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Abstract In the present paper we study a natural nonlinear generalization
of Timoshenko beam model and show that it can describe the homogenized
deformation energy of a 1D continuum with a simple microstructure. We prove
the well-posedness of the corresponding variational problem in case of a generic
end load, discuss some regularity issues and evaluate the critical load. More-
over, we generalize the model so as to include an additional rotational spring
in the microstructure. Finally, some numerical simulations are presented and
discussed.
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IMATH-Université de Toulon, Toulon, France
M&MoCS, Research Center, University of L’Aquila, L’Aquila, Italy
E-mail: seppecher@imath.fr



2 A. Battista et al.

1 Introduction

Your text comes here. Separate text sections with The main aim of this paper
is to study the problem of large deformations of a microstructured beam,
which can be described at the macroscopic level by means of a generalized
Timoshenko model. We focus on the case of a beam clamped at one endpoint
and submitted to a concentrated load at the other endpoint.
Timoshenko proposed the first beam model going beyond the classical Euler
model. The latter was formulated around mid-18th century [1], and scientists of
the caliber of Daniel and Jakob Bernoulli, as well as Lagrange, gave important
contributions to its theory [2–4]. The model has been rigorously deduced from
3D elasticity [5,6] and it is widely applied in many problems of structural
mechanics (a useful reference book is [7]).
Let E be the affine euclidean plane and {e1, e2} an orthonormal basis. The
deformation energy of an inextensible Euler beam can be written as:∫ L

0

kb
2
χ′′(s) · χ′′(s)ds =

∫ L

0

kb
2
η2(s)ds (1)

under the inextensibility constraint

||χ′(s)|| = 1 ∀s ∈ [0, L] (2)

where L is the length of the beam (assumed straight and parallel to e1 in the
reference configuration), χ is the placement, i.e. a bijective continuous function
mapping material points of the beam (labeled with s ∈ [0, L]) into E , and kb
is a material parameter accounting for the bending stiffness. In the present
paper, (.)′ denotes denotes differentiation with respect to s. In particular,
η(s) = ||χ′′(s)|| is the absolute value of the curvature of the current shape of
the beam. Note that, although the deformation energy (1) is a quadratic form,
the inextensibility constraint (2) is not convex.
Since in most of applications to structural mechanics deflections are small when
compared to the length of the beams, it is very usual to consider, instead of
the previous one, the approximated linearized model. In this case, constraint
(2) becomes χ1 = s and the deformation energy reads:∫ L

0

kb
2

(χ′′2)2ds (3)

Static problems for the commonly employed linearized model lead to fourth-
order linear ODEs, while the nonlinear model originarily formulated by Euler
leads to semilinear fourth-order ODEs.
The nonlinear Euler model can be reformulated in terms of the variable θ
satisfying

χ′ = cos θe1 + sin θe2 (4)
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The energy becomes: ∫ L

0

kb
2
θ′2(s)ds (5)

The beam is said to be clamped at the left extremum if χ(0) = 0 and χ′(0) =
e1. An external potential b(s) · χ(s), where b(s) is a distributed load, can
also be written in terms of θ by performing an integration by parts. The total
energy of the system becomes:

E(θ) =

∫ L

0

[
kb
2
θ′2(s)−B1 cos θ(s)−B2(s) sin θ(s)

]
ds (6)

where B = B1e1 + B2e2 denotes the primitive of b verifying B(L) = 0. It
is natural to search for minimizers of the energy (6) in the set of functions
belonging to H1 := W 1,2 verifying θ(0) = 0 in the sense of traces. We remark
that the angle θ(s) is uniquely determined by equation (4) if one takes into
account the clamp condition θ(0) = 0 and the fact that H1 functions have
continuous representatives. This reformulation automatically takes into ac-
count the inextensibility constraint and the non-convexity of the minimization
problem appears clearly.
Timoshenko beam model, was introduced to describe in a more precise way
the shear deformation of the beam (the problem is addressed in an original
way in [8]). It was developed much later, in the early 1920s [9], and moti-
vated by several applications. Specifically, for the static case, it was needed for
describing beams that were not so slender, in which case shear deformation
is no more negligible. This is also the case with sandwich composite beams
([10]). Timoshenko beam model is still an important tool for current research:
the possibility of very precisely manufacturing the inner architecture of beams
(e.g. by means of 3D-printing) makes it now possible to produce slender ob-
jects which display a richer behavior than what can be captured by Euler beam
model (see e.g. [11–13] for interesting examples, [14–16] for cases in which dy-
namical/instability problems are addressed and [17–20] for an approach using
asymptotic justification; a review of complex structures employing fibers that
can be modeled as generalized beams is [21]).
The original model from Timoshenko was established in a linear framework.
The deformation energy of an inextensible linear Timoshenko beam reads:∫ L

0

[
K1

2
(φ′(s))2 +

K2

2
(φ(s)− u′2(s))2

]
ds (7)

where φ is an independent kinematic descriptor and K1 and K2 are material
parameters. In the original interpretation of the model, φ was thought to
measure the angle between the cross section of the beam and a reference
axis, and therefore the model can be seen as a particular case of a Cosserat
continuum (see e.g. [22–25]).
Clearly there are infinitely many nonlinear generalizations of the previous lin-
earized energy model. A possible generalization can be obtained by replacing,
similarly to the Euler case, the term u′2 by the angle θ defined as above:
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∫ L

0

[
K1

2
(φ′(s))2 +

K2

2
(φ(s)− θ(s))2

]
ds (8)

This energy model is a natural generalization of the linear one in the following
sense: it admits the nonlinear Euler beam model as a limit case exactly in the
same sense in which the linear Timoshenko model admits the linearized Euler
model, i.e. the corresponding Euler-Lagrange equation tends to the equation
describing the nonlinear Euler beam when the shear stiffness parameter goes
to infinity. We will obtain this energy model with a formal homogenization
starting from a microstructure consisting of articulated parallelograms and
rotational springs.
The paper is organized as follows: in section 2 various kinds of microstructures
are considered and in particular a novel one is introduced which leads to the
deformation energy (8); moreover, an additional rotational spring is also con-
sidered to introduce a regularizing term which further generalizes the model.
In section 3 the well-posedness of the variational problem given by the equilib-
ria of a clamped beam under end load is addressed, some regularity issues are
discussed and the critical load is evaluated. In section 4 numerical simulations
are presented and discussed. In section 5 some conclusions are provided as well
as possible directions for future researches.

2 Microscopic interpretation of a Timoshenko beam

2.1 The linearized case

A traditional way of introducing Timoshenko model in structural mechanics
courses is to provide a microscopical interpretation of it by means of a dis-
crete system of rotational and extensional springs. Nowadays, the possibility
of accurately 3D-printing the microstructure makes these discretizations more
than academic examples, but rather possibilities to concretely implement me-
chanical systems with certain desired properties.
Let us consider the system illustrated in Fig. 1. The length of the deformed
extensional springs connecting the points t+i and t+i+1 can be computed as:

‖t+i+1 − t
+
i ‖

2 =

= ε2{1 + 2h
[

sin(θi − φi+1) + sin(φi − θi)
]

+ 2h2
[
1− cos (φi+1 − φi)

]
}

(9)

Now if we assume that the quantities θ and φ, which measure the deformation
of the system, remain small, we can write the following approximate form:

‖t+i+1 − t
+
i ‖ ≈ ε[1 + h(φi − φi−1)]

Let us assume that all the extensional springs are linear (with elastic constant
k1/(2h

2)). Performing a formal passage to the limit we have:
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Fig. 1 The bar-spring microstructure usually introduced to get the linear Timoshenko
model valid for small deformations (top: reference configuration; bottom: actual configura-
tion). For finite deformations, a heuristic homogenization for this microstructure, leads to
the energy (14).

1

2

k1

2h2
(‖t+i+1 − t

+
i ‖ − ε)

2 ≈ 1

2

k1

2
φ′2ε4 (10)

An analogous contribution in the energy will come from the spring connecting
t−i and t−i+1. The potential energy of the rotational spring connecting t−i t

+
i

and pipi+1 is assumed to be:

1

2
k2(φi − θi)2 (11)

where k2 is the elastic constant of the spring.
The deformation energy of a microstructured system composed of N elemen-
tary cells like the two represented in Fig. 1, in the linearized case, can be
therefore written as:

i=N∑
i=1

[
1

2
k1φ
′2ε4 +

1

2
k2(φi − θi)2

]
. (12)

In the limit for ε→ 0 the stiffnesses have to be suitably rescaled: k1 = K1ε
−4

and k2 = K2. Recalling that, in our hypotheses, θ is small, we can approximate
it by means of u′2, obtaining for the homogenized energy formula (7).
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2.2 The nonlinear case

If one does not want to assume that the angles φ and θ remain small, the
energy of the previous discrete system takes a more complicated form.

Indeed, the continuous form of (9) is:

1

2

k1

2h2
(‖t+i+1 − t

+
i ‖ − ε)

2 ≈ 1

2
k1φ
′2 cos2(θ − φ)ε4 (13)

and the homogenized energy, with the same scaling as before, becomes∫ L

0

[
1

2
K1(φ′)2 cos2(θ − φ) +

1

2
K2(φ− θ)2

]
(14)

As we can see, the last expression does not coincide with the form of Tim-
oshenko deformation energy given in formula (8) because of the the factor
cos2(θ − φ). While the microstructure relative to Fig.1 has an intrinsic physi-
cal interest, the homogenized energy (14) has a more complex structure than
(8) and we consider more suitable to attack the simplest problem first. Indeed,
we can recover the energy model (8) by means of a different microstructure
(see Fig. 2).
We start by considering an articulated parallelogram in which all the sides are
rigid bars, and we add another rigid bar connecting the middle points of two
sides. Then we organize them in series (see Fig 2). The points R+

i−1 and L+
i ,

R−i−1 and L−i as well as P ri and P `i−1 coincide in the reference configuration,

so that the two bars
−−−−−−→
R+
i−1R

−
i−1 and

−−−−→
L+
i L
−
i are superposed. We describe the

mechanical interaction between the bars by means of rotational springs. We
introduce two rotational springs:

1. one between the directions of
−−→
RiPi and

−−−−→
Pi+1Pi

2. one between the directions of
−−→
RiPi and

−−−−−−→
Li+1Pi+1

Assuming that the rotational springs are linear in the angle, the deformation
energy takes the form:

N∑
i=1

[
k1

2
(φi − φi−1)2 +

k2

2
(φi − θi)2

]
(15)

and setting K1 := k1ε
4, K2 := k2, formula (8) is recovered with a formal

homogenization procedure. In the following, we will call the energy model (8)
Nonlinear Timoshenko model.
Finally, we can introduce an additional rotational spring, i.e.:

3. between the directions of
−−−−→
PiPi−1 and

−−−−→
Pi+1Pi

In this case (assuming that the new rotational spring has stiffness k3 and
setting K3 := k3ε

4), an analogous formal homogenization procedure leads to
the following energy functional:
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Fig. 2 Another possible micro-structure for shear deformable beams producing (after lin-
earization) the Timoshenko beam model. On top: the unit cell and a graphical representation
of the variation of the cross-section angle φ. At the bottom: graphical representation of the
variation of angle θ formed by the tangent to the deformed shape). A heuristic homogeniza-
tion of this micro structure leads do the energy (8).

∫ L

0

[
K1

2
(φ′)2 +

K2

2
(φ− θ)2 +

K3

2
(θ′)2

]
ds (16)

In the following, we will call the energy model (16) Regularized Timoshenko
model.
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3 Properties of the minimization problems

3.1 Nonlinear Timoshenko model

Let us consider the deformation energy (8) in the model case in which a con-
centrated load F = F1e1 +F2e2 is applied at the free endpoint. We are led to
the following variational problem:

min

{
E(φ, θ) :=

∫ L

0

[
K1

2
φ′2 +

K2

2
(φ− θ)2 + F1 cos θ + F2 sin θ

]
ds

θ ∈ L2[0, L], φ ∈ H1[0, L], φ(0) = 0

} (17)

3.1.1 Well-posedness

We prove in this section that problem (17) is well posed. Let us first rewrite
the problem in a non dimensional form. A change of length and energy units
leads to

min

{
Ẽ(φ, θ) :=

∫ 1

0

[
1

2
φ′2 + K̃2

(
1

2
(φ− θ)2 + F̃ cos(θ − γ)

)]
ds

θ ∈ L2[0, 1], φ ∈ H1[0, 1], φ(0) = 0

} (18)

where K̃2 := K2L
2

K1
and (F̃ , γ) ∈ [0,+∞)× [0, 2π[ are defined by:

F̃ (cos(γ), sin(γ)) = K−1
2 (F1, F2).

Proposition 1 Problem (18) admits a solution.

Proof Let G(θ) := θ2

2 + F̃ cos(θ − γ) and G∗(z) its convex conjugate, defined
by G∗(z) := maxθ[zθ−G(θ)]. Since G is continuous and coercive, there exists
θ̄ solving the max problem and θ̄(z) belongs to the subdifferential ∂G∗(z). We
note that G∗(z) is not differentiable in correspondence of intervals in which G
does not coincide with its lower convex envelop.
Hence:

inf
θ,φ

Ẽ(θ, φ) = inf
θ,φ

∫ 1

0

[
1

2
φ′2 + K̃2

(
1

2
φ2 + (−φθ +G(θ))

)]
ds =

inf
φ

∫ 1

0

[
1

2
φ′2 + K̃2

(
1

2
φ2 + inf

θ
(−φθ +G(θ))

)]
ds =

inf
φ

∫ 1

0

[
1

2
φ′2 + K̃2

(
1

2
φ2 − sup

θ
(φθ −G(θ))

)]
ds = inf

φ
A(φ)
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where

A(φ) :=

∫ 1

0

(
1

2
φ′2 + K̃2 h(φ)

)
ds (19)

with

h(φ) :=
1

2
φ2 −G∗(φ).

Let (θn, φn) be a minimizing sequence. Then Ẽ(θn, φn) is a bounded sequence

and thus
∫ 1

0
1
2 (φ′n)2 is also bounded and φn(0) = 0. Thus φn is bounded in H1 :

there exists a subsequence (still denoted φn) weakly converging in H1 to some
function φ̄. Remind that in the one-dimensional case H1-weak convergence
implies uniform convergence and note also that G∗ is convex, and therefore

it is locally Lipschitz (see Theorem 3.7.3 in [26]). Thus
∫ 1

0
[φ2
n/2 − G∗(φn)]ds

converges to
∫ 1

0
[φ̄2/2 − G∗(φ̄)]ds. On the other hand, as convexity and weak

convergence imply lim infn
∫ 1

0
φ′2n ds ≥

∫ 1

0
φ̄′2ds, the functional A is H1-lower

semicontinuous and φ̄ is a global minimizer for A. Finally let us remark that
the constraint φn(0) = 0 passes to the uniform limit: φ̄(0) = 0.

The function θ̄(s), which solves:

max
θ

[φ̄(s)θ −G(θ)] (20)

is uniquely defined everywhere on [0, 1], by the equation

dG∗∗(θ)

dθ
= φ̄(s) (21)

or equivalently by

θ =
dG∗(z)

dz

∣∣∣
z=φ̄(s)

(22)

except at the points s such that G∗(φ̄(s)) is not differentiable. As the convex
conjugate of G is piecewise C∞ 1, θ is also C∞ on the intervals in which it is
uniquely determined.
Since φ̄ ∈ H1(0, 1) is continuous in [0, 1], it attains a maximum φM and a
minimum φm, and therefore we are interested in the differentiability of G∗

only in the interval [φm, φM ]. The set {φ1, ..., φk} of the points which belong
to [φm, φM ] and where G∗ is not differentiable is finite. Let us now prove by
contradiction that φ̄ takes the values φ1, ..., φk only on a subset of [0, 1] of
measure zero. Otherwise there would exist an integer i ∈ {1, . . . , k} such that
the measure of φ̄−1(φi) is positive. Adapting known monotonicity results for
autonomous variational problems (see e.g. Theorem 3.1 in [28]), we know that
φ̄ is monotonic2 and thus that φ̄−1(φi) is an interval. The following lemma
states that for this reason G∗ is differentiable at φi, which contradicts the
definition of φi. In conclusion θ̄ is uniquely determined almost everywhere, it
is bounded because G∗ is Lipschitz on [φm, φM ] and therefore it belongs to
L2[0, 1].

1 This, for instance, is a (trivial) particular case of Theorem 26.1 in [27]
2 The cited theorem is stated for a problem with values prescribed at both ends, but is

true also in the present case. One just has to apply it to a problem having φ(1) = φ̄(1).
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Fig. 3 Representation of φ and of the considered variation δφ

Lemma 1 Let φ̄ be a minimizer of A. Suppose that there exists an interval
having positive measure [α, β] ⊂ [0, 1] in which φ̄(s) = φ0 is constant. Then
G∗ is differentiable at φ0, and ∂G∗

∂φ (φ0) = φ0.

Proof We first observe that since G∗ is convex, it admits left and right deriva-
tives and therefore for every φ there exist both the right and left derivatives
∂h
∂φ

+
(φ) and ∂h

∂φ

−
(φ).

Now let ε be such that 0 < ε < β−α
2 and let m and c > 0 be real numbers

such that ε =
√
|m|/2c < (β − α)/2.

Let us consider a variation δφ defined as (see Fig. 3):



δφ(s) := 0 for s ∈ [0, α) ∪ (β, 1]

δφ(s) := m
ε s−

m
ε α for s ∈ [α, α+ ε]

δφ(s) := −mε s+ m
ε β for s ∈ [β − ε, β]

δφ(s) := m for s ∈ (α+ ε, β − ε)

Clearly [φ̄+ δφ] ∈ H1 and [φ̄+ δφ](0) = 0. Let us set ∆h(δφ) := h(φ̄+ δφ)−
h(φ̄). We have:

0 ≤ ∆A := A(φ̄+ δφ)−A(φ̄) =

=

∫ β

α

1

2
δφ′2ds+ K̃2

(∫ α+ε

α

∆h(δφ)ds+

∫ β−ε

α+ε

∆h(δφ)ds+

∫ β

β−ε
∆h(δφ)ds

)
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Using that h is c-Lipschitz on the compact set [φm− |m|, φM + |m|], one gets:

0 ≤ m2

ε
+ K̃2 ((β − α− 2ε)(h(φ0 +m)− h(φ0)) + 2cε|m|)

The last inequality implies:

h(φ0 +m)− h(φ0) ≥ − 2
√

2c

K̃2(β − α− 2ε)
|m|3/2 (23)

In terms of G∗, the inequality (23) can be written as:

G∗(φ0 +m)−G∗(φ0) ≤ m2

2
+ φ0m+

2
√

2c

K̃2(β − α− 2ε)
|m|3/2 (24)

The left hand side of (24) is a convex function of m while the right hand side
is a C1 function of m. Both sides coincide when m = 0. It is easily seen that a
convex function bounded from above by a C1 function is differentiable at any
coinciding point. Therefore G∗ is differentiable at φ = φ0.

Dividing by m both sides of (24) and letting m → 0+ or m → 0−, we
obtain: (

∂G∗

∂φ

)+

(φ0) ≤ φ0 and

(
∂G∗

∂φ

)−
(φ0) ≥ φ0. (25)

As a consequence
∂G∗

∂φ
(φ0) = φ0.

3.1.2 Regularity

We address now the properties of the function h. In order to establish its
regularity properties, we first have to provide some preliminary results.

Let us first remark that h is a 2π-periodic function. Indeed, for any z ∈ R,
let us denote [z] the integer part of z−γ

2π , and let us set z̃ := z− 2π[z]. We can
write

G∗(z) = max
θ

[zθ − θ2

2
− F cos(θ − γ)]

= max
θ

[2π2[z]2 + 2π[z]z̃ + z̃(θ − 2π[z])− 1

2
(θ − 2π[z])2 − F cos(θ − γ)]

= max
α

[2π2[z]2 + 2π[z]z̃ + z̃α− 1

2
α2 − F cos(α− γ)]

= 2π2[z]2 + 2π[z]z̃ +G∗(z̃).

where we introduced the variable α := θ − 2π[z]. Hence:

h(z) =
z2

2
−G∗(z)

=
z̃2

2
+ 2π2[z]2 + 2π[z]z̃ − (2π2[z]2 + 2π[z]z̃ +G∗(z̃))

=
z̃2

2
−G∗(z̃) = h(z̃).
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We address now the dependence of h on γ. For that aim let us define

Gγ(θ) :=
θ2

2
+ F̃ cos(θ − γ) (26)

and

hγ(z) =
z2

2
−G∗γ(z). (27)

We have

hγ(z) =
z2

2
−max

θ
[θz − θ2

2
− F̃ cos(θ − γ)]

=
z2

2
−max

α
[(α+ γ)z − 1

2
(α+ γ)2 − F̃ cosα]

=
z2

2
− γz +

γ2

2
−max

α
[(z − γ)α− α2

2
− F̃ cosα]

=
(z − γ)2

2
−G∗0(z − γ) = h0(z − γ).

Therefore the regularity properties of hγ result from those of h0. Remarking
that h0 like G∗0 is clearly even, we are reduced to study h0 on the interval
[0, π]. We can now address the regularity problem:

Lemma 2 (i) For F̃ < 1, h0 is a C∞ function,

(ii) For F̃ ≥ 1, h0 is a C∞ function everywhere but at 0 where the jump of
derivative is −2 a(F̃ ) with a(F̃ ) the first positive solution of the equation

a(F̃ ) = F̃ sin(a(F̃ )) (28)

(Note that a is an increasing function from [1,+∞) onto [0, π] and a(π/2) =
π/2),

(iii) In any case h0 is decreasing on the interval [0, π]. Setting V (F̃ ) := h(0)−
h(π), we have:

V (F̃ ) =


2F̃ if F̃ < 1

a(F̃ )2/2 + F̃ +
√
F̃ 2 − (a(F̃ ))2 if 1 < F̃ < π/2

a(F̃ )2/2 + F̃ −
√
F̃ 2 − (a(F̃ ))2 if π/2 < F̃

and

h′0(z) = −
√

2

√
F̃ − h0(z)

√
F̃ + 1−

√
1 + F̃ 2 − 2h0(z)√

1̃− F +
√

1 + F̃ 2 − 2h0(z))

. (29)

This lemma is illustrated in Fig. 4.
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Proof Let us start by preliminary remarks. The problem

max
θ

(
z θ −G0(θ)

)
(30)

admits at least one solution θ(z) which has to satisfy z = G′0(θ(z)) that is

z = θ(z)− F̃ sin(θ(z)) (31)

When this solution is unique and when G′′0(θ(z)) > 0, local inversion Theorem
states that θ(z) is an increasing C∞ function. Therefore G∗0(z) = zθ(z) −
G0(θ(z)) and consequently h0 are of class C∞. In that case we have

(G∗0)′(z) = θ(z) + (z −G′0(θ(z)))θ′(z)

= θ(z) + (z − θ(z) + F̃ sin(θ(z)))θ′(z) = θ(z)

and so
h′0(z) = z − (G∗0)′(z) = z − θ(z) = −F sin(θ(z)) ≤ 0. (32)

We also have

h0(z) =
z2

2
− (G∗0)′(z) =

(z − θ(z))2

2
− F̃ cos(θ(z)) (33)

and, using (31),

h0(z) =
F̃ 2 (1− cos2(θ(z)))

2
+ F̃ cos(θ(z)) (34)

Therefore3

F̃ cos(θ(z)) = 1−
√

1 + F̃ 2 − 2h0(z) (35)

and so4

h′0(z) = −
√
F̃ 2 − (1−

√
1 + F̃ 2 − 2h0(z))2

= −
√

2

√
F̃ − h0(z)

√
F̃ + 1−

√
1 + F̃ 2 − 2h0(z)√

1̃− F +
√

1 + F̃ 2 − 2h0(z))

. (36)

3 The justification of the minus sign before the square root involves some cumbersome
computations.

4

h′0(z) = −

√
F̃ − 1 +

√
1 + F̃ 2 − 2h0(z))

√
F̃ + 1−

√
1 + F̃ 2 − 2h0(z).

h′0(z) = −

√
(F̃ − 1)2 − (1 + F̃ 2 − 2h0(z)))√
F̃ − 1−

√
1 + F̃ 2 − 2h0(z))

√
F̃ + 1−

√
1 + F̃ 2 − 2h0(z).

h′0(z) = −
√

2

√
−h0(z) + F̃

√
F̃ + 1−

√
1 + F̃ 2 − 2h0(z)√

−̃F + 1 +
√

1 + F̃ 2 − 2h0(z))

.
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When F̃ < 1, previous remarks apply because the function G0 is a strictly
convex C∞ function. Point (i) and point (iii) for the case F̃ < 1 come directly:
we only have to focus on the case F̃ ≥ 1.

Let us now prove that the restriction of G on the interval (a(F̃ ), π) is
strictly convex. As G′′(θ) := 1− F̃ cos(θ) is strictly increasing, it is enough to
check that G′′(a(F̃ )) ≥ 0. This is trivial if F̃ ≥ π/2 because a(F̃ ) ∈ (π/2, π)
and so cos(a(F̃ )) < 0. This is a bit more complicated if 1 ≤ F̃ ≤ π/2 :
a(F̃ ) ∈ (π/2, π) and we can write

G′′(a(F̃ )) = 1− F̃ cos(a(F̃ )) = 1−
√
F̃ 2 − (a(F̃ ))2

The results follows5 from the properties of the equation (28).
We notice now that, by definition of a(F̃ ),

G(θ) ≥ 0× θ +G(a(F̃ )),

for any θ. On the other hand T (θ) := π(θ−π)+G(π) is tangent to G at θ = π
and satisfies, for any θ 6= π,

G(θ)− T (θ) =
1

2
(θ − π)2 + F̃ (cos(θ) + 1) > 0.

As a consequence, owing to strict convexity, the problem (30) admits, for any
z ∈ (0, π], a unique solution θ(z). This solution belongs to (a(F̃ ), π] and the
preliminary remarks apply. The function h0 is of class C∞ on (0, π] and, as
(G∗)′(0+) = a(F̃ ), we get the right derivative h′0(0+) = −a(F̃ ). By symmetry,
h0 is also of class C∞ on the interval [−π, 0) and therefore the function h0

admits a unique singularity at z = 0 on the periodicity interval [−π, π] with a
jump of derivative −2 a(F̃ ) at z = 0. 6 Point (ii) is proven.

5 In order to prove that G′′(a(F̃ )) > 0 we have to prove that a(F̃ ) >
√
F̃ 2 − 1. Owing to

the properties of equation (28), it is enough to check that
√
F̃ 2 − 1 < F̃ sin(

√
F̃ 2 − 1) or

equivalently that, for any α ∈ (0,
√
π2/4− 1),

sin(α)−
α

√
1 + α2

> 0

We first notice that, on the interval (0, π) owing to Taylor-Lagrange expansion, sin(α) ≥
α− α3

6
and then we are reduced to study the inequality

α−
α3

6
>

α
√

1 + α2

or equivalently

1 +
α4

36
−
α2

3
>

1

1 + α2

or
0 < 24− 11α2 + α4.

The result is ensured by the fact that this inequality is true for any α2 ∈ (0, 3).
6 It may also be usefull to remark that, as

θ′(z) = 1/G′′(θ(z)) = 1/(1− F̃ cos(θ(z))) ≥ 0,
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Fig. 4 Plot of the function h0 in case of F̃ = 0.8 (left) and F̃ = 1.2 (right). It can be seen
that the derivative jumps at s = 0 in the second case.

It remains to compute the variation of h0 in the case F̃ ≥ 1. We have
θ(0) = a(F̃ ) and θ(π) = π. From (34), we directly deduce

V (F̃ ) := h(0)− h(π) = a(F̃ )2/2 + F̃ (cos(a(F̃ )) + 1)

and we get the desired result by taking into account the sign of cos(a(F̃ )).

3.1.3 Buckling load

When γ = 0, the constant function φ = 0 is a critical point of Problem (18).
When F is small enough, this trivial solution is the minimizer of the energy
but when F increases, other critical solutions may exist. This phenomenon is
known as the buckling of the beam under compressive load. We determine in
this section the value of the load above which several critical solutions exist.

Lemma 3 The number of critical solutions of the problem

min
φ

{∫ 1

0

(1

2
(φ′(s))2 + K̃2h0(φ(s))

)
ds; φ(0) = 0

}
(37)

with

h0(z) =
(z − θ(z))2

2
+ F̃ cos(θ(z)) (38)

and
z = θ(z)− F̃ sin(θ(z)) (39)

is larger than one if and only if F̃ > 1

1+
4K̃2
π2

.

we have
h′′(z) = 1− 1/(1− F̃ cos(θ(z))) = −F̃ cos(θ(z))/(1− F̃ cos(θ(z))).

Hence h′′(z) has the opposite sign to cos(θ(z)). It remains positive on the interval (a(F̃ ), π)
if and only if a(F̃ ) ≥ π/2, in otherwords, if F̃ ≥ π/2. In that case h is convex between two
successive singularities. If 1 < F̃ < π/2 there exists an inflexion point and h is concave in a
vicinity of the singularities.
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Proof It is easy to check that critical solutions of (37) are the solutions, for
some constant C, of the differential equation

1

2
(φ′(s))2 − K̃2h0(φ(z)) = C (40)

with the boundary conditions φ(0) = 0 and φ′(1) = 0.

Let us set C = K̃2

(
k2

2 − h0(0)
)

or equivalently |φ′(0)| = k
√
K̃2 and let us

study for which values of k the solution of (40) with initial conditions φ(0) = 0,

φ′(0) = k
√
K̃2 satisfies φ′(1) = 0. If k2/2 > V (F ) = h0(0)−h0(π) it is clearly

impossible.
We let apart the trivial solution k = 0, φ = 0 and by symmetry we focus

on the case φ′(0) = k
√
K̃2 > 0. We call φk the solution of (40) and we denote

L(k) the smallest positive value of s such that φ′k(s) = 0. We also denote
zk = φk(L(k)) which implies

h0(zk) = h0(0)− k2

2
. (41)

As φk is monotonous on [0, L(k)] we can write

L(k) =

∫ zk

0

((φk)(−1))′(z) dz =
1√
K̃2

∫ zk

0

1√
k2 + 2 (h0(z)− h0(0))

dz

Let us first remark that L is a continuous (not necessarily monotonous) func-
tion of k which tends to infinity when k tends to

√
2(h0(0)− h0(π)). Indeed

the integral becomes singular in the vicinity of π. Things are less clear when
k tends to zero. Using the change of variable

v(z) := arcsin

(√
2 (h0(0)− h0(z))

k

)
,

we get √
K̃2 L(k) =

∫ π
2

0

j(k sin(v)) dv (42)

with
j(u) := − u

h′0(h
(−1)
0 (h0(0)− u2

2 ))
= − u

h′0(zu)

which becomes, using expression of h′0 given by Lemma 2 and equation (41),

j(u) =
u√

2F̃ − 2h0(zu)

√√√√√1− F̃ +
√

1 + F̃ 2 − 2h0(zu)

F̃ + 1−
√

1 + F̃ 2 − 2h0(zu)

=
u√

2(F̃ − h0(0)) + u2

√√√√√1− F̃ +
√

1 + F̃ 2 − 2h0(0) + u2

F̃ + 1−
√

1 + F̃ 2 − 2h0(0) + u2
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When F̃ > 1, one can easily check that h0(0) < F̃ . The function j has no
singularity, j(0) = 0 and we can pass to the limit in (42). We obtain L(0+) = 0.
The theorem of intermediate values ensures the existence of a k in (0,+∞)
such that L(k) = 1;

When F ≤ 1, we have h0(0) = F̃ and the expression of j can be simplified

j(u) =

√√√√√1− F̃ +
√

(1− F̃ )2 + u2

F̃ + 1−
√

(1− F̃ )2 + u2

We see now that j is strictly increasing : L takes values in (L(0),+∞) and a
solution such that L(k) = 1 exists if and only if

1 >
1√
K̃2

L(0) =
1√
K̃2

∫ π
2

0

j(0) dv =
1√
K̃2

π

2

√
1− F̃
F̃

or equivalently

F̃ > F̃c :=
1

1 + 4K̃2

π2

.

It is interesting to write this critical load in terms of the original parame-
ters. It becomes

F ≥ Fc
1

1 + Fc
K2

with Fc :=
π2K1

4L2

The quantity Fc is known to be the critical load for a clamped-free Euler
beam (the historical reference is [1]; for interesting recent developments see
also [34–38]). The previous formula provides the correction to be applied for
a Timoshenko beam. As expected the critical value tends to Fc when the
Timoshenko coupling parameter K2 is very large.

Note also that the number of critical solutions increases with F̃ . It passes
from 1 to 3 when F̃ reaches the critical value F̃c. It can be shown that more
generally, it passes from 2n− 1 to 2n+ 1 when F̃ reaches the value

1

1 + 4(2n−1)2K̃2

π2

.

To our knowledge, this is the first estimate for the critical load of a beam with
energy model (8).
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3.1.4 Euler-Lagrange equations

A formal computation starting from (18) leads to the following Euler Lagrange
equations for an inextensible Timoshenko beam under the end load F = F1e1+
F2e2: 

φ′′(s) =
K2

K1
(φ(s)− θ(s))

φ(s) = θ(s)− F1

K2
sin(θ(s)) +

F2

K2
cos(θ(s))

φ(0) = φ′(1) = 0

(43)

Substituting φ in the first equation we obtain the boundary value problem for
θ(s): 

θ′′(s) =
(F2 cos θ − F1 sin θ)

(
K2 +K1θ

′2)
K1(K2 − F1 cos θ − F2 sin θ)

θ(0) = − F1

K2
sin(θ(0)) +

F2

K2
cos(θ(0))

θ′(1) = 0

(44)

Of course a minimizer of the problem (18) will not have, in general, enough
regularity to solve (43) in a strong sense (see noticeable examples in [39]). A
stationary pair (φ, θ) solves the integral equation:

φ(s) =

∫ s

0

dt

∫ 1

t

K2

K1
(φ− θ)dx (45)

Recalling that φ is in H1 (i.e. it has a continuous representative), in the inter-
vals on which θ is C∞ the previous integral representation implies C2 regularity
for φ, and applying the argument recursively one obtains C∞ regularity for
both φ and θ almost everywhere, i.e. except at the points s such that G∗(φ(s))
is not differentiable. We already showed that, in case F̃ < 1, θ solves the
equations (44) in the whole interval [0, 1].

3.2 Regularized Timoshenko model

Since the integrand in (16) is convex and coercive with respect to the highest
order derivatives, by a well-known result of calculus of variations (see [29]),
the problem:


min E(φ, θ) :=

∫ 1

0

[
K1

2 φ
′2 + K2

2 (φ− θ)2 + K3

2 θ
′2 + F1 cos θ + F2 sin θ

]
ds

θ ∈ H1[0, 1], φ ∈ H1[0, 1], θ(0) = φ(0) = 0

(46)
admits at least one solution, say (φ̄, θ̄). Moreover, the minimizer (φ̄, θ̄) verifies
in a weak form the relative Euler-Lagrange equations:
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{
φ′′ = K2

K1
(φ− θ)

θ′′ = K2

K3
(θ − φ)− F1

K3
sin θ + F2

K3
cos θ

(47)

which means that a minimizing pair (φ̄, θ̄) is a fixed point for the following
nonlinear integral operator:

(φ, θ) 7−→ T(φ, θ) :=
(
T1(φ, θ),T2(φ, θ)

)
T1(φ, θ) :=

K2

K1

∫ s

0

dx

∫ x

1

dt[φ(t)− θ(t)]

T2(φ, θ) :=
1

K3

∫ s

0

dx

∫ x

1

dt[K2(θ(t)− φ(t)) + F1 sin θ − F2 cos θ]

Clearly T(φ, θ) is in C2 ×C2 if (φ, θ) ∈ H1 ×H1. Therefore, (φ̄, θ̄) verify (47)
in a strong (pointwise) sense. Finally, since (φ̄, θ̄) is a fixed point for T, the
previous argument can be applied recursively, which implies C∞ regularity for
the minimizer.

4 Numerical simulations

4.1 Results on the absolute minimizer

In this section we want to show some numerical results on the absolute min-
imizers of energy models (18) and (46). The main aim of these numerical
investigations is to show the effect of the introduction of the regularizing term
in θ′2 in the deformation energy, and indeed we will “perturb” the problem
(18) by means of a term of the type εθ′2 with ε� 1.
The numerical procedure to find the minimizer is different in the two cases of
models (18) and (46). In the first case, we used a direct numerical minimiza-
tion (based on finite elements) to find a solution of the problem P (18). We
searched θ̃ and φ̃ respectively in the set of piecewise constant and piecewise
linear functions (which are dense respectively in L2 and H1). As an internal
consistency test, we also checked that the solution θ̃ coincides with the one
obtained from φ̃ by means of (20).
On the other hand, in the case of the problem (46), the regularity proven
in section 3.2 allowed us to use the Euler-Lagrange equations. The corre-
sponding boundary value problem was solved by means of a two-dimensional
shooting technique. Specifically, an explicit Euler method (with an integration
step η = 10−3) has been implemented to solve a set of initial value problems
parameterized by means of two parameters:


φ′′ = K2

K1
(φ− θ) θ′′ = K2

K3
(θ − φ)− F1

K3
sin θ + F2

K3
cos θ

φ(0) = 0 θ(0) = 0

φ′(0) = A1 θ′(0) = A2

(48)
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We studied the behavior of the vector of boundary values p := (φ′(1), θ′(1)) as
a function of A1 and A2, and employed a direct minimizer to find the points in
the space of parameters where ||p|| is minimal. More precisely, we introduced
a square grid (with step length ` ≈ 10−3) on the plane (A1, A2) and searched
for the cells of the grid in which the local minima of ||p|| are situated.

In the following graphs we show some relevant results obtained with these two
procedures. The parameters employed in the various cases are indicated in the
captions.
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Fig. 5 The minimizing pair (φ̃, θ̃) in case of transverse end load for a nonlinear Timoshenko
energy model (left) and regularized model obtained adding to the previous a term in θ′2

with a small coefficient (right). The parameters are F1 = 0, F2 = 10, K1/2 = 1,K2/2 = 1
(left) and the same with K3/2 = 0.1 (right). Notice that on the left we have θ̃(0) 6= 0.
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Fig. 6 The deformed shape of the beam corresponding to the case of transverse end load
for a nonlinear Timoshenko energy model (left) and regularized model obtained adding to
the previous a term in θ′2 with a small coefficient (right). The parameters are the same as
in the previous figure.
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Fig. 7 The minimizing pair (φ̃, θ̃) corresponding to three different compressive end loads
for a nonlinear Timoshenko energy model. The parameters are F2 = 0, K1/2 = 1,K2/2 = 1
in the three plots, while F1 = 2 (left), F1 = 2.7 (center) and F1 = 10 (right). Notice that
the absolute value of θ̃(0) increases with F1.
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Fig. 8 The deformed shape of the beam corresponding to three different compressive end
loads for a nonlinear Timoshenko energy model. The parameters are F2 = 0, K1/2 =
1,K2/2 = 1 in the three plots, while F1 = 2 (left), F1 = 2.7 (center) and F1 = 10 (right).

4.2 Results on other stationary points

In this section we want to show some curled equilibria of the nonlinear Timo-
shenko beam model (8) and of the regularized model (16), which resemble the
ones presented for an inextensible Euler beam (in case of distributed load) in
[30]. In doing so we assume that stationary points different from the absolute
minimizer solve Euler-Lagrange equations (43).

Solving the boundary value problem by means of a shooting technique (simi-
larly to what explained in the previous section), we found the curled solutions
shown in Fig. 4.2. It is interesting to notice that, passing from the simple Euler
model to nonlinear Timoshenko and regularized Timoshenko, the property of
having such kind of curled solutions is still kept. The complete study of local
minima of the nonlinear Timoshenko beam model is not trivial and would
probably require ideas from the theory of phase transitions (see [41,42]).
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Fig. 9 A curled equilibrium shape for nonlinear Timoshenko model (left); the parameters
are: K1/2 = 1, K2/2 = 20, F2 = 25. The same kind of equilibrium shape for a regularized
Timoshenko model (right); the parameters are: K1/2 = 1, K2/2 = 1, K3/2 = 0.1, F2 = 10.

5 Conclusions

The importance of geometrical nonlinearities is increasingly important in mod-
ern structural mechanics (see e.g. [40]) and in general in elasticity theory (see
[43–48]). On the other hand, beam theory, and especially generalized beam
theory, is particularly interesting nowadays in view of applications to lattice
systems [49,50,31], and in this context pantographic structures are naturally
leading to the problem of large deformations of the fibers (see for instance
[51–57]).
This paper dealt with the problem of geometrically nonlinear deformation
of generalized Timoshenko beam models, obtained by means of a formal ho-
mogenization starting from a microstructured 1D system. We considered both
a straightforward generalization of the customary linearized model (7) and
the model obtained introducing in the microstructure an additional rotational
spring entailing a term in θ′2 in the deformation energy density. We proved
well-posedness of the variational problem concerning a clamped beam with
generic end load, as well as some properties of the minimizers, and presented
and discussed some numerical simulations.
The main open problem connected with the content of the work is the general-
ization of the results to the case of a distributed load, which would allow the use
of the result in the modeling of lattice fibrous systems with beams connected
each other with finely spaced pivots ([32,33,51]). However, this generalization
is not trivial as it leads to a non-autonomous variational problem. We remark
indeed that the given demonstrations do not generalize trivially to the case of
a distributed load, as the monotonicity properties of the minimizer discussed
in [28] are not available in general.
Finally, we want to mention that the nonlinear differential equations describing
the nonlinear model introduced here are suitable to account for many different
phenomena. For instance, they can describe the motion of a pendulum consist-
ing of a weight linked by means of a Hooke’s spring to a charge of negligible
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mass oscillating in an electromagnetic field (see [58]); in case of distributed
load the electromagnetic field would be time-dependent. Therefore, the inter-
est of studying the nonlinear energy model also in case of distributed load goes
probably well beyond 1D elasticity.

6 Compliance with Ethical Standards

The authors declare that they have no conflict of interest.

References

1. Leonhard Euler. Methodus inveniendi lineas curvas maximi minimive proprietate gau-
dentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, chapter Addita-
mentum 1. eulerarchive.org E065, 1744.

2. Bernoulli, D.. The 26th letter to Euler. In Correspondence Mathmatique et Physique,
volume 2. P. H. Fuss, October 1742.

3. Bernoulli, J. Quadratura curvae, e cujus evolutione describitur inflexae laminae cur-
vatura. Die Werke von Jakob Bernoulli, 223-227.
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