, in this work we provide a geometric
interpretation of such relations. Hence, we build the pointer dependence di-
graph to track relations between pointers and offsets. The experiments seen
in Section 7 indicate that the Less-Than and Ranges checks, described
in Section 5, are not only enough to solve every query that our previous
implementation could handle, but lets us go beyond it. In Example 14 we
show how the geometric formalization allows us to disambiguate some pairs
of pointers that our previous art would not handle.

Example 14. Consider the control flow graph in Figure 26 in which our goal
is to disambiguate pointers c1 and d1. The allocation site loc1, associated to
a1 is unique in this program. It is created at a1 = malloc() and propagated
to other pointers. Using the analysis that we have introduced in [Paisante
et al. (2016)] we would conclude that c1 and d1 “may alias” since GR(c1) =
loc1 + [2, 4] and GR(d1) = loc1 + [4, 5], and the two ranges have a non-null
intersection. The Ranges test that we have developed in this work, on the
other hand, is able to disambiguate pointers c1 and d1, because their common
immediate ancestor is a3. Rewriting the pointers based on a3 gives: c1 = a3+2
or c1 = a3 +3, and d1 = a3 +4. Since [2, 3]∩ [4, 4] = ∅, then c1 and d1 cannot
alias.

Pointer Disambiguation via Strict Inequalities. A precursor of our Less-
Than check is described in our previous work [Maalej et al. (2017)]. Our
past experience has let us evolve that disambiguation technique along three
different directions:

38

Author Version of «Combining Range and Inequality Information
for Pointer Disambiguation », accepted in Science of Computer Programming, 2017

a1 = malloc()

a2 = a1 + 1

a3 = φ(a1, a2)
b1 = a3 + 1

b2 = a3 + 2

b3 = φ(b1, b2)
c1 = b3 + 1
d1 = a3 + 4

a1

a2 a3

b1 b2

b3

c1

d1

1 0

0

1 2

0 0

1

4

Figure 26: Illustration of the difference in precision between [Paisante et al. (2016)] and
the Ranges test of this work: the program in SSA form (left) and its PDD (right)

• Given the instruction v = v1 + v2, plus the facts: v1 > 0 and v2 > 0,
the final knowledge we obtain is different: in [Maalej et al. (2017)], we
only generate the constraint LT(v) = {v1} ∪ LT(v1). In this work, we
also generate the constraint v2 < v (which is equivalent to LT(v) =
{v2} ∪ LT(v2).
• In [Maalej et al. (2017)] we consider integers and pointers as variables

of scalar type while in the present implementation we differentiate the
two types and handle separately the add and gep instructions present
in the LLVM IR. This approach lets us avoid performing unnecessary
comparisons. Hence, if v and v1 are pointers and v2 is an integer in
v = v1 + v2, then following the C standard, the comparison between v
and v2 is not allowed.
• The third difference refers to the way we obtain a sparse implementa-

tion. In [Maalej et al. (2017)], the new information associated with a
variable is created at definition sites and is invariant throughout the
analysis. In this work we update the abstract state of a variable when-
ever new facts are available in the program code. The main benefit
of this approach is precision. Because we compute a transitive closure
for the less-than relations that we collect, we can disambiguate more
pointers. Example 15 illustrates this improvement.

39

Author Version of «Combining Range and Inequality Information
for Pointer Disambiguation », accepted in Science of Computer Programming, 2017

Example 15. In this example we illustrate the difference in precision be-
tween our current and previous work. We consider the program snippet in
figure 27. In [Maalej et al. (2017)], since x2 = x1 − 4 is a subtraction, we
rename variable x1 to x1′, where x1′ is a fresh name. The final result of the
analysis gives: LT(x1) = {x0}, LT(x1′) = {x0, x2}, LT(x2) = {}, LT(x3) =
{x0, x1′, x2}. Using the rules of Figure 7 and Figure 8, we generate and
solve constraints which gives us: LT(x1) = {x0, x2}, LT(x2) = {}, LT(x3) =
{x0, x1, x2}. We want to disambiguate pointers p1 and p3 which are both de-
fined from the same base pointer p. Our previous disambiguation check would
answer “may alias” for those two pointers: however, in this work we answer
“no alias”. The imprecision in our previous technique happens because we
lost the relation between x1 and x3 after the renaming at the split point.

1 int x0;
2 int∗ p = malloc((x3+1)∗sizeof(int));
3 int x1 = x0 + 2;
4 int∗ p1 = p + x1;
5 int x2 = x1 − 4;
6 int x3 = x1 + 6;
7 int∗ p3 = p + x3;

Figure 27: Illustration of the difference of precision between [Maalej et al. (2017)] and the
Less-Than test of this work.

8.2. Algebraic Pointer Disambiguation Techniques

We call algebraic alias analyses the many techniques that use arithmetics
to disambiguate pointers. Much of the work on algebraic pointer disambigua-
tion had its origins on the needs of automatic parallelization. For instance,
several automatic parallelization techniques rely on some way to associate
symbolic offsets, usually loop bounds, with pointers. Michael Wolfe [(Wolfe,
1996, Ch.7)] and Aho et al. [(Aho et al., 2006, Ch.11)] have entire chapters
devoted to this issue. The key difference between our work and this line of
research is the algorithm to solve pointer relations: they resort to integer
linear programming (ILP) or the Greatest Common Divisor test to solve dio-
phantine equations, whereas we do abstract interpretation. Even Rugina and
Rinard [Rugina and Rinard (2005)], who we believe is the state-of-the-art ap-
proach in the field today, use integer linear programming to solve symbolic

40

Author Version of «Combining Range and Inequality Information
for Pointer Disambiguation », accepted in Science of Computer Programming, 2017

relations between variables. We speculate that the ILP approach is too ex-
pensive to be used in large programs; hence, concessions must be made for
the sake of speed. For instance, whereas the previous literature that we know
restrict their experiments to pointers within loops, we can analyze programs
with over one million assembly instructions.

There exist several different pointer disambiguation strategies that asso-
ciate ranges with pointers [Balakrishnan and Reps (2004); Balatsouras and
Smaragdakis (2016); Alves et al. (2015); van Engelen et al. (2004); Nazaré
et al. (2014); Paisante et al. (2016); Rugina and Rinard (2005); Rus et al.
(2002); Sui et al. (2016); Wilson and Lam (1995)]. They all share a common
idea: two memory addresses p1 + [l1, u1] and p2 + [l2, u2] do not alias if the
intervals [p1 + l1, p1 +u1] and [p2 + l2, p2 +u2] do not overlap. These analyses
differ in the way they represent intervals, e.g., with holes [Balakrishnan and
Reps (2004); Sui et al. (2016)] or contiguously [Alves et al. (2015); Rus et al.
(2002)]; with symbolic bounds [Nazaré et al. (2014); Paisante et al. (2016);
Rugina and Rinard (2005)] or with numeric bounds [Balakrishnan and Reps
(2004); Balatsouras and Smaragdakis (2016); Sui et al. (2016)], etc. None of
these previous work is strictly better than ours. For instance, none of them
can disambiguate v[i] and v[j] in Figure 1 (b), because these locations
cover regions that overlap, albeit not at the same time. Nevertheless, range
based disambiguation methods can solve queries that a simple less-than ap-
proach cannot. As an example, strict inequalities are unable to disambiguate
p1 and p2, given these definitions: p1 = p+ 1 and p2 = p+ 2. We know that
p < p1 and p < p2, but we do not relate p1 and p2. This observation has led
us to incorporate a range-based disambiguation test in our framework.

Notice that there exists a vast literature on non-algebraic pointer dis-
ambiguation techniques. Our work does not compete against them; rather,
it complements them. In other words, our representation of pointers can be
used to enhance the precision of algorithms such as Steensgard’s [Steensgaard
(1996)], Andersen’s [Andersen (1994)], or even the state-of-the-art technique
of Hardekopf and Lin [Hardekopf and Lin (2011)]. These techniques map
pointers to sets of locations, but they could be augmented to map pointers
to sets of locations plus ranges. Furthermore, the use of our approach does
not prevent the employment of acceleration techniques such as lazy cycle de-
tection [Hardekopf and Lin (2007)], or wave propagation [Pereira and Berlin
(2009)].

41

Author Version of «Combining Range and Inequality Information
for Pointer Disambiguation », accepted in Science of Computer Programming, 2017

8.3. Less-Than Relations

The insight of using a less-than dataflow analysis to disambiguate point-
ers is an original contribution of this paper. However, such a static analysis is
not new, having been used before to eliminate array bound checks. We know
of two different approaches to build less-than relations: Logozzo’s [Logozzo
and Fähndrich (2008); Logozzo and Fähndrich (2010)] and Bodik’s [Bodik
et al. (2000)]. Additionally, there exist non-relational analyses that pro-
duce enough information to solve less-than equations [Cousot and Halbwachs
(1978); Miné (2006)]. In the rest of this section we discuss the differences
between such work and ours.

The ABCD Algorithm. The work that most closely resembles ours is Bodik
et al.’s ABCD (short for Array Bounds Checks on Demand) algorithm [Bodik
et al. (2000)]. Similarities stem from the fact that Bodik et al. also build a
new program representation to achieve a sparse less-than analysis. However,
there are some key differences between that approach and ours. The first
difference is a matter of presentation: Bodik et al. provide a geometric
interpretation to the problem of building less-than relations, whereas we
adopt an algebraic formalization. Bodik et al. keep track of such relations
via a data-structure called the inequality graph. This graph is akin to the
pointer dependence graph that we have used in this paper.

Bodik et al.’s technique, in principle could be used to implement our less-
than check; however, they use a different algorithm to prove that a variable
is less than another. In the absence of cycles in the inequality graph, their
approach works like ours: a positive path between vi to vj indicates that xi <
xj. This path is implicit in the transitive closure that we produce after solving
constraints. However, they use an extra step to handle cycles, which, in our
opinion, makes their algorithm difficult to reason about. Upon finding a cycle
in the inequality graph, Bodik et al. try to mark this cycle as increasing or
decreasing. Cycles always exist due to φ-functions. Decreasing cycles cause
φ-functions to be abstractly evaluated with the minimum operator applied
on the weights of incoming edges; increasing cycles invoke maximum instead.
Third, Bodik et al. do not use range analysis, because ABCD has been
designed for just-in-time compilers, where runtime is an issue. Nevertheless,
this limitation prevents ABCD from handling instructions such as x1 = x2 +
x3 if neither x2 nor x3 are constants. Finally, we chose to compute a transitive
closure of less-than relations, whereas ABCD works on demand. This point is
a technicality. In our experiments, we had to deal with millions of queries. If

42

Author Version of «Combining Range and Inequality Information
for Pointer Disambiguation », accepted in Science of Computer Programming, 2017

we tried to answer them on demand, like ABCD does, then said experiments
would take too long. We build the transitive closure to answer queries in
O(1) in practice.

The Pentagon Lattice. Since their debut [Logozzo and Fähndrich (2008); Lo-
gozzo and Fähndrich (2010)], Pentagons have been used in several different
ways. For instance, Logozzo and Fähndrich have employed this domain to
eliminate array bound checks in strongly typed programming languages, and
to ensure absence of division by zero or integer overflows in programs. More-
over, Nazaré et al. [Nazaré et al. (2014)] have used Pentagons to reduce the
overhead imposed by AddressSanitizer [Serebryany et al. (2012)] to guard
C against out-of-bounds memory accesses. The appeal of Pentagons comes
from two facts. First, this abstract domain can be computed efficiently – in
quadratic time on the number of program variables. Second, as an enabler
of compiler optimizations, Pentagons have been proven to be substantially
more effective than other forms of abstract interpretation of similar run-
time [Fähndrich and Logozzo (2010)].

Pentagon, when seen as an algebraic object, is the combination of the lat-
tice of integer intervals and the less-than lattice. Pentagons, like the ABCD
algorithm, could be used to disambiguate pointers, similarly to the method
we propose in this paper. Nevertheless, there are differences between our
algorithm and Logozzo’s. First, it is necessary to separate pointers from
integer offsets in the resolution of the constraints that build less-than rela-
tions between variables. Second, the original work on Pentagons describe a
dense analysis, whereas we use a different program representation to achieve
sparsity. Therefore, the constraints that we produce to analyze programs are
very different from in the original description of this lattice.

Third, Logozzo and Fähndrich build less-than and range relations to-
gether, whereas our analysis first builds range information, then uses it to
compute less-than relations. That is to say, we have opted for decoupling the
range analysis from the less-than analysis that forms the Pentagons’ abstract
domain. This choice was motivated more by engineering pragmatism, than
by a need for precision or efficiency: it lets us combine different implemen-
tations of these static analyses more modularly. We have not found thus far
examples in which one approach yields better results than the other; however,
we believe that, from an engineering point of view, decoupling both analyses
leads to simpler implementations. Finally, from a technical standpoint, we
have added minor improvements on the original description of Pentagons.

43

Author Version of «Combining Range and Inequality Information
for Pointer Disambiguation », accepted in Science of Computer Programming, 2017

For instance, our new algorithm handles some programming constructions
that the original description of Pentagons did not touch, such as operations
involving two variables on the right side, e.g., v = v1 + v2.

Fully-Relational Analyses. Our less-than analysis, ABCD and Pentagons are
said to be semi-relational, meaning that they associate single program vari-
ables with sets of other variables. Fully-relational analysis, such as Oc-
tagons [Miné (2006)] or Polyhedrons [Cousot and Halbwachs (1978)], as-
sociate tuples of variables with abstract information. For instance, Miné’s
Octagons build relations such as x1 + x2 ≤ 1, where x1 and x2 are variables
in the target program. As an example, Polly-LLVM6 uses fully-relational
techniques to analyze loops. Polly’s dependence analysis is able to distin-
guish v[i] and v[j] in Figure 1 (a), given that j− i ≥ 1. Nevertheless, there
are situations in which we are still more precise than Polly: for instance, it
cannot disambiguate v[i] and v[j] in Figure 1 (b). These analyses are very
powerful; however, they face scalability problems when dealing with large
programs. Whereas a semi-relational sparse analysis generates O(|V|) con-
straints, |V| being the number of program variables, a relational one might
produce O(|V|k), k being the number of variables used in relations. As an ex-
ample, current state-of-the art static analyzers such as Astrée [Cousot et al.
(2005)] or Pagai [Henry et al. (2012)] assign unknown values for base ad-
dresses. These values permit such tools to derive relation between pointers,
treating them as numerical values. In practice, these analyses work because
they handle programs with very few pointers, like safety critical code.

9. Conclusion

This paper has described a novel algebraic method to disambiguate point-
ers. The technique that we have introduced in this paper uses a combination
of less-than analysis and classical range analysis to show that two pointers
cannot dereference the same memory location. We have demonstrated that
our technique is effective and useful: its implementation on LLVM lets us
increase the ability of this compiler to separate pointers by almost four times
in some cases. And, contrary to previous algebraic approaches, our analysis
scales up to very large programs, with millions of assembly instructions. We

6Available at http://polly.llvm.org/

44

http://polly.llvm.org/

Author Version of «Combining Range and Inequality Information
for Pointer Disambiguation », accepted in Science of Computer Programming, 2017

believe that this type of technique opens up opportunities to new program
optimizations. The implementation of such optimizations is a challenge that
we hope to address thenceforth.

Acknowledgments

This project is supported by CNPq, Intel (The eCoSoC grant), FAPEMIG
(The Prospiel project), and by the French National Research Agency - ANR
(LABEX MILYON of Université de Lyon, within the program “Investisse-
ment d’Avenir” (ANR-11-IDEX-0007)).

References

Aho, A. V., Lam, M. S., Sethi, R., Ullman, J. D., 2006. Compilers: Principles,
Techniques, and Tools (2nd Edition). Addison Wesley.

Alpern, B., Wegman, M. N., Zadeck, F. K., 1988. Detecting equality of
variables in programs. In: POPL. ACM, pp. 1–11.

Alves, P., Gruber, F., Doerfert, J., Lamprineas, A., Grosser, T., Rastello, F.,
Pereira, F. M. Q. a., 2015. Runtime pointer disambiguation. In: OOPSLA.
ACM, New York, NY, USA, pp. 589–606.

Andersen, L. O., 1994. Program analysis and specialization for the c pro-
gramming language. Ph.D. thesis, DIKU, University of Copenhagen.

Balakrishnan, G., Reps, T., 2004. Analyzing memory accesses in x86 exe-
cutables. In: CC. Springer, pp. 5–23.

Balatsouras, G., Smaragdakis, Y., 2016. Structure-sensitive points-to analy-
sis for C and C++. In: SAS. Springer, pp. 84–104.

Blume, W., Eigenmann, R., 1994. Symbolic range propagation. In: IPPS.
pp. 357–363.

Bodik, R., Gupta, R., Sarkar, V., 2000. ABCD: eliminating array bounds
checks on demand. In: PLDI. ACM, pp. 321–333.

Cousot, P., Cousot, R., 1977. Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of fix-
points. In: POPL. ACM, pp. 238–252.

45

Author Version of «Combining Range and Inequality Information
for Pointer Disambiguation », accepted in Science of Computer Programming, 2017

Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D.,
Rival, X., 2005. The ASTRÉE analyzer. In: European symposium on pro-
gramming (ESOP). No. 3444 in Lecture Notes in Computer Science. pp.
21–30.

Cousot, P., Halbwachs, N., 1978. Automatic discovery of linear restraints
among variables of a program. In: POPL. ACM, pp. 84–96.

Cytron, R., Ferrante, J., Rosen, B. K., Wegman, M. N., Zadeck, F. K., 1989.
An efficient method of computing static single assignment form. In: POPL.
pp. 25–35.

Davis, M., Matiyasevich, Y., Robinson, J., 1976. Hilbert’s tenth problem:
Diophantine equations: positive aspects of a negative solution. In: Sym-
posia in Pure Mathematics. Vol. 28. AMS, Providence, RI, USA, pp. 323–
378.

Dietrich, J., Hollingum, N., Scholz, B., 2015. Giga-scale exhaustive points-to
analysis for java in under a minute. In: OOPSLA. ACM, New York, NY,
USA, pp. 535–551.

Fähndrich, M., Logozzo, F., 2010. Static contract checking with abstract
interpretation. In: FoVeOOS. Springer, pp. 10–30.

Ferrante, J., Ottenstein, J., Warren, D., 1987. The program dependence
graph and its use in optimization. TOPLAS 9 (3), 319–349.

Hardekopf, B., Lin, C., 2007. The ant and the grasshopper: fast and accurate
pointer analysis for millions of lines of code. In: PLDI. ACM, pp. 290–299.

Hardekopf, B., Lin, C., 2011. Flow-sensitive pointer analysis for millions of
lines of code. In: CGO. pp. 265–280.

Henning, J. L., 2006. Spec cpu2006 benchmark descriptions. SIGARCH Com-
put. Archit. News 34 (4), 1–17.

Henry, J., Monniaux, D., Moy, M., 2012. Succinct representations for abstract
interpretation: Combined analysis algorithms and experimental evalua-
tion. In: SAS. Springer, pp. 283–299.

Hind, M., 2001. Pointer analysis: Haven’t we solved this problem yet? In:
In PASTE. ACM, pp. 54–61.

46

Author Version of «Combining Range and Inequality Information
for Pointer Disambiguation », accepted in Science of Computer Programming, 2017

ISO, 9899:2011. Programming Languages – C. IEC.
URL www.open-std.org/jtc1/sc22/wg14/docs/n1539.pdf

Johnson, A., Waye, L., Moore, S., Chong, S., 2015. Exploring and enforcing
security guarantees via program dependence graphs. In: PLDI. ACM, New
York, NY, USA, pp. 291–302.

Lattner, C., Adve, V. S., 2004. LLVM: A compilation framework for lifelong
program analysis & transformation. In: CGO. IEEE, pp. 75–88.

Logozzo, F., Fähndrich, M., 2008. Pentagons: a weakly relational abstract
domain for the efficient validation of array accesses. In: SAC. ACM, pp.
184–188.

Logozzo, F., Fähndrich, M., 2010. Pentagons: A weakly relational abstract
domain for the efficient validation of array accesses. Sci. Comput. Program.
75 (9), 796–807.

Maalej, M., Paisante, V., Ramos, P., Gonnord, L., Pereira, F. M. Q. a.,
2017. Pointer disambiguation via strict inequalities. In: CGO. ACM, pp.
134–147.

Miné, A., 2006. The octagon abstract domain. Higher Order Symbol. Com-
put. 19, 31–100.

Nazaré, H., Maffra, I., Santos, W., Barbosa, L., Gonnord, L., Pereira, F.
M. Q., 2014. Validation of memory accesses through symbolic analyses.
In: OOPSLA. ACM, pp. 791–809.

Nielson, F., Nielson, H. R., Hankin, C., 2005. Principles of program analysis.
Springer.

Paisante, V., Maalej, M., Barbosa, L., Gonnord, L., Quintão Pereira, F. M.,
2016. Symbolic range analysis of pointers. In: CGO. ACM, pp. 171–181.

Pereira, F. M. Q., Berlin, D., 2009. Wave propagation and deep propagation
for pointer analysis. In: CGO. IEEE, pp. 126–135.

Petrashko, D., Ureche, V., Lhoták, O., Odersky, M., 2016. Call graphs for
languages with parametric polymorphism. In: OOPSLA. ACM, New York,
NY, USA, pp. 394–409.

47

www.open-std.org/jtc1/sc22/wg14/docs/n1539.pdf

Author Version of «Combining Range and Inequality Information
for Pointer Disambiguation », accepted in Science of Computer Programming, 2017

Rodrigues, R. E., Campos, V. H. S., Pereira, F. M. Q., 2013. A fast and
low overhead technique to secure programs against integer overflows. In:
CGO. ACM, pp. 1–13.

Rugina, R., Rinard, M. C., 2000. Symbolic bounds analysis of pointers, array
indices, and accessed memory regions. In: PLDI. ACM, pp. 182–195.

Rugina, R., Rinard, M. C., 2005. Symbolic bounds analysis of pointers, array
indices, and accessed memory regions. TOPLAS 27 (2), 185–235.

Rus, S., Rauchwerger, L., Hoeflinger, J., 2002. Hybrid analysis: Static and
dynamic memory reference analysis. In: ICS. IEEE, pp. 251–283.

Serebryany, K., Bruening, D., Potapenko, A., Vyukov, D., 2012. Addresssan-
itizer: a fast address sanity checker. In: ATC. USENIX, pp. 28–28.

Singer, J., 2006. Static program analysis based on virtual register renaming.
Ph.D. thesis, University of Cambridge.

Steensgaard, B., 1996. Points-to analysis in almost linear time. In: POPL.
pp. 32–41.

Sui, Y., Fan, X., Zhou, H., Xue, J., 2016. Loop-oriented array- and field-
sensitive pointer analysis for automatic SIMD vectorization. In: LCTES.
ACM, pp. 41–51.

Surendran, R., Barik, R., Zhao, J., Sarkar, V., 2014. Inter-iteration scalar
replacement using array SSA form. In: CC. Springer, pp. 40–60.

Tavares, A. L. C., Boissinot, B., Pereira, F. M. Q., Rastello, F., 2014. Pa-
rameterized construction of program representations for sparse dataflow
analyses. In: CC. Springer, pp. 2–21.

van Engelen, R. A., Birch, J., Shou, Y., Walsh, B., Gallivan, K. A., 2004. A
unified framework for nonlinear dependence testing and symbolic analysis.
In: ICS. ACM, pp. 106–115.

Wilson, R. P., Lam, M. S., 1995. Efficient context-sensitive pointer analysis
for c programs. In: PLDI. ACM, pp. 1–12.

Wolfe, M., 1996. High Performance Compilers for Parallel Computing, 1st
Edition. Adison-Wesley.

48

	Introduction
	Overview
	Program representation for sparsity and range pre-analysis
	Sparse Analysis
	Range Analysis for integer variables

	Pointer Disambiguation Based on Strict Inequalities
	Grouping Pointers in Pointer Digraphs
	Constraint System
	Collecting Constraints
	Solving Constraints

	Answering Alias Queries
	The Digraph Test
	The Less-Than Test
	The Ranges Test

	Complexity of our Analysis
	Evaluation
	Evaluation of the Precision of our Analysis
	Runtime experiments

	Related Work
	A Comparison Against our Previous Work
	Algebraic Pointer Disambiguation Techniques
	Less-Than Relations

	Conclusion

