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Tohoku example



Tohoku example

Wave arrival in Sendai Bay


sendai.mp4
Media File (video/mp4)



Tohoku example

Boussinesq Shallow Water



Modelling approach 1/6

Near shore: wave transformation due to
interaction with complex bathymetries

I strong nonlinearity and dispersion ;

I refraction and diffraction ;

I shoaling;

I breaking;

I induced currents;

I run-up and inundation; 2004 Sumatra tsunami reaching
the coast of Thailand

Sea waves diffracting around a peninsula Rip current, Park beach
(Coffs harbour, NSW Australia)



Modelling approach 2/6

Near shore hydrodynamics: modelling standpoint

(Ribbed channel clip)

.

Propagation: large scales,

dispersion, shoaling, etc

POTENTIAL FLOW

Wave vreaking:

dissipation, vorticity

CLOSURE MODEL

Runup/flooding :

hydrostatic shallow water

SHALLOW WATER


prop1.mp4
Media File (video/mp4)



Modelling approach 4/6

Near shore hydrodynamics: modelling standpoint

Propagation vs wave breaking closure

1. Potential/dispersive PDE for propagation + 3D Navier-Stokes (or SPH)
for breaking/impact ;

2. Dispersive PDE for propagation + eddy viscosity to model dissipation in
surf zone/breakers ;

3. Coupling dispersive PDEs with shallow water/hydrostatic limit:

I Kirby, Grilli, et al (FUNWAVE-TVD)
I Lynett et al USC (COULWave)
I Delis, Kazolea, Synolakis (TUCWave) Coast.Eng. 2011, JCP 2014
I Smit, Zijlema et al DELFT (SWASH)
I See also:

Tonelli, Petti Coast.Eng. 2009, Bonneton et al. JCP 2011, Coast.Eng. 2012



Modelling approach 5/6

Breaking closure: shallow water dissipation

Closure model

1. Detect breaking regions

2. Remove dispersive terms

3. → shallow water shock

4. Total energy E = gh2/2 + hu2/2

5. Dissipation :

Db = [FE − σE] ≈ γb[H]3

a
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Modelling approach 6/6

Breaking closure: shallow water dissipation

a

Closure model

1. Detect breaking regions

2. Remove dispersive terms

3. → shallow water shock

4. Total energy E = gh2/2 + hu2/2

5. Dissipation :

Db = [FE − σE] ≈ γb[H]3

a

Need to handle shallow water:

I “Upwinding”/numerical dissipation

I Shock capturing in breaking
regions

I etc

All the std. artillery....



Principle of the talk

Dispersive models for propagation

Which dispersion dominates ?

1. Continuous dispersive models have a range of validity related to
the model dispersion error

2. Discrete dispersive models have a range of validity related to
the scheme dispersion error

How can we exploit this knowledge to construct

efficient low dispersion schemes on unstructured grids ?



Dispersive surface waves: Boussinesq approach (1/8)

Undular bore (Garonne river,

Bonneton et al J.Geophys.Res. 2015)
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Dispersive surface waves: Boussinesq approach (2/8)

Linear travelling waves: incompressible Euler equations
Theory due to (G.B. Airy, Encyclopædia Metropolitana, 1841)

η = A cos(κx− ωt) travelling wave

Φ = B(z)A sin(κx− ωt) potential

κ wave number

C = ω/κ phase velocity

x

Φ

z
ηz=  (t,x)

d

ηz=  (t,x)

0

B(z) =
g

ω

cosh(κ(d0 + z))

cosh(κ(d0)

C2= C2
0

tanh(κ d0)

κ d0

Phase relation and phase dispersion
C2

0 = g d0 shallow water (hyperbolic) celerity. C = C(κ)!!



Dispersive surface waves: Boussinesq approach (3/8)

a wave amplitude

λ = 2π/κ wave length

T wave period

λ = C(κ)T = C(2π/λ)T phase relation

a

λ

Dimensionless parameters

I µ =
d0

λ
=
κd0

2π
dispersion

I ε =
a

d0
nonlinearity

mm

Physical hypotheses

I Long waves: smallness of µ2 a

d0

I Weak-nonlinearity: smallness of ε = O(µ2)
a

d0

I Full-nonlinearity: ε = O(1)
a

d0



Dispersive surface waves: Boussinesq approach (4/8)

Modelling principles1

Starting from the 3D nonlinear wave equations:

1. dimensionless form ;

2. asymptotic development w.r.t. µ2: ∇Φ = ∇Φ0 + µ2∇Φ2 + µ4∇Φ4 + ...

3. depth averaging: 3D → 2D

4. retain appropriate order terms ....

1
J. Boussinesq, J.Math.Pures Appl., 1872 – M.W. Dingemans, World Scientific, 1997



Dispersive surface waves: Boussinesq approach (5/8)

Example: shallow water equations (zero-th order model)

h̃t+q̃x = 0

q̃t+ε(ũq̃)x + h̃η̃x = 0 ����+O(µ2)

With the notation

I dimensionless depth : h̃ = d̃+ εη̃

I dimensionless volume flux : q = h̃ũ

I dimensionless depth averaged velocity: ũ

I Red : hyperbolic shallow water equations

I Blue terms are responsible for dispersion

Nonlinear – non dispersive



Dispersive surface waves: Boussinesq approach (6/8)

Example: Peregrine’s equations2

h̃t+q̃x = 0

q̃t+ε(ũq̃)x + h̃η̃x = µ2h̃

(
d̃2

3
utxx +

d̃d̃x
3
ũtx

)
������
+O(µ4, εµ2)

With the notation

I dimensionless depth : h̃ = d̃+ εη̃

I dimensionless volume flux : q = h̃ũ

I dimensionless depth averaged velocity: ũ

I Red : hyperbolic shallow water equations

I Blue terms are responsible for dispersion

Weakly nonlinear – weakly dispersive

2
D.H. Peregnine. J.Fluid.Mech, 1967



Dispersive surface waves: Boussinesq approach (7/8)

Example: Madsen & Sorensen’s enhanced equations3

h̃t+q̃x = 0

q̃t+ε(ũq̃)x + h̃η̃x = µ2

(
βd̃2q̃txx +

d̃d̃x
3
q̃tx +Bd̃3η̃xxx + 2Bd̃2d̃xη̃xx

)
������
+O(µ4, εµ2)

With the notation

I dimensionless depth : h̃ = d̃+ εη̃

I dimensionless volume flux : q = h̃ũ

I dimensionless depth averaged velocity: ũ

I Red : hyperbolic shallow water equations

I Blue terms are responsible for dispersion

Weakly nonlinear – weakly dispersive

Phase enhancement vie the tunable coeff. B and β = B + 1/3 (cf. later)

3
P.A. Madsen and O.R. Sorensen Coast.Eng., 1992



Dispersive surface waves: Boussinesq approach (8/8)

Example: enhanced Serre-Green-Naghdi equations4

h̃t+q̃x = 0

q̃t+ε(ũq̃)x + h̃η̃x = µ2 h̃ψ̃ ����+O(µ4)

ψ̃ =α
[
∂x(h̃2∂x(ũt + ũũx))

]
+ (α− 1)

[
∂x(h̃2∂xxη̃)

]
+Qψ(ũ, h̃, d̃; ũx, h̃x, d̃x)

With the notation

I dimensionless depth : h̃ = d̃+ εη̃

I dimensionless volume flux : q = h̃ũ

I dimensionless depth averaged velocity: ũ

I Red : hyperbolic shallow water equations

I Blue terms are responsible for dispersion

Fully nonlinear – weakly dispersive

Phase enhancement vie the tunable coeff. α (cf. later)

4
A.E. Green J.Fluid Mech., 1976 – F. Chazel et al. J.Sci.Comp., 2011



Modelling error (1/3)

What are these models good for: nonlinear behavior

Shoaling test, weakly nonlinear models5
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Many variations for a given asymptotic accuracy (same linear limit), e.g.

I µ2d̃ ≈ µ2h̃ as εµ2η̃ is negligible (weakly nonlinear)

I µ2(d̃ũ)xxt ≈ µ2q̃xxt as εµ2(η̃ũ)xx is negligible (weakly nonlinear)

I etc.

5
S.T. Grilli et al J.Waterw.Port.C.-ASCE, 1994 – A.G. Filippini et al. Coast.Eng., 2015



Modelling error (2/3)

What are these models good for: nonlinear behavior

Shoaling test, fully nonlinear models
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Modelling error (3/3)

What are these models good for: phase behavior
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Continous and discrete

Continuous: error w.r.t. Euler eq.s

I Range of validity in terms of reduced wave number κd0 = 2πd0/λ

I Near shore: (κd0)max ≈ π, (d0/λ)max ≈ 2

Discrete: error w.r.t. continuous model

I Range of validity in terms of 1/N = ∆x/λ : pts per wavelength

Overall error w.r.t. Euler eq.s ???



Truncation error heuristics

Example: linearized shallow water

∂tW +A∂xW = 0

with (in dimensionless form)

W =

(
η
u

)
, A =

(
0 1
1 0

)
, |A| = Id2

where we recall that (all .̃ are removed for simplicity, and c20 = gd0)

η =
ηdim

εd0
, u =

udim

εc0
, x =

xdim

λ
, t =

tdim

λ/c0



Truncation error heuristics

Example: linearized shallow water
1st order upwind method

∂tW +A
Wi+1 −Wi−1

2∆x
=

∆x

2

Wi+1 − 2Wi +Wi−1

∆x2

2nd order centered differencing

∂tW +A
Wi+1 −Wi−1

2∆x
= 0



Truncation error heuristics

Example: linearized shallow water
1st order upwind and 2nd order centered differencing: modified equation/TE

∂tW
smooth +A∂xW

smooth =
∆x

2
∂xxW

smooth−
A∆x2

6
∂xxxW

smooth +O(∆x3)

∂tW
smooth +A∂xW

smooth = −
A∆x2

6
∂xxxW

smooth +O(∆x4)

It looks like “if we could see the dispersive effects of the 1st order scheme, they
would be the same as those of the second order”..

but the numerical viscosity is too high...



Truncation error heuristics

Example: linearized shallow water
Turn down the viscosity: 3rd upwind scheme

∂tW+

(
A
WR
i+1/2

+WL
i+1/2

2∆x
−
WR
i+1/2

−WL
i+1/2

2∆x

)

−
(
A
WR
i−1/2

+WL
i−1/2

2∆x
−
WR
i−1/2

−WL
i−1/2

2∆x

)
= 0

With “quadratically reconstructed ” left and right values at xi ±∆x/2

WL
i+1/2 =Wi +

Wi −Wi−1

6
+
Wi+1 −Wi

3

WR
i+1/2 =Wi+1 −

Wi −Wi−1

6
−
Wi+2 −Wi+1

3



Truncation error heuristics

Example: linearized shallow water
3rd order upwind vs 4th order central differencing: modified eq./TE

∂tW
smooth +A∂xW

smooth =−
∆x3

12
∂xxxxW

smooth−
A∆x4

30
∂xxxxxW

smooth +O(∆x5)

∂tW
smooth +A∂xW

smooth = −
A∆x4

30
∂xxxxxW

smooth +O(∆x6)

I Low dissipation: O(∆x3) viscosity (ok for hyperbolic + explicit time stepping)

I Same dispersion of the fourth order FD !



Truncation error heuristics: dispersive models

Example: enhanced linearized Madsen-Sorensen
∂tη + ∂xu = 0

∂tu− µ2(
1

3
+ β)∂xxtu+ ∂xη − µ2β∂xxxη = 0



Truncation error heuristics: dispersive models

Example: enhanced linearized Madsen-Sorensen

∂tη + ∂xu = 0

∂tw + ∂xζ = 0

u− µ2(
1

3
+ β)∂xxu = w

η − µ2β∂xxη = ζ

First order (“hyperbolic”) system
Overhead w.r.t. hyperbolic system

How accurate must the discretization of these red terms be ?



Dispersion error heuristics

Linearized Madsen-Sorensen (with GN αopt)
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Dispersion error heuristics
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Dispersion error heuristics

Linearized Madsen-Sorensen (with GN αopt)



Dispersion error heuristics

Linearized Madsen-Sorensen (with GN αopt)



Lesson learned

Hyperbolic operator
We MUST use at least a third order scheme

Elliptic operator
Waste of effort using more than second order for near shore models

Next step
Unstructured grid generalization for the eGN model



Discretization of the (breaking) eGN on unstructured grids

The eGN equations (in 1D)

h̃t+q̃x = 0

q̃t+ε(ũq̃)x + h̃η̃x = µ2 h̃ψ̃

ψ̃ =α
[
∂x(h̃2∂x(ũt + ũũx))

]
+ (α− 1)

[
∂x(h̃2∂xxη̃)

]
+Qψ(ũ, h̃, d̃; ũx, h̃x, d̃x)

With the notation

I dimensionless depth : h̃ = d̃+ εη̃

I dimensionless volume flux : q = h̃ũ with

I ũ the (dimensionless) depth averaged velocity

I Red terms provide the hyperbolic shallow water equations

I Blue terms are responsible for dispersion

Fully nonlinear – weakly dispersive

Phase enhancement vie the tunable coeff. α (cf. later)



Discretization of the (breaking) eGN on unstructured grids

The eGN equations (in 2D)

∂th+∇ · q = 0 ;(
I + αTh

)(
∂tq +∇ ·

(q⊗ q

h

)
+ gh∇η

)
− Th

(
gh∇η

)
+ hQ(u) = 0 .

With the notation

I depth : h = d+ η

I (vector) volume flux : q = h̃u with

I q the (dimensionless) depth averaged velocity vector

I Th the dispersive elliptic operator given by

Th(·) = hT (
·
h

)

where T is a self adjoint operator6:

T (·) = S∗(S(·)) , S(·) =
h
√

3
∇ · (·)−

√
3− 1

2
∇b · (·)

6
Alvarez-Samaniego and Lannes, Indiana Univ. Math J., 2008



Discretization of the (breaking) eGN on unstructured grids

The eGN equations

We recast the system in two independent steps:

∂th+∇ · q = 0 ;

∂tq +∇ ·
(q⊗ q

h

)
+ gh∇η = hψ ;(

I + αT
)

(ψ )− T (g∇η) +Q(u) = 0 .

a

→ hyperbolic step

→ elliptic step

This reformulation aims at exploiting the self-adjoint character of T



Discretization of the (breaking) eGN on unstructured grids

Solution algorithm
At each time-step n:

1. elliptic step is solved : ψ =
(
I + αT

)−1
(RHS) using (hn,qn) ;

2. shallow water solver + non-hydrostatic term ψ → (hn+1,qn+1) .



Discretization of the (breaking) eGN on unstructured grids

Elliptic step

I Continuous P 1 Galerkin FE exploiting the self-adjoint character of T 7∫
Ω
ν ·ψh + α

∫
Ω
S(ν) S(ψh) = RHS(ηh, hh,uh, bh) ;

I Linear system :

(MG
H + αT) Ψ = T δh − Q with δh the L2 projection of g∇η

I Coercivity of I + αT −→ inversibility of (MG
H + αT)

(block SPD + diagonally dominant) ;

η
 h

ϕ
i

1

i

7
Alvarez-Samaniego and Lannes Indiana Univ. Math J., 2008



Discretization of the (breaking) eGN on unstructured grids

Elliptic step

I Propagation: add hψ to the rhs

I Wave breaking:
1. Flag nodes

2. Agglomerate elements and enlarge
breaking region in wave direction

3. Set ψ to zero:
breakers as shallow water shocks9

I Wave breaking detection10

I either |ηt| > γ
√
gH with γ ∈ [0.4, 0.6]

I or ‖∇η‖ > tgθ with θ ∈ [15, 30]◦

I and Fr > Frcr

9
P. Bonneton Ocean Eng., 2007

10
Kazolea, Delis and Synolakis, JCP 2014



Discretization of the (breaking) eGN on unstructured grids

Hyperbolic step

I Node - centered FV scheme

I
∂Ui

∂t
+

1

|Ci|

∫
∂Ω

(
Fn̂x + Gn̂y

)
=

1

|Ci|

∫
Ω

(
Sb + hΨ

)
;

I Roe’s Riemann solver + Harten-Hyman entropy fix

I High order reconstruction: weighted least squares11 (quadratic or cubic) ;

I Well-balanced treatment of topography, wet/dry fronts, etc12

11
Ollivier-Gooch et al. AIAA J. 2009; Wang et al JCP 2017

10
Bermudez&Vazquez, CAF 1994; Hubbard&Garcia-Navarro, JCP 2000; Brufau et al. IJNMF 2002;
Castro, Math.&Computer Mod. 2005; etc.etc.



Discretization of the (breaking) eGN on unstructured grids
Dispersion analysis of the scheme



Benchmarking: propagation test 1
Test Description: a0 = 0.2 [m], h0 = 1 [m]
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Benchmarking: propagation test 2
Shoaling on a shelf



Benchmarking: propagation test 2
Shoaling on a shelf

Final solution



Benchmarking: diffraction on an elliptic shoal

I Range : a/h0 = 0.0515, T = 1 [s] ;

I Energy transfer to higher harmonics;

I Experiments: (Berkhoff et al., 1982)

I Adapted mesh 88760 nodes ;
Incoming

periodic wave

Sec. 1

Sec. 8

Sec. 4

Sec. 5

Sec. 2

Sec. 3

Sec. 6 Sec. 7


elshoal_2d_slow.mov
Media File (video/quicktime)


elshoal_slow.mov
Media File (video/quicktime)



Benchmarking: diffraction on an elliptic shoal

Section 2 and Section 4
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Benchmarking: overtopping on a three dimensional reef



Benchmarking: overtopping on a three dimensional reef
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Application: study of undular bores and Treske experiments

Undular bore (Garonne river,

Bonneton et al J.Geophys.Res. 2015)


froude120_SW_mirror_3.mp4
Media File (video/mp4)


froude120_GN_mirror_3.mp4
Media File (video/mp4)



Application: study of undular bores and Treske experiments

Comparison with experiments by Treske


froude120_SW.mp4
Media File (video/mp4)


froude120_GN.mp4
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The short of it ...

I Interaction modelling/discretization error for near shore Boussinesq

I Frst (hyperbolic) order system vs second order elliptic operator :

• High order on hyperbolic : third order (at least) for good dispersion

• Elliptic component: can be treated with a second order method

• Unstructured grid eGN: high(er) order FV + P1 FEM for elliptic part

I Wave breaking: revert to SW + shock capturing
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Perspectives and open issues

A few ongoing/foreseen extensions

I Systematic orders/CPU time investigation

I Other methods, in particular DG and RD

I Implicit time integration + energy conserving in space and time ?

I Wave breaking via PDE based eddy viscosity

I Study of deep water/non-hydrostatic (multi-layer) models

I Moving meshes and adaptation
(cf. parallel session on rupture based tsunami simulation)
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