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A feasible, nonparametric, probabilistic approach for modeling and quantifying model-
form uncertainties associated with a computational model designed for the solution of a
generalized eigenvalue problem is presented. It is based on the construction of a Stochastic,
Projection-based, Reduced-Order Model (SPROM) associated with a High-Dimensional
Model (HDM) using three innovative ideas: the substitution of the deterministic Reduced-
Order Basis (ROB) with a stochastic counterpart (SROB) featuring a reduced number of
hyperparameters; the construction of this SROB on a subset of a compact Stiefel manifold
in order to guarantee the linear independence of its column vectors and the satisfaction
of any constraints of interest; and the formulation and solution of a reduced-order in-
verse statistical problem to determine the hyperparameters so that the mean value and
statistical fluctuations of the eigenvalues predicted using the SPROM match target values
obtained from available data. Consequently, the proposed approach for modeling model-
form uncertainties can be interpreted as an effective approach for extracting from data
fundamental information and/or knowledge that are not captured by a deterministic com-
putational model, and incorporating them in this model. Its potential for quantifying
model-form uncertainties in generalized eigencomputations is demonstrated for a natural
vibration analysis of a small-scale replica of an X-56 type aircraft made of a composite
material for which ground ground vibration test data are available.

Nomenclature

% Vector of problem/model parameters
%j j-th scalar problem/model parameter stored in the vector %
m% Number of problem/model parameters and therefore dimension of %
%i i-th problem/model parameter vector % sampled in the parameter space
ms
% Number of sampled problem/model parameter vectors

N Number of degrees of freedom of a High-Dimensional Model (HDM) and therefore dimension of this HDM
V N × n matrix representing a Reduced-Order Basis (ROB)
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n Dimension of the ROB V
M Symmetric mass matrix associated with a high-dimensional Finite Element (FE) structural model
K Symmetric stiffness matrix associated with a high-dimensional FE structural model
u Semi-discrete amplitude vector of an assumed harmonic vibration of a structure
ω Circular frequency associated with u
ui i-th natural mode shape or eigenvector of the pencil (K, M)
ω2
i Square of the i-th natural circular frequency or i-th eigenvalue associated with ui
fi Natural frequency associated with ωi
mu Number of eigenvalues of interest of the pencil (K, M)
t Time

(̇) Time derivative of the quantity ()
f ext Semi-discrete force vector
u0 Semi-discrete initial displacement condition
X Snapshot matrix
ur Vector of generalized coordinates of dimension n associated with the ROB V
$ Circular frequency associated with ur
()T Transpose operation
Kr Symmetric reduced stiffness matrix associated with the ROB V
Mr Symmetric reduced mass matrix associated with the ROB V
In Identity matrix of size (dimension) n
Q N ×N metric (orthonormality) matrix for V (V TQV = In)
uri i-th eigenvector of the pencil (Kr, Mr)
$2
i i-th eigenvalue associated with uri

Nbc Number of displacement constraints in an HDM (which can be zero)
BT Nbc ×N matrix of displacement constraints satisfying BTB = INbc
V Stochastic counterpart of the ROB V
u Stochastic counterpart of u
ur Stochastic counterpart of ur
$ Stochastic counterpart of $ associated with ur
Kr Stochastic counterpart of Kr

Mr Stochastic counterpart of Mr

uri Stochastic counterpart of uri and i-th eigenvector of the pencil (Kr, Mr)
$2
i Stochastic counterpart of $2

i and i-th eigenvalue associated with uri
E Mathematical expectation of a random variable
G N × n non-Gaussian second-order centered random matrix
β Hyperparameter of G and the probability model underlying V
σ Upper triangular matrix of hyperparameters of the probability model underlying V
s Real number satisfying s ≥ 0 and hyperparameter of the probability model underlying V
s
M

Real number satisfying s
M
> 0 and hyperparameter of the probability model underlying V

α Vector-valued hyperparameter of the probability model underlying V
(
α = (s, s

M
, β, σ)T = (α1, · · · , αmα)T

)
mα Total number of hyperparameters of the probability model underlying V and therefore dimension of α
o Vector-valued quantity of interest
oi i-th scalar quantity of interest stored in the vector o
mo Number of quantities of interest and therefore dimension of o
o Stochastic counterpart of o
J Cost function for the reduced-order inverse statistical problem governing the identification of α
Jmean Component of J for controlling the identification of α with respect to the mean value
Jstd Component of J for controlling the identification of α with respect to the statistical fluctuations
wJ Weight satisfying wJ ≥ 0 and defining J(α) = wJ Jmean (α) + (1− wJ) Jstd (α)
Y Material Young’s modulus
ν Material Poisson’s ratio
ρ Material density
Y Stochastic counterpart of Y
ν Stochastic counterpart of ν
ρ Stochastic counterpart of ρ
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I. Introduction

Parametric, projection-based, model order reduction is a mathematical technique for generating a para-
metric, Projection-based, Reduced-Order Model (PROM) by first carefully constructing a parameter-independent
Reduced-Order Basis (ROB), then projecting a parametric High-Dimensional Model (HDM) of interest onto
this ROB. Because it is capable of reducing computational costs by orders of magnitude while maintaining
a desired level of accuracy, this technique is essential for any scenario where real-time simulation responses
are desired.5 Hence, it is rapidly becoming indispensable for a large number of applications including,
among others, computational-based parametric studies and design optimization, multiscale analysis, statis-
tical analysis, model predictive control, simulation-based decision making, and Uncertainty Quantification
(UQ).1–4

For UQ applications, a PROM is typically viewed or used as a tool for accelerating auxiliary Monte
Carlo computations. In this paper however which focuses on model-form UQ – that is, the modeling and
quantification of the uncertainties about the ability of a computational model to truly represent the physics
underlying the problem to be solved – the role of a PROM is elevated to that of enabling the extraction
from data of information and/or knowledge that are not captured by a deterministic computational model
and their infusion in this model. These data can be nonstatistical or statistical experimental data, in which
case the UQ performed by the method proposed in this paper pertains to the HDM of interest as well as the
PROM constructed for this HDM. It can also be numerical data generated by the HDM, in which case the
UQ performed by this method addresses the effects on the fast predictions performed using the PROM of the
various sources of model-form uncertainties associated with its construction. Hence, unlike other approaches
for UQ that rely on a PROM for accelerating stochastic computations, the method proposed in this paper for
modeling and quantifying the effects of model-form uncertainties on HDM computations of interest accounts
for the modeling errors associated with the construction of the auxiliary PROM. Such errors are highlighted
below, after a brief overview of a typical procedure for constructing a PROM is outlined.

An HDM is often associated with a physics-based, high-fidelity model. In most engineering applications,
this model is parameterized, for example, for the purpose of performing parametric studies, design optimiza-
tion, or certification by numerical simulations. Hence, a parametric HDM typically leads to CPU-intensive
computations. Its parameters are represented here by the vector % = (%1, . . . , %m%)

T , where m% denotes
the total number of parameters. If the HDM of interest has a size N – that is, if it contains N degrees of
freedom (dofs) – its projection on a ROB V ∈ RN×n representing a subspace of dimension n � N leads
to a PROM that has only n generalized dofs. Hence, the dimension of the PROM is in this case n � N .
When the ROB V is properly constructed after some knowledge about the response of the physical system
represented by the parametric HDM – or %-HDM – has been gained, the PROM obtained by projecting
this %-HDM onto this ROB can retain most of the fidelity of this HDM. In general, knowledge about the
system response is obtained during a training procedure that is performed offline. During this procedure,
the problem/model parameters represented here by % are sampled at a relatively small number of points %i

in the problem/model parameter space, i = 1, · · · , ms
%, and a set of problems related to the main problem

of interest are solved at these points using the %-HDM in order to compute a set of solution snapshots. Then,
these snapshots are compressed using, for example, the Singular Value Decomposition (SVD) algorithm to
construct a global ROB V . In general, the sampling strategy is designed so that V is reliable in a large re-
gion of the problem/model parameter space. The computational complexity of the construction of a PROM
scales with the dimension N of the underlyding HDM, in addition to the dimension n of the global ROB V .
Hence, for nonlinear problems where a PROM needs to be reconstructed several times – for example, each
time the solution is updated – a global PROM does not necessarily enable fast simulations. For this reason,
a PROM is usually equipped with a procedure for approximating the projections that are necessary for its
construction, whose computational complexity scales only with the small size n of this PROM.6–9 Such a
procedure is known in the literature as hyperreduction. It transforms a nonlinear PROM into a hyperreduced
counterpart that guarantees a significant computational speedup, while maintaining as much as possible the
desired level of accuracy. It follows that a PROM or Hyperreduced PROM (HPROM) is typically tainted
by two different sources or types of model-form uncertainties or errors:

• The model-form uncertainties inherited from the underlying %-HDM, since a PROM is generated by
projecting a %-HDM onto a ROB V .
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• The various modeling errors introduced by the finite sampling in the problem/model parameter space,
the truncation error induced by the projection process, and the approximation errors introduced by
the hyperreduction process. All these errors can be treated as model-form uncertainties.

Hence, performing UQ for a PROM can serve two different purposes: certifying the simulation-based decisions
it can enable; and, when experimental data are available, enabling, albeit indirectly, a computationally feasible
and reliable UQ for its underlying HDM.

The focus of this paper is set on structural dynamics problems, for which the Galerkin method is the
preferred projection approach, and specifically, on generalized eigenvalue problems arising from structural
vibrations. For structural dynamics problems in general, several methods are currently available for analyzing
various types of model uncertainties. These include the standard output-predictive error method introduced
in Reference,10 whose drawback is that it does not enable the computational model of interest, in this case a
PROM of the underlying %-HDM, to learn from data. They also include the family of parametric probabilistic
methods for UQ that is relatively well developed, at least for a reasonably small number of problem/model
parameters, for parameter uncertainty – that is, uncertainty associated with inputs to the computational
model of interest whose exact values cannot be controlled in physical experiments, or whose values cannot
be exactly inferred by statistical methods. Typically, such methods construct prior and posterior stochastic
models of uncertain problem/model parameters pertaining, for example, to geometry, boundary conditions
and material properties.11–14 Many of them have been shown to be computationally efficient for both a
%-HDM and a class of associated PROMs (for example, see15,16). Unfortunately, these methods do not
account for either source of model-form uncertainties outlined above.

Alternatively, nonparametric probabilistic approaches for modeling uncertainties induced by more general
modeling errors have been developed in References,17,18 in the context of linear structural dynamics. They
have been extended in Reference19 to a limited class of geometrically nonlinear structural analysis prob-
lems. Furthermore, a new nonparametric probabilistic approach based on the construction of a Stochastic
PROM (SPROM) was recently introduced in Reference3 for addressing specifically model-form uncertain-
ties, the broader case of arbitrarily nonlinear structural dynamics problems, and the context of HDMs for
which PROMs can be constructed. However, the applicability of this approach to the UQ of generalized
eigencomputations is not straightforward. Furthermore, its potential for model-form UQ was highlighted in
Reference3 primarily for modeling the truncation errors inherent to a PROM.

Hence, each of the main objective and main contribution of this paper is two-fold. First, to extend
the scope of the nonparametric probabilistic approach introduced in Reference3 for modeling model-form
uncertainties to generalized eigencomputations, as these are important in many fields including structural
dynamics. Second, to demonstrate the intrinsic ability of this approach to model and quantify model-form
uncertainties associated with an HDM for an application for which experimental data are available. For this
purpose, the focus of this paper is set specifically on the discrete, generalized EigenValue Problem (EVP)
associated with a given Finite Element (FE) structural dynamics model, and on the modeling and quantifi-
cation of the model-form uncertainties in such a model for which a PROM can be constructed. In principle,
even though the discrete, generalized EVP considered here is a linear EVP, its hyperreduction rather than
mere reduction can be beneficiary. This is because similarly to nonlinear deterministic computations, the
Monte Carlo computations underlying the proposed method for UQ – and for this matter, most if not all
other methods for UQ – incur the repeated constructions of projection operators whose computational costs
scale not only with the small dimension n of the PROM, but also with the large dimension N of the un-
derlying %-HDM. However, in order to keep the focus of this paper on its main objective stated above, and
because the HDM considered in this paper for demonstration is of a small size, attention is focused on a
PROM rather than an HPROM, and the complex discussion of hyperreduction is reported to a followup
paper. Furthermore, because the main objective of this work stated above is independent of the parametric
aspect of a PROM, and because the proposed approach for model-form UQ is related to that introduced in
Reference3 which was successfully demonstrated for parametric problems, the parametric aspect of a PROM
is not illustrated again in the examples considered in this work.

To this effect, the remainder of this paper is organized as follows. In Section II, the discrete, general-
ized EVP considered in this work is briefly described. In Section III, the construction of a deterministic
PROM for this problem is discussed. In Section IV, the mathematical approach introduced in Reference3

for constructing a Stochastic ROB (SROB) for modeling model-form uncertainties in structural dynamics
computations is tailored to the specific case of generalized eigencomputations. The process tailoring involves
the introduction in the probability distribution of the SROB of one additional hyperparameter that is ex-
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plained and justified. In Section V, the performance of the resulting nonparametric probabilistic approach
for performing model-form UQ in generalized eigencomputations is illustrated for a natural vibration analysis
problem associated with the mAEWing1 flying wing for which ground vibration test data are available.23

Finally, conclusions are offered in Section VI.

II. Generalized Eigenvalue Problem in Structural Dynamics

Given two symmetric, FE, mass and stiffness matrices M ∈ RN×N and K ∈ RN×N associated with a
high-dimensional FE structural dynamics model and embedding the displacement boundary conditions of
this HDM, the corresponding discrete, generalized EVP can be written as

Ku = ω2Mu (II.1)

where u ∈ RN denotes the semi-discrete amplitude of an assumed harmonic vibration of the structure, and ω2

is the square of the corresponding circular frequency. For large-scale FE models – that is, for large values of N
– the solution of this problem is computationally intensive, particularly when this problem is parameterized
and the total number of problem/model parameters m% is large. Furthermore, interest is typically focused in
such cases on the subset of mu eigenvalues and eigenvectors at the lower end of the spectrum, as the higher
end of the spectrum is often associated with mesh frequencies rather than physical ones. Even in such cases,
reducing the dimensionality of this problem before solving it in the problem/model parameter space can
be attractive for some applications. However, as stated in the introduction of this paper, the reduction of
the above problem is considered here primarily for the purpose of modeling and quantifying the model-form
uncertainties affecting M , K, and the mu pairs of eigensolutions (ω2

i , ui), i = 1, · · · ,mu < N . These and the
associated natural frequencies fi = ωi/2π, i = 1, · · · ,mu < N , are defined in this paper as the Quantities of
Interest (QoIs) for problem (II.1).

III. Projection-Based Reduced-Order Model

When N is large, the eigenvectors ui, i = 1, · · · ,mu < N obtained from the numerical solution of the
discrete, generalized EVP (II.1) are also often used to construct a ROB W ∈ RN×mu for the reduction of
the dimensionality of the same FE model that gave rise to M and K in the first place. However, because
the main interest here is in the modeling and quantification of the effect of model-form uncertainties on
the computation of the eigensolution pairs (ω2

i , ui), i = 1, · · · ,mu, such a ROB W cannot be considered
in this case for reducing the dimensionality of problem (II.1). Instead, a global ROB V ∈ RN×n, where
mu ≤ n� N , can be built for the fast approximate solution of this problem in the problem/model parameter
space using, for example, the Proper Orthogonal Decomposition (POD) and the method of snapshots20 in
the time domain. In this case, the time domain counterpart of problem (II.1)

Mü+Ku = f ext(t)

u(0) = u0

u̇(0) = v0 (III.1)

is considered. In Equation (III.1) above, t denotes time, a dot designates a time derivative, and f ext(t)
and u0 denote the semi-discrete time-dependent force vector and semi-discrete initial condition, respectively.
Furthermore, f ext(t) and/or {u0, v0} are chosen so that they generate a broadband excitation of the structure.
If M and K are parameterized by %, the problem/model parameter space is sampled at ms

% points %i using a

preferred sampling strategy, problem (III.1) is solved for each sampled parameter point %i = (%i1, · · · , %im%)
T

using a preferred time-integrator, and the computed solutions of problem (III.1) are collected at a chosen
sampling time-step ∆s and stored in a snapshot matrix X ∈ RN×Ns , where Ns denotes the total number of
collected solution snapshots. Then, X is compressed using, for example, the SVD method, in which case the
left singular vectors associated with the dominant singular values are selected to form the global ROB V .

Next, performing a Galerkin approximation of u – that is, approximating u as

u ≈ V ur (III.2)

substituting this approximation in problem (II.1) and premultiplying both sides of the algebraic equation
defining this problem by V T , where the superscript T designates the transpose operation, delivers the PROM
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for the discrete, generalized EVP

Krur = $2Mrur

where

Kr = V TKV and Mr = V TMV (III.3)

The notation $ is used here to differentiate the circular frequencies governed by problem (III.3) from their
counterparts governed by the HDM (II.1).

When using SVD for compressing the snapshot matrix X, V can be constructed to be either an orthonor-
mal matrix – that is, satisfying V TV = In, where In denotes the identity matrix of dimension n – or an
M -orthonormal matrix – that is, satisfying V TMV = In. In general, the second choice is preferred for struc-
tural dynamics applications,8 unless M is singular, as it is the case when some dofs of the high-dimensional
FE model do not have masses. In this case, the first choice (V TV = In) is more practical. For all these
reasons, both cases of orthonormal and M -orthonormal ROB matrices V are considered in this paper. They
are captured by the general property

V TQV = In (III.4)

where Q = M for some applications, and Q = IN for others.
Because it is formulated using a PROM, problem (III.3) can be solved in real time. If V is sufficiently

accurate (which in practice means well-trained), the reconstructed eigensolutions

(ω2
i , ui) ≈ ($2

i , V uri), i = 1, · · · ,mu ≤ n� N

where ($2
i , uri) is the i-th eigenpair solution of problem (III.3) can be expected to be very accurate.

IV. Nonparametric Probabilistic Method for Modeling and Quantifying
Model-Form Uncertainties

A. Main Idea

Model-form uncertainties, also known as structural uncertainties, typically result from an imperfect modeling
of the problem of interest. This can be due, for example, to the lack of knowledge of the true physics
underlying this problem or how to model them, or to the lack of attention to modeling details such as bolts,
rivets, freeplay, · · · . Such uncertainties affect the ability of the HDM (II.1) to deliver predictive QoIs –
that is, values of the QoIs that match reasonably well their experimental counterparts (which themselves
can also be tainted by other types of uncertainties). To model and quantify the effects of these model-form
uncertainties, an innovative nonparametric probabilistic approach based on projection-based model reduction
was developed in Reference.3 Simply put, the main idea behind this method is two-fold:

• To extract the information missing in a %-HDM from experimental data, when available, and infuse it
in this %-HDM or any other computational model derived from it.

• To formulate and implement this process of extraction and infusion using a PROM in the linear case,
and an HPROM in the nonlinear case, for the sake of computational feasibility.

This idea addresses both types of model-form uncertainties outlined in Section I, namely, the model-form
uncertainties inherent to the %-HDM, and the modeling errors introduced on the way by the model reduction
process. If however experimental data are not available, the main objective is reduced to that of modeling
and quantifying the modeling errors due to model reduction. In that case, the main idea presented in
Reference3 simplifies to extracting the information missing in the PROM/HPROM from the HDM data
(which can always be made available), and infusing it in the constructed PROM/HPROM to adapt it and
improve its predictive capability. In the remainder of this entire section, the word “data” is used to refer to
either nonstatistical or statistical experimental or HDM data, so that both cases where experimental data
are available or missing can be discussed simultaneously.

To implement the two-fold idea outlined above, it was proposed in Reference3 to randomize the ROB V
in order to transform the deterministic solution of the problem of interest into a non deterministic one that
can adapt to the available data so that it can learn from it. To this effect, it is noted here that throughout
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the remainder of this paper, the bold font is used to designate a stochastic quantity. For example, V denotes
the SROB associated with the deterministic ROB V .

However, the randomization of V cannot be performed arbitrarily, in the sense that V must remain
an admissible basis of global modes. Hence, in all events, its columns must remain linearly independent
and must satisfy any displacement constraints underlying the %-HDM from which V is constructed. To
this effect, it is first pointed out that any set of semi-discrete displacement constraints associated with a
high-dimensional FE structural model can always be written as

BTu = 0, B ∈ RN×Nbc and BTB = INbc (IV.1)

where Nbc denotes the total number of semi-discrete displacement constraints. Then, it is also noted that
a simple approach for enforcing almost surely the linear independency of the columns of the SROB V is to
preserve almost surely the orthonormality property satisfied by the deterministic ROB V .

Therefore, if V ∈ RN×n is constructed to be a Q-orthonormal deterministic ROB (see Section III and
Equation (III.4)) whose columns satisfy the displacement constraints of interest – that is, a matrix which
satisfies

V TQV = In and BTV = 0 (IV.2)

the SROB V is constructed so that:

• V ∈ RN×n is a random matrix whose probability distribution is constructed using the Maximum
Entropy principle of Information Theory and a stochastic representation of random fields.

• The support of this probability distribution is the subset of real N×n matrices satisfying the constraints

VTQV = In and BTV = 0 (IV.3)

almost surely.

• The probability distribution of V depends on a vector-valued hyperparameter α = (α1, . . . , αmα),
where the dimension mα is sufficiently small to enable the identification of α from the solution of
a reduced-order inverse statistical problem. This problem is designed to minimize the discrepancies
between the mean value and statistical fluctuations of the QoIs predicted using the SPROM constructed
using V, and their counterparts based on the available data.

• The statistical fluctuations of V happen around its deterministic counterpart V .

The general procedure for constructing an SROB V that meets the above requirements was first presented
in Reference.3 It is described in simplified form in Section IV.C.1 of this paper in order to keep it self-
contained. The selection of the hyperparameters governing the probability distribution of this SROB is
tailored in Section IV.C.2 to the context of the discrete, generalized EVP (II.1). The approach for identifying
the vector-valued hyperparameter α = (α1, . . . , αmα)T so that the SROB constructed in Section IV.C.1
can reproduce the mean value and statistical fluctuations of the QoIs computed from the available data
is presented in Section IV.D. However, the SPROM to be built using the constructed SROB V and the
Galerkin projection procedure is first presented in Section IV.B below.

B. Stochastic Projection-Based Reduced-Order Model

The stochastic counterpart of the approximation (III.2) can be written as

u ≈ Vur

where u and ur are the stochastic counterparts of u and ur, respectively, and therefore represent the stochastic
solution and its generalized coordinates in the basis V, respectively. Substituting this approximation in
problem (II.1) and premultiplying both sides of the algebraic equation defining this problem by VT leads to
the following SPROM for the discrete, generalized EVP of interest

Krur = $2Mrur

where

Kr = VTKV and Mr = VTMV (IV.4)
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Because it is formulated using an SPROM of dimension n� N , the stochastic problem (IV.4) can be rapidly
solved to compute the realizations of the stochastic QoIs

(ω2
i ,ui) ≈ ($2

i ,Vuri), i = 1, · · · ,mu ≤ n� N

where ($2
i ,uri) is the i-th eigenpair solution of problem (IV.4).

C. Stochastic Reduced-Order Basis

1. Construction Procedure

From the first constraint equation in (IV.3), it follows that the N × n SROB V must be constructed on the
compact Stiefel manifold denoted here by SN,n. From the second constraint equation in (IV.3), it follows
that this SROB must be constructed more precisely on the subset of SN,n associated with the constraint
BTV = 0. This can be done using the procedure summarized below and graphically depicted in Figure 1.

• Generate a centered random matrix U ∈ RN×n (see the corresponding numerical procedure outlined
below)

• Transform U into a random matrix A that satisfies the second constraint equation in (IV.3)

A = U−BBTU (IV.5)

Indeed, from the above definition of A and (IV.1), it follows that

BTA = BTU−BTBBTU = BTU−BTU = 0 (IV.6)

• Transform A into a random matrix Z that satisfies

BTZ = 0 (IV.7)

and lies on the tangent space to SN,n at V

Z = A− 1

2
V
(
V TQA + ATQV

)
(IV.8)

Indeed, from the above definition of Z, the result (IV.6) and the second constraint equation in (IV.2),
it follows that

BTZ = BTA− 1

2
BTV

(
V TQA + ATQV

)
= 0− 0 = 0

Also, from (IV.8), it follows that Z can also be written as

Z =
1

2
V (V TQA−ATQV ) + (IN − V V TQ)A (IV.9)

where, from the first constraint equation in (IV.2), it follows that V TQ(IN − V V TQ)A = V TQA −
V TQA = 0. This shows that (IV.9) expresses Z as the sum of one component in the subspace generated
by V and one component in the subspace that is Q-orthogonal to V , and therefore Z lies on the tangent
space to SN,n at V .

• Transform Z into the matrix V which satisfies both constraint equations in (IV.3) and therefore lies
on SN,n

V = (V + sZ)
(
In + s2ZTQZ

)−1/2
(IV.10)

where 0 ≤ s ≤ 1 can be treated as a hyperparameter of the probability model underlying V.

Indeed, from the symmetry property of the mass matrix Q, the first constraint equation in (IV.2) and
the definition of Z given in (IV.8), it follows that

VTQV =
(
In + s2ZTQZ

)−1/2
(V T + sZT )Q (V + sZ)

(
In + s2ZTQZ

)−1/2
=

(
In + s2ZTQZ

)−1/2In + s (V TQZ + ZTQV )︸ ︷︷ ︸
0

+s2ZTQZ

(In + s2ZTQZ
)−1/2

= In
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Also, from the definition of V given in (IV.10), the second constraint equation in (IV.2) and (IV.7), it
follows that

BTV = (BTV + sBTZ)
(
In + s2ZTQZ

)−1/2
= (0 + 0)

(
In + s2ZTQZ

)−1/2
= 0

Figure 1. Construction of the SROB V on a subset of a compact Stiefel manifold SN,n (construction procedure
shown with Q = M).

Note that the definition (IV.10) given above shows that:

• The statistical fluctuations of V happen around its deterministic counterpart V , as desired. In partic-
ular, for s = 0, V = V . However, it is noted that in general, E(V) 6= V (see3).

• The real number s controls the level of fluctuations of V in the tangent plane to SN,n, around V ∈ SN,n.

Note also that whereas the matrices U, A, and Z leading to the construction of V are random matrices, the
construction process of V itself is deterministic. In particular, no matter how large is the excursion of V +sZ

in the tangent plane to SN,n around V ∈ SN,n, the resulting matrix V = (V + sZ)
(
In + s2ZTQZ

)−1/2
lies

on the manifold SN,n. Hence, for all these reasons, the SROB V defined in (IV.10) satisfies all requirements
formulated in Section IV.A.

2. Random Matrix U and Associated Hyperparameters

From (IV.8) and (IV.10), it follows that if A = 0, then Z = 0 and V = V . This suggests that, consistently
with the idea that the statistical fluctuations of V should occur around its deterministic counterpart V ,
A should be a centered random matrix (E[A] = 0, where E designates the mathematical expectation of a
random variable). From (IV.5), it follows that U should also be a centered random matrix – that is,

E[U] = 0 (IV.11)

The covariance tensor Cjkj′k′ = E[UjkUj′k′ ] is a fourth-order symmetric tensor with Nn(Nn + 1)/2 =
O(N2n2) coefficients that can be considered as parameterization coefficients. As already mentioned in
Section IV.A, part of the idea here is to use such coefficients as hyperparameters and determine them so that
the mean value and statistical fluctuations of the eigenvalue solutions of the SPROM (IV.4) match target
values obtained from available data. However, working for this purpose with O(N2n2) hyperparameters is
not computationally feasible. Hence, in order to reduce its number of hyperparameters, the random matrix
U is constructed so that

Cjkj′k′ = E[UjkUj′k′ ] = CN (β)jj′cnkk′ (IV.12)

where β is a hyperparameter, CN (β) ∈ RN×N controls the correlations between the components of each
column vector of U, and the matrix cn ∈ Rn×n, which is a Symmetric Positive Definite (SPD) matrix,
controls the correlations between the column vectors of U. For a given application, the construction of
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CN (β) is given by a mathematical process whose description can be found in Appendix D of Reference3.
According to the Cholesky decomposition, cn can be written as

cn = σTσ (IV.13)

where σ ∈ Rn×n is an upper triangular matrix. Indeed, this approach for constructing U reduces the number
of hyperparameters from Nn(Nn+ 1)/2 to 1 + n(n+ 1)/2 = O(n2).

To this effect, it is shown in Reference3 that both objectives E[U] = 0 and (IV.12) can be achieved by
constructing a random matrix G ∈ RN×n that: is centered (E[G] = 0); is computed by semi-discretizing a
random field defined at the continuous level of the governing equations of the problem of interest; verifies
E[GjkGj′k′ ] = CN (β)jj′δkk′ ; and generates the random matrix U as follows

U = G(β)σ (IV.14)

Given that s in (IV.10) is also a hyperparameter, it follows that the probability model underlying V
defined so far has 2 + n(n + 1)/2 hyperparameters: s, β, and the coefficients of the upper triangular ma-
trix σ. In the remainder of this paper, these parameters of prior distribution are referred to as the main
hyperparameters.

3. Additional Hyperparameter for Reducing the Bias of the Mean Value

For computing the lowest eigenvalues, it is sometimes difficult to identify optimal values of the main hy-
perparameters described in Section IV.C.2 – that is, the values of these parameters that sufficiently reduce
the bias between the mean value E{$2

j} estimated using the SPROM (IV.4) and the corresponding value
extracted from the available data. To address this issue, an additional, strictly positive hyperparameter
s
M
> 0 belonging to a real interval in the neighborhood of 1 is introduced here as follows. Specifically, each

stochastic QoI $2
j in the SPROM (IV.4) is re-written as

$2
j = s

M
$̂

2
j , j = 1, . . . ,mu (IV.15)

and the statistics of the random eigenvalues are constructed for $̂
2
j instead of $2

j . Noting that E{$2
j} =

s
M
E{$̂2

j}, it follows that the purpose of the hyperparameter s
M

is to enable a better global fit of the mean
values {E{$2

j}, j = 1, · · · ,mu}.
Hence, for the class of eigenvalue problems considered in this paper, the hyperparameters governing the

probability distribution of the SROB V are:

• The hyperparameter s which is a real number and controls the level of fluctuations of V in the tangent
plane to SN,n, around V ∈ SN,n (see (IV.10)).

• The hyperparameter β controlling the matrix CN (β)jj′ (see (IV.12)).

• The n(n+ 1)/2 hyperparameters of the matrix σ (see (IV.14)).

• The hyperparameter s
M

introduced above (see (IV.15)).

These parameters of prior distribution are collected here in the vector-valued hyperparameter

α = (s, s
M
, β, σ)T (IV.16)

In principle, the upper triangular matrix σ (IV.13) can be sparsified. Thus, an upper bound for the
total number of hyperparameters described above is mub

α = 3 + n(n + 1)/2, and a lower bound is mlb
α = 4.

Consequently, the dimension of the vector-valued hyperparameter (IV.16) satisfies in general

4 ≤ mα ≤ 3 + n(n+ 1)/2
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D. Identification of the Hyperparameters

As already stated in Section IV.A, the identification of the vector-valued hyperparameter α is to be achieved
so that the mean value and statistical fluctuations of the QoIs predicted using the SPROM match target
values obtained using the available data. This can be performed using the maximum likelihood method, or a
nonlinear Least-Squares (LS) method for the QoIs. For example, a nonlinear LS method can be formulated
as described below, for both types of model-form uncertainties outlined in Section I.

Let
o(%) = (o1(%), . . . , oj(%), . . . , omo(%))T

denote the vector QoI (or system observation). For example, for problem (II.1), this vector can be o(%) =
(ω2

1(%), . . . , ω2
j (%), . . . , ω2

mu(%))T (mo = mu ≤ n� N). For problem (III.3), it can be o(%) = ($2
1(%), . . . , $2

j (%),

. . . , $2
mu(%))T (mo = mu ≤ n� N), and for problem (IV.4), it can be o(%) = ($2

1(%), . . . ,$2
j (%), . . . ,$2

mu(%))T

(mo = mu ≤ n� N).
Let also J(α) be the cost function defined as

J(α) = wJ Jmean (α) + (1− wJ) Jstd (α) (IV.17)

where wJ is a weight satisfying 0 ≤ wJ ≤ 1, and Jmean (α) and Jstd (α) are two functions constructed for
controlling the identification of α with respect to the mean value and statistical fluctuations, respectively.
Specifically, Jmean (α) and Jstd (α) are defined as

Jmean (α) =
1

cmean(%1, . . . , %m
s
%)

ms%∑
i=1

||oref(%i)− E[o(%i, α)]||2

and

Jstd (α) =
1

cstd(%1, . . . , %m
s
%)

ms%∑
i=1

||vref(%i)− v(%i, α)||2 (IV.18)

where:

• ms
% denotes as before the number of sampled parameter points %i in the parameter space.

• E denotes as before the mathematical expectation.

• The definition of oref depends on the type of available data, which dictates the types of model-form un-
certainties that can be accounted for by the proposed approach for modeling model-form uncertainties:

– If only high-dimensional data – that is, data generated using a %-HDM – is available, oref corre-
sponds to the QoIs (eigenvalue solutions) of the %-parametric problem (II.1) formulated using an
HDM. In this case, only the errors/uncertainties due to model reduction are taken into account
by the proposed approach for modeling model-form uncertainties.

– If experimental data are available:

∗ If these data are nonstatistical experimental data, then

oref = oexp (IV.19)

where oexp is extracted from these available data.

∗ If these data are statistical experimental data, then

oref = E[oexp] (IV.20)

where oexp is extracted from these available data.

In either case of experimental data described above, both of the errors/uncertainties due to model
reduction and the uncertainties inherited from the %-parametric HDM are taken into account by
the proposed approach for modeling model-form uncertainties.

• vref(%i) = (vref
1 (%i), . . . , vref

j (%i), . . . , vref
mo(%

i))T , i = 1, · · · , ms
%, is defined as follows:
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– If only high-dimensional data is available, then

vref
j (%i) = γ |oref

j (%i)− oj(%i)|, j = 1, . . .mo

where γ > 0 is a tunable control parameter, oref
j (%i) = ω2

j (%i) and oj(%
i) = $2

j (%
i).

– If nonstatistical experimental data are available, then

vref
j (%i) = γ |oref

j (%i)− oj(%i)|, j = 1, . . .mo (IV.21)

where, again, γ > 0 is a tunable control parameter and oj(%
i) = $2

j (%
i), but oref

j (%i) = oexp
j (%i)

(from (IV.19)).

– If statistical experimental data are available, then

vref
j (%i) =

√
E
(
oexp
j (%i)2

)
−
[
E
(
oexp
j (%i)

)]2
, j = 1, . . .mo (IV.22)

• v(%i, α) =
(
v1(%i, α), . . . ,vmo(%

i, α)
)T

, where

vj(%
i, α) =

√
E
(
o2
j (%

i, α)
)
− [E (oj(%i, α))]

2
, j = 1, . . .mo

• The positive constants cmean(%1, . . . , %m
s
%) and cstd(%1, . . . , %m%) are defined as

cmean(%1, . . . , %m
s
%) =

ms%∑
i=1

‖oref(%i)‖2, cstd(%1, . . . , %m
s
%) =

ms%∑
i=1

‖vref
j (%i)‖2 (IV.23)

It follows that in the definitions (IV.17) and (IV.18) of the cost function J(α), oref is the target for the mean
value with a weight wJ , and vref is the target for the standard deviation with a weight 1− wJ .

The identification of the vector-valued hyperparameter α consists in calculating αopt such that

αopt = arg min
α
J(α) (IV.24)

V. Application

The main purpose of this section is to demonstrate the intrinsic ability of the nonparametric probabilistic
method described in this paper to model and quantify the model-form uncertainties associated with gener-
alized eigencomputations performed using a FE HDM for which a PROM can be constructed, or the PROM
itself. Specifically, the problem of reliably predicting the first few natural modes of the mAEWing1 flying
wing made of a composite material and fabricated at the University of Minnesota24 is considered.

For this purpose, a nonparametric HDM is constructed because the mAEWing1 aircraft has already been
built. The performance of the proposed nonparametric probabilistic method is assessed for two different
scenarios:

• A hypothetical scenario designed for demonstrating the ability of the nonparametric probabilistic
method proposed in this paper for modeling and quantifying the effects of model-form uncertainties to
perform well, even in the presence of problem/model parameter errors.

• A real scenario focused on ground vibration test data to demonstrate the ability of this proposed
method to perform well with real experimental data.

All offline computations reported herein are performed using the FE structural analyzer AERO-S.21,22

All online computations based on PROMs and SROMs are performed using MATLAB c©.

A. The mAEWing1 Flying Wing

mAEWing1 is the name of a small-scale replica of an X-56 type aircraft made of a composite material and
fabricated at the University of Minnesota (see Figure 2). It is a 10-ft span, low-speed flying wing mainly
composed of a solid spar and a wing form. The solid spar has a foam core surrounded by composite laminated
reinforcements. The foam core is made of extruded polystyrene (XPS). The reinforcement is a 3-layer carbon
fiber laminate with the ply orientations [45/0/0]T in the form of a plane weave with 3K tow. The composite
matrix is made of a laminating epoxy.
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Figure 2. mAEWing1 aircraft: a 10-ft span, low-speed flying wing aircraft (courtesy of the University of
Minnesota).

B. Finite Element Structural Model

Based on a NASTRAN FE model originally developed by Virginia Tech, a deterministic, undamped, unre-
strained, AERO-S, FE, structural dynamics, “stick” model of the mAEWing1 aircraft is constructed using an
assembly of: flexible and rigid beam elements with homogenized, isotropic, linear, elastic material properties;
revolute-joint-spring combination elements with 6 dofs/node; discrete masses; and rigid, massless, “phan-
tom” shell elements for the purpose of transferring the flow-induced loads from a CFD (Computational Fluid
Dynamics) model to this FE structural model when it is used for aeroelastic computations. This FE model,
which is graphically depicted in Figure 3, contains 4,146 dofs. It is riddled with model-form uncertainties
due to, among other things, the stick and lumped mass modeling, the homogenized representation of the
composite material, and the lack of accounting for damping.

Figure 3. Undamped, FE, structural dynamics, stick model of the mAEWing1 aircraft: blue tubes designate
multipoint constraints associated with rigid beam elements and red spheres designate locations of discrete
masses and moments of inertia.

Five flexible natural modes of two supposedly identical mAEWing1 flying wings were identified during
Ground Vibration Tests (GVTs). These are discussed in Reference23 and in Section V.D of this paper. Here,
the first seven nonzero natural frequencies of the deterministic FE structural model described above are
computed (mu = 7) and reported in Table 1. Five of these can be compared with the experimental data
reported in Table 2 and organized in two cases associated with the two supposedly identical flying wings.
The other two natural frequencies illustrate the need for predictive eigenmode computations given that they
were not identified during GVT.

Table 1. mAEWing1 aircraft: natural frequencies predicted using the deterministic FE structural model (mode
numbering starts at the first flexible mode).

Flexible mode 1 2 3 4 5 6 7

Frequency f (Hz) 7.94 10.29 15.21 19.71 30.16 32.54 39.21

From the results reported in Table 1 and Table 3, the reader can observe relative discrepancies between
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the deterministically predicted natural frequencies and their experimentally identified counterparts. Some
of these relative discrepancies are as high as 26%, which highlights the effects of model-form uncertainties.
The reader can also observe that the GVTs appear to have missed in one case the third and fifth flexible
modes whose natural frequencies are estimated at 15.21 Hz and 30.16 Hz, respectively, and in the other
case the second and fifth flexible modes whose natural frequencies are estimated at 10.29 Hz and 30.16 Hz,
respectively. These misses stress the importance of complementing tests with predictive analyses.

C. Surrogate Experimental Data

As stated above, a hypothetical scenario is first considered for this application in order to demonstrate
the ability of the proposed method, which is designed to model and quantify the effects of model-form
uncertainties, to perform well even for problem/model parameter uncertainties. For this purpose, surrogate
experimental data are generated here by introducing perturbations in the material properties of the FE
structural model outlined in Section V.B. Specifically, the material Young’s modulus Y , Poisson’s ratio ν,
and density ρ are perturbed to enable a statistical analysis of the QoIs.

From the deterministic viewpoint, Y and ν are two independent material properties. However, it was
shown in Reference25 that for a homogeneous, isotropic, linear, elastic material:

• The random variables Y and ν associated with Y and ν must be considered as dependent variables.
Hence, given that no information on their statistical dependence is usually available a priori, Informa-
tion Theory cannot be applied to construct their probability models, as it would incorrectly lead to
two independent random variables Y and ν.

• However, the Lamé coefficients λ and µ can be modeled using two independent random variables λ and
µ, as long as their probability distributions are constructed using Information Theory as appropriate
gamma distributions26 – that is, as long as the fluctuations in λ and µ are generated as

λ ∼ Γ(kλ, θλ), where kλ = 1− ζLame and θλ =
E[λ]

1− ζLame

µ ∼ Γ(kµ, θµ), where kµ = 1− ζLame and θµ =
E[µ]

1− ζLame

and ζLame ∈]−∞; 1/5[ is a parameter introduced to control the level of the statistical fluctuations of
λ and µ.

Noting that Y and ν are related to λ and µ by

Y =
2µ(3λ− 2µ)

(λ− 2µ)
and ν =

λ− 2µ

2λ
=⇒ Y =

2µ(3λ− 2µ)

(λ− 2µ)
and ν =

λ− 2µ

2λ
(V.1)

it follows that the mean values and statistical fluctuations of the two dependent random variables Y and ν
can be inferred from the mean values and statistical fluctuations of the two independent random variables λ
and µ as follows. For each sampled pair of values of the independent random variables (λ,µ), the relations
(V.1) can be used to obtain the corresponding values of the pair of dependent random variables (Y,ν).
Then, the mean values of Y and ν and their statistical fluctuations can be obtained by post-processing the
inferred sampled values of Y and ν.

The material density ρ is also randomized using a gamma distribution around its mean value as follows

ρ ∼ Γ(kρ, θρ) where kρ = 1− ζρ and θρ =
E[ρ]

1− ζρ

and ζρ ∈]−∞; 1[ is another parameter introduced to control the level of statistical fluctuations of ρ.
The coefficients ζLame and ζρ are set to ζLame = −10 and ζρ = −10. For each homogenized, isotropic,

linear, elastic material used in the FE stick model described above, 100 realizations of Y, ν, and ρ are
generated. For each realization, the discrete, high-dimensional, generalized eigenvalue problem (II.1) is
re-solved using the newly generated FE stiffness matrix K(ρ, Y, ν) and FE mass matrix M(ρ, Y, ν).

The resulting probability density functions of Y, ν, and ρ for one of the homogenized, isotropic, linear,
elastic materials used for modeling the mAEWing1 aircraft are shown in Figure 4. The corresponding
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Figure 4. Probability density functions of Young’s modulus (left), Poisson’s ratio (middle), and the density of
one of the homogenized, isotropic, linear, elastic materials used for modeling the mAEWing1 aircraft.

Figure 5. Surrogate statistical experimental values f
sexp
j = ω

sexp
j /2π of the QoIs f j = ωj/2π, j = 1, . . . , 7, of the

mAEWing1 aircraft.

variations of the first 7 nonzero natural frequencies associated with the eigenvalue solutions of problem (II.1)
are graphically depicted in Figure 5, adopted as surrogate statistical experimental data, and referred to as
the stochastic QoIs f j , j = 1, · · · , 7.

In Figure 4, the reader can observe that Poisson’s ratio has negative values: these are due to the modeling
approach adopted for constructing the FE stick model. In Figure 5, the reader can observe that the first,
second, third, and fifth modes exhibit a low level of fluctuations compared to the fourth, sixth, and seventh
modes.

D. Real Ground Vibration Test Data

Two instances of the mAEWing1 aircraft referred to in Reference23 as “Sköll” and “Hati” have been built.
Their dimensions and shapes, and therefore their aerodynamic properties, are supposedly identical. However,
their structural properties slightly differ due to differences in their construction processes. GVTs were
recently conducted for both aircraft by suspending them from a spring and applying to them an input force
via an electrodynamic shaker.23 In each case, accelerometer measurements were recorded at twenty points
along the aircraft wings, and the measured force and acceleration data were post-processed using two different
methods to identify natural frequencies and mode shapes. The obtained natural frequencies are reported
in Table 2 below, as documented originally in Reference.23 In this table, IDM refers to the identification
method.

Three observations are noteworthy:

• There are only minor discrepancies between the results obtained using the first identification method
and their counterparts obtained using the second identification method.
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Table 2. mAEWing1 aircraft: ground vibration test results using two different identification methods, as
documented in Reference23 (mode numbering starts at the first flexible mode).

Aircraft
f1 (Hz) f2 (Hz) f3 (Hz) f4 (Hz) f6 (Hz)

IDM-1 IDM-2 IDM-1 IDM-2 IDM-1 IDM-2 IDM-1 IDM-2 IDM-1 IDM-2

Sköll 7.23 7.23 8.17 8.14 15.58 15.58 26.10 26.02 – –

Hati 7.95 7.96 – 13.83 15.96 15.97 19.22 19.07 32.0 31.9

• There are however important discrepancies occasionally between the natural frequencies identified for
Sköll, and their counterparts identified for Hati.

• From the narrative and graphical descriptions of the experimentally identified natural mode shapes
of both flying wing aircraft that can be found in Reference,23 it follows that the large discrepancies
between the natural frequencies of the second and fourth flexible modes of Sköll and their counterparts
for Hati are due to inconsistent numberings of the natural modes of these aircraft – or in other words,
inconsistent frequency-mode shape associations.

To fix the inconsisteny issue highlighted in the third bullet above, the mode numbering and natural
mode shapes of the FE model described in Section V.B are adopted here as references for all GVT results
obtained for the Sköll and Hati aircraft (due to the limited number of accelerometer sensors that can be
used in GVT, the eigenmodes of a FE model are typically better resolved than experimentally identified
counterparts; therefore, they usually constitute a more reliable reference for performing frequency-mode
shape associations and comparing mode shapes). This transforms Table 2 into Table 3 where the results
suggest that, as already stated in Section V.B, the GVT of Sköll missed its third and fifth natural flexible
modes, and the GVT of Hati missed its second and fifth natural flexible modes. Note that whereas in
Table 3 the FE-identified third mode frequency aligns better with the experimentally-identified fourth mode
frequencies, the FE-identified third mode shape aligns better with the experimentally-identified third mode
shape.

Hence, the target values of the second SPROM (real scenario) described in Section V.E are set to those
extracted from Table 3. However, it is noted that even with the different natural frequency-mode shape
associations reported in Table 3, the first two observations outlined above still hold. More importantly, it
is also noted that using the results of Table 3 instead of their counterparts of Table 2 to define the target
values needed for constructing the SPROM (IV.4) does not affect the performance of the model-form UQ
method proposed in this paper for generalized eigencomputations.

Table 3. mAEWing1 aircraft: re-ordered ground vibration test results (see,23 and Table 2 and Table 1) based
on a consistent frequency-mode shape association (mode numbering starts at the first flexible mode).

Aircraft
f1 (Hz) f2 (Hz) f3 (Hz) f4 (Hz) f5 (Hz) f6 (Hz)

IDM-1 IDM-2 IDM-1 IDM-2 IDM-1 IDM-2 IDM-1 IDM-2 IDM-1 IDM-2 IDM-1 IDM-2

Sköll 7.23 7.23 8.17 8.14 – – 15.58 15.58 – – 26.10 26.02

Hati 7.95 7.96 – – – 13.83 15.96 15.97 – – 32.0 31.9

FE model 7.94 10.29 15.21 19.71 30.16 32.54

E. Construction of a PROM and an SPROM

A ROB of dimension n = 10 and the corresponding Galerkin PROM of the same dimension are constructed
for the discrete, generalized EVP (II.1) associated with the FE structural model of the mAEWing1 aircraft as
described in Section III. Specifically, problem (III.1) is initialized with f ext(t) = 0, u0 = 0, and a broadband
initial velocity v0 that excites all mu natural modes of interest. It is solved in the time-interval [0, 1 seconds]
using the midpoint rule. A total number of 1,000 solution snapshots are collected in this time-interval at
the sampling time-step ∆s = 0.001 second, and compressed into a ROB V ∈ R4,146×10. Using this ROB, an
SPROM of dimension n = 10 is constructed based on a stochastic ROB V with mα = 58 hyperparameters.

For the hypothetical scenario associated with the surrogate statistical experimental data described in
Section C, these hyperparameters are identified by solving the optimization problem (IV.24) with:

• ms
% = 1 and mu = mo = 7.
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• oref = E[oexp] as in (IV.20), and oexp = (f sexp
1 , f sexp

2 , f sexp
3 , · · · , f sexp

mo)
T , where f sexp

j , j = 1, · · · , mo,
denotes the j-th surrogate stochastic experimental natural frequency computed as described in Section
C – that is, f sexp

j = ωsexp
j /2π, where ωsexp

j denotes the j-th surrogate stochastic experimental natural
circular frequency.

• vref
j , j = 1, · · · , mo, defined as in (IV.22), but using the surrogate statistical experimental data

described in Section C – that is, oexp = (f sexp
1 , f sexp

2 , f sexp
3 , · · · , f sexp

mo)
T .

For the real scenario based on the GVTs discussed in Section V.D, the hyperparameters are identified
by solving the same optimization problem (IV.24) but with:

• ms
% = 1 and mu = mo = 5.

• oref = oexp as in (IV.19), and oexp = (f exp
1 , f exp

2 , f exp
3 , f exp

4 , f exp
6 )T , where f exp

j denotes the natural frequency
associated with the average measured frequency f exp

j = (fSköll
j + fHati

j )/2, and fSköll
j and fHati

j are
the natural frequencies of the j-th flexible mode shapes of the Sköll and Hati mAEWing1 aircraft,
respectively, measured using the second identification method IDM-2 (see Table 3 and note that f exp

2 =
fSköll
2 and f exp

3 = fHati
3 ).

• vref
j , j = 1, · · · , mo, defined by adapting (IV.21) as follows

vref
j = γ max

Sköll,Hati
|oref
j − oj |, j = 1, . . .mo

where oj = $j/2π, j = 1, · · · , mo, and γ is set to γ = 1.2.

For both scenarios, wJ is set to wJ = 0.9 so that the target of Jmean is preponderant during the identifi-
cation of the vector-valued hyperparameter α (IV.16). The solution of the optimization problem (IV.24) is
computed using a genetic algorithm and the following constraints:

as ≤ s ≤ bs, where as = 10−5 and bs = 10−2

aβ ≤ β ≤ bβ , where aβ = 0.001 and bβ = 0.1

0 ≤ σjj ≤ 10, 000, 1 ≤ j ≤ n and −1, 000 ≤ σij ≤ 1, 000, 1 ≤ i < j ≤ n
as
M
≤ s

M
≤ bs

M
, where as

M
= 0.9999 and bs

M
= 2.0 (V.2)

The genetic optimization algorithm is initialized with α0 = (s0, β0, sM0
, σ0), where s0 = 4 × 10−5, β0 =

4 × 10−2, s
M0

= 1, and σ0 is computed using the scheme proposed in Appendix A. It requires an initial
population of individuals, each defined by a value of the hyperparameter vector α. The efficiency of such
an algorithm depends on the chosen number of individuals in the population, and the distribution of the
values of these individuals in the admissible set defined by the constraints (V.2). In both scenarios, the
number of individuals in the population is set to 200 × mα. Then, the distribution of the values of α
in its admissible set is constructed by generating 200 × mα independent samples of the random vector
α = (s,β,σ, s

M
)T ∈ Rmα such that E{α} = α0. The probability distributions of the random variables s,

β, and s
M

are chosen as uniform distributions on the supports defined by their constraints. The probability
model of the random matrix σ is constructed as follows. For 1 ≤ i < j ≤ n, σij = σ0ij(1 + Nij), and for
i = 1, . . . , n, σii = σ0ii|0.728 + Nii|, where {Nij}1≤i≤j≤n is a family of n(n + 1)/2 independent variables.
Each of these variables is a Gaussian, centered variable with a unit variance. Note that the absolute value
is introduced in the expression of σii in order to guarantee the required positiveness of the diagonal terms
of the matrix σ.

In both scenarios too, the Monte Carlo method is used as the stochastic solver for estimating the cost
function for every value of α proposed by the genetic optimization algorithm. For such an estimate, 10
independent realizations of the QoIs are performed for estimating the cost function for any given value of α.

For the hypothetical scenario, the value of the cost function at convergence of the genetic optimization
algorithm is J(αopt) = 4.119× 10−5, and the optimal value of the vector-valued hyperparameter α is αopt =
(sopt, sopt

M
, βopt, σopt)T where, sopt = 1.6988×10−5, sopt

M
= 1.1211, βopt = 9.9652×10−2, and the diagonal entries

of σopt are 0.42372, 0.30974, 0.35313, 0.39247, 0.16401, 1.66568, 0.77585, 0.80936, 0.33892, and 0.07803 (the
non-diagonal entries of the matrix σopt are not reported here because of space limitation).

For the real scenario characterized by the availability of GVT data, J(αopt) = 3.025 × 10−3, sopt =
4.8477 × 10−5, sopt

M
= 1.9426, βopt = 9.9764 × 10−2, and the diagonal entries of σopt are 0.89235, 0.28583,

0.00587, 0.11031, 0.08320, 0.36996, 0.25034, 0.07680, 0.50636 and 4.50132 (again, the non-diagonal entries
of the matrix σopt are not reported here because of space limitation).
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F. Performance of the SPROM in the Presence of Modeling Errors in Both the HDM and
PROM

Figures 6 and 7 report in various forms the different results obtained for the QoIs associated with the
hypothetical scenario of the mAEWing1 application defined by the surrogate statistical experimental data
described in Section C. The reader can observe that:

• For this scenario, the constructed deterministic PROM is very accurate: it reproduces well the mean
values of the realizations performed using the random HDM (FE model).

• For each considered QoI, the realizations generated by the SPROM and the resulting confidence interval
corresponding to the quantiles 98% and 2% encompass the deterministic value of this QoI predicted
using the deterministic PROM. They also capture relatively well the realizations of this QoI generated
using the random FE model and its resulting same-level confidence interval.

Essentially, the results reported in Figures 6 and 7 illustrate the ability of the proposed nonparametric
probabilistic method for UQ, which is designed to model and quantify the effects of model-form uncertainties,
to perform well even in the presence of problem/model parameter uncertainties.

Figure 6. Hypothetical scenario for the mAEWing1 application where surrogate statistical experimental
data are generated: QoIs predicted using the deterministic PROM; counterparts realized by the SPROM;
counterparts realized by the random FE model (SEXP).

Figures 8 and 9 report in appropriate forms the various results obtained for the QoIs associated with
the real scenario of the mAEWing1 application based on the averaged nonstatistical GVT data described in
Section V.D (f exp

j = (fSköll
j + fHati

j )/2). These results show that:

• In this scenario for which experimental data are available, the deterministic PROM appears to suffer
from the effect of model-form uncertainties inherited from the HDM – that is, the FE model. The
values of the QoIs it predicts are in some cases off by up to 24% with respect to the corresponding
measured values. The mismatches are exacerbated by the fact that occasionally, two different values
are identified for the same QoI by the two different identification methods used during the GVTs.

• The GVT results are not perfect either as they appear to miss the fifth natural flexible mode of the
aircraft.

• On the other hand, for all QoIs for which experimental data are available, the realizations and resulting
confidence intervals corresponding to the quantiles 98% and 2% computed by the SPROM encompass
these data – including when two different experimental values are reported for the same QoI.

• For the fifth natural flexible mode that was missed by the GVTs and therefore for which no experimental
data are available, the same-level confidence interval based on the SPROM predictions includes the
deterministic PROM prediction. For the seventh flexible mode for which no experimental data are
available, the same-level confidence interval does not contain the deterministic PROM prediction.
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Figure 7. Hypothetical scenario for the mAEWing1 application where surrogate statistical experimental
data are generated: QoIs predicted using the deterministic PROM; confidence intervals corresponding to the
quantiles 0.98 and 0.02, constructed with 100 QoI samples generated by the SPROM (each circle within a
confidence interval represents the statistical mean value of the corresponding QoI); counterpart confidence
intervals generated by the random FE model (SEXP).

In summary, the results reported in Figure 8 and 9 demonstrate for the first time the ability of the nonpara-
metric probabilistic method for model-form UQ presented in this paper to perform well in the presence of
experimental data. Where such data are not available the method may to lead to slightly larger confidence
intervals, most likely because in this case, the cost function underlying the optimization problem (IV.24)
governing the identification of the vector-valued hyperparameter lacks the minimum amount of target infor-
mation needed for producing sharp quantifications.

Figure 8. Real scenario of the mAEWing1 application with nonstatistical GVT data: QoIs predicted using
the deterministic PROM; counterparts realized by the SPROM; averaged nonstatistical experimental values
of the QoIs (EXP).

VI. Summary and Conclusions

A nonparametric, probabilistic method for modeling and quantifying model-form uncertainties associated
with a High-Dimensional computational Model (HDM) built for generalized eigencomputations and for which
a Projection-based Reduced-Order Model (PROM) can be constructed is presented. This method is feasible
because its computational complexity scales with the size of a low-dimensional, Stochastic PROM (SPROM).
The construction of this SPROM is based on three innovative ideas: the substitution of the deterministic
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Figure 9. Real scenario of the mAEWing1 application with nonstatistical GVT data: QoIs predicted using
the deterministic PROM; confidence intervals corresponding to the quantiles 0.98 and 0.02, constructed with
100 QoI samples generated by the SPROM (each circle within a confidence interval represents the statistical
mean value of the corresponding QoI); averaged nonstatistical experimental values of the QoIs (EXP).

Reduced-Order Basis (ROB) underlying the PROM with a stochastic counterpart (SROB) featuring a small
number of hyperparameters; the construction of this SROB on a subset of a compact Stiefel manifold in order
to guarantee the linear independence of its column vectors and the satisfaction of the boundary conditions;
and the formulation and solution of a small-scale inverse statistical problem to determine the aforementioned
hyperparameters so that the mean value and statistical fluctuations of the predicted stochastic eigenvalues
match target values obtained from available data. These data can be high-dimensional numerical data, in
which case the proposed method models and quantifies the effects on the solution of the various sources
of model-form uncertainties associated with projection-based model order reduction. It can also be non-
statistical or statistical data, in which case the proposed method models and quantifies the effects on the
solution of the model-form uncertainties associated with both the PROM and its underlying HDM. In the
latter case, the proposed method distinguishes itself from alternative approaches for performing model-form
Uncertainty Quantification (UQ) in HDM-based computations that rely on a PROM for accelerating the
process by the fact that it accounts for the modeling errors associated with the construction of the auxiliary
PROM. In either case, the proposed method can be interpreted as an effective approach for extracting fun-
damental information or knowledge from data that are not captured by a deterministic HDM and therefore
its associated PROM, and incorporating it in this PROM.

The successful application of the presented method to the modeling and quantification of model-form
uncertainties in generalized eigencomputations associated with a natural vibration analysis of an mAEWing1
flying wing for which ground ground vibration test data are available demonstrates its potential for the
solution of realistic UQ problems. The mAEWing1 aircraft is a small-scale replica of an X-56 type aircraft
made of a composite material. Its finite element HDM built by structural dyamics practitioners is riddled
with model-form uncertainties. These are due to, among other things, the adopted stick and lumped mass
modeling approaches, the homogenized representation of the composite material, and the lack of a structural
damping representation. It turns out that these model-form uncertainties have a detrimental effect on
the deterministic PROM built for this HDM using the Proper Orthogonal Decomposition and method of
snapshots. Indeed, this PROM predicts natural frequencies for the mAEWing1 flying wing that are in some
cases off by up to 24% with respect to their measured values. The mismatches are exacerbated by the fact
that occasionally, two different values were identified during Ground Vibration Tests (GVTs) for the same
natural frequency. On the other hand, the SPROM constructed for this aircraft using the proposed method
delivers for all measured natural frequencies realizations and resulting confidence intervals corresponding to
the quantiles 98% and 2% that encompass both the values predicted by the deterministic PROM and the
available GVT data. This demonstrates the ability of the proposed nonparametric probabilistic method for
model-form UQ to perform well in the presence of experimental data.
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A. Initialization of the Matrix σ for the mAEWing1 Applications

Regarding the solution of the optimization problem (IV.24), the initialization of the hyperparameters s,
β, and s

M0
is described in Section V.E. Here, an algorithm for initializing the matrix σ (IV.13, IV.14) is

proposed.
Let Ur ∈ Rn×n denote the matrix whose columns are the n eigenvectors urj of the PROM (III.3). From

(III.3), it follows that
KrUr −MrUrΩ

2 = 0 (A.1)

where Ω2 is the diagonal matrix whose entries are the QoIs $2
j .

Let U ref
r ∈ Rn×n denote the matrix where each j-th column corresponds to a certain mean value of the

random reduced eigenvector urj associated with the target random QoI $2
j , and let Ω2ref

denote the random

diagonal matrix whose j-th diagonal entry is the random QoI $2
j . From (IV.4), it follows that

KrU
ref
r −MrU

ref
r Ω2ref

= Er (A.2)

where Er ∈ Rn×n is a random matrix that represents the residual error.
An error for the mean value solution can be defined as

Uer = U ref
r − Ur ⇒ U ref

r = Ur + Uer (A.3)

Hence, subtracting Equation (A.1) from Equation (A.2) and using the definition (A.3) gives

KrU
e
r −MrU

e
rΩ2ref

+MrUr(Ω
2 −Ω2ref

) = Er (A.4)

Assuming that Q = IN (see (III.4)), it follows that U refT

r U ref
r = UTr Ur = In, and Uer must belong to the

admissible set of n× n real matrices

C = {U | UTU + UTUr + UTr U = 0} (A.5)

Then, the error matrix Uer can be computed by minimizing the mean-square error, E{‖Er‖2F }, over the
admissible set C – that is, by solving the optimization problem

Uer = argmin
U∈C

E
{
‖KrU −MrUΩ2ref

+MrUr(Ω
2 −Ω2ref

)‖2F
}

(A.6)

This problem can be rapidly solved by an interior-point algorithm with nonlinear constraints such as that
implemented in Matlab c©’s subroutine fmincon.

Noting that Ue
T

r Uer is an SPD matrix, let L ∈ Rn×n be the matrix defining its Cholesky factorization

Ue
T

r Uer = LTL. Recalling the properties (IV.11), (IV.12) and (IV.13), it follows that a good initial value σ0
of the matrix σ is

σ0 =
1

c
L, where c = max

j=1,...,n
Ljj (A.7)
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