Near shore: wave transformation due to interaction with complex bathymetries 

W = η u , A = 0 1 1 0 , |A| = Id2
where we recall that (all . are removed for simplicity, and

c 2 0 = gd0) η = η dim d0 , u = u dim c0 , x = x dim λ , t = t dim λ/c0
1st order upwind method

∂tW + A W i+1 -W i-1 2∆x = ∆x 2 W i+1 -2W i + W i-1 ∆x 2 2nd order centered differencing ∂tW + A W i+1 -W i-1 2∆x = 0
1st order upwind and 2nd order centered differencing: modified equation/TE

∂tW smooth + A∂xW smooth = ∆x 2 ∂xxW smooth - A∆x 2 6 ∂xxxW smooth + O(∆x 3 ) ∂tW smooth + A∂xW smooth = - A∆x 2 6 ∂xxxW smooth + O(∆x 4 )
It looks like "if we could see the dispersive effects of the 1st order scheme, they would be the same as those of the second order".. but the numerical viscosity is too high...

Example: linearized shallow water

Turn down the viscosity: 3 rd upwind scheme

∂tW + A W R i+1/2 + W L i+1/2 2∆x - W R i+1/2 -W L i+1/2 2∆x -A W R i-1/2 + W L i-1/2 2∆x - W R i-1/2 -W L i-1/2 2∆x = 0
With "quadratically reconstructed " left and right values at

x i ± ∆x/2 W L i+1/2 =W i + W i -W i-1 6 + W i+1 -W i 3 W R i+1/2 =W i+1 - W i -W i-1 6 - W i+2 -W i+1 3 
3 rd order upwind vs 4 th order central differencing: modified eq./TE

∂tW smooth + A∂xW smooth = - ∆x 3 12 ∂xxxxW smooth - A∆x 4 30 ∂xxxxxW smooth + O(∆x 5 ) ∂tW smooth + A∂xW smooth = - A∆x 4 30 ∂xxxxxW smooth + O(∆x 6 )
Low dissipation: O(∆x 3 ) viscosity (ok for hyperbolic + explicit time stepping) Same dispersion of the fourth order FD ! ht+qx = 0

qt+ (ũq)x + hηx = µ 2 h ψ ψ =α ∂x( h2 ∂x(ũt + ũũx)) + (α -1) ∂x( h2 ∂xx η) + Q ψ (ũ, h, d; ũx, hx, dx)
With the notation ∂th + ∇ • q = 0 ;

I + αT h ∂tq + ∇ • q ⊗ q h + gh∇η -T h gh∇η + hQ(u) = 0 .

With the notation

depth : h = d + η (vector) volume flux : q = hu with q the (dimensionless) depth averaged velocity vector T h the dispersive elliptic operator given by

T h (•) = hT ( • h )
where T is a self adjoint operator6 : 

T (•) = S * (S(•)) , S(•) = h √ 3 ∇ • (•) - √ 3 -1 2 ∇b • (•)

a 2 .C 2 = C 2 0tanh(κ d 0 ) κ d 0 +O(µ 2 ) 2 )x

 222022 and inundation; 2004 Sumatra tsunami reaching the coast of Thailand Sea waves diffracting around a peninsula Rip current, Park beach (Coffs harbour, NSW Australia) a Closure model 1. Detect breaking regions 2. Remove dispersive terms 3. → shallow water shock 4. Total energy E = gh 2 /2 + hu 2 /2 5. Dissipation : D b = [F E -σE] ≈ γ b [H] 3 Need to handle shallow water: "Upwinding"/numerical dissipation Shock capturing in breaking regions etc All the std. artillery.... Principle of the talk Dispersive models for propagation Which dispersion dominates ? 1. Continuous dispersive models have a range of validity related to the model dispersion error Discrete dispersive models have a range of validity related to the scheme dispersion error How can we exploit this knowledge to construct efficient low dispersion schemes on unstructured grids ? Bonneton et al J.Geophys.Res. 2015) due to (G.B. Airy, Encyclopaedia Metropolitana, 1841) η = A cos(κx -ωt) travelling wave Φ = B(z) A sin(κx -ωt) potential κ wave number C = ω/κ phase velocity x (d 0 + z)) cosh(κ(d 0 ) Phase relation and phase dispersion C 2 0 = g d 0 shallow water (hyperbolic) celerity. C = C(κ)!! a wave amplitude λ = 2π/κ wave length T wave period λ = C(κ)T = C(2π/λ)T phase relation water equations (zero-th order model) ht+qx = 0 qt+ (ũq)x + hηx = 0 With the notation dimensionless depth : h = d + η dimensionless volume flux : q = hũ dimensionless depth averaged velocity: ũ Red : hyperbolic shallow water equations Blue terms are responsible for dispersion Nonlinear -non dispersive Example: Peregrine's equations 2 ht+qx = 0 qt+ (ũq)x + hηx = µ 2 With the notation dimensionless depth : h = d + η dimensionless volume flux : q = hũ dimensionless depth averaged velocity: ũ Red : hyperbolic shallow water equations Blue terms are responsible for dispersion Weakly nonlinear -weakly dispersive 2 D.H. Peregnine. J.Fluid.Mech, 1967 ht+qx = 0 qt+ (ũq)x + hηx = µ 2 β d2 qtxx + d dx 3 qtx + B d3 ηxxx + 2B d2 dx ηxx +O(µ 4 , µ 2 ) With the notation dimensionless depth : h = d + η dimensionless volume flux : q = hũ dimensionless depth averaged velocity: ũ Red : hyperbolic shallow water equations Blue terms are responsible for dispersion Weakly nonlinear -weakly dispersive Phase enhancement vie the tunable coeff. B and β = B + 1/3 (cf. later) 3 P.A. Madsen and O.R. Sorensen Coast.Eng., 1992 Dispersive surface waves: Boussinesq approach (8/8) Example: enhanced Serre-Green-Naghdi equations 4 ht+qx = 0 qt+ (ũq)x + hηx = µ 2 h ψ +O(µ 4 ) ψ =α ∂x( h2 ∂x(ũt + ũũx)) + (α -1) ∂x( h2 ∂xx η) + Q ψ (ũ, h, d; ũx, hx, dx) With the notation dimensionless depth : h = d + η dimensionless volume flux : q = hũ dimensionless depth averaged velocity: ũ Red : hyperbolic shallow water equations Blue terms are responsible for dispersion Fully nonlinear -weakly dispersive Phase enhancement vie the tunable coeff. α (cf. later)Shoaling test, weakly nonlinear models 5 variations for a given asymptotic accuracy (same linear limit), e.g. µ 2 d ≈ µ 2h as µ 2 η is negligible (weakly nonlinear) µ 2 ( dũ)xxt ≈ µ 2 qxxt as µ 2 (η ũ)xx is negligible (weakly nonlinear) etc. 5 S.T. Grilli et al J.Waterw.Port.C.-ASCE, 1994 -A.G. Filippini et al. Coast.Eng., 2015 Shoaling test, fully nonlinear models x

  dimensionless depth : h = d + η dimensionless volume flux : q = hũ with ũ the (dimensionless) depth averaged velocity Red terms provide the hyperbolic shallow water equations Blue terms are responsible for dispersion Fully nonlinear -weakly dispersive Phase enhancement vie the tunable coeff. α (cf. later)

Node -centered FV scheme ∂Ui ∂t + 1

 1 |Ci| ∂Ω Fn x + Gn y = 1 |Ci| Ω S b + hΨ ; Roe's Riemann solver + Harten-Hyman entropy fix High order reconstruction: weighted least squares 11 (quadratic or cubic) ; Well-balanced treatment of topography, wet/dry fronts, etc 12 11 Ollivier-Gooch et al. AIAA J. 2009; Wang et al JCP 2017 10 Bermudez&Vazquez, CAF 1994; Hubbard&Garcia-Navarro, JCP 2000; Brufau et al. IJNMF 2002; Castro, Math.&Computer Mod. 2005; etc.etc. Discretization of the (breaking) eGN on unstructured grids Dispersion analysis of the scheme Benchmarking: propagation test 1 Test Description: a0 = 0.2 [m], h0 = 1 [m] : a/h 0 = 0.0515, T = 1 [s] ; Energy transfer to higher harmonics; Experiments: (Berkhoff et al., 1982) Adapted mesh 88760 nodes ;Benchmarking: overtopping on a three dimensional reefBenchmarking: overtopping on a three dimensional reef t (g/h)

  

  

  

  

  

A.E. Green J.Fluid Mech., 1976 -F. Chazel et al. J.Sci.Comp., 2011

Alvarez-Samaniego and Lannes, Indiana Univ. Math J., 2008

shallow water solver + non-hydrostatic term ψ → (h n+1 , q n+1 ) .

P. Bonneton Ocean Eng., 2007

Example: enhanced linearized Madsen-Sorensen

Truncation error heuristics: dispersive models Example: enhanced linearized Madsen-Sorensen

The eGN equations

We recast the system in two independent steps:

This reformulation aims at exploiting the self-adjoint character of T

Linear system : The short of it ...

Interaction modelling/discretization error for near shore Boussinesq

Frst (hyperbolic) order system vs second order elliptic operator :

• High order on hyperbolic : third order (at least) for good dispersion • Elliptic component: can be treated with a second order method • Unstructured grid eGN: high(er) order FV + P1 FEM for elliptic part Wave breaking: revert to SW + shock capturing