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A multiscale method for transient dynamic
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Abstract
The aim of the present work is to develop an efficient strategy for the parametric

analysis of dynamic problems with multiple contacts. The approach is based on the
multiscale LATIN method with domain decomposition. We propose to take advantage
of the capability of the multiscale LATIN method to reuse the solution of a given
problem in order to solve similar problems. This strategy has already been applied
successfully to a variety of static problems; here, it is extended to dynamics.

Keywords: multiscale computational method, transient dynamic, parametric study,
domain decomposition, contact, friction.

1 Introduction

Modeling and simulation have an important role in engineering and design depart-
ments and raise multiple problems, particularly in dynamics in the case of large as-
semblies with connections. These connections play a major role in the dimensioning
process because they are subject to highly nonlinear local phenomena (contact and
friction) which are even more important in fast transient dynamic problems and re-
quire very fine meshes in order to be represented correctly [1]. Therefore, the choice
of an appropriate and efficient computational method is of vital importance. Among
the methods usually used to deal with such problems in dynamics, one can quote the
two-level FETI method (often qualified dual Schur method) [2].
The aim of this work is to develop an efficient strategy for the parametric analysis of
dynamic problems with multiple contacts. The applications concern elastic structural
assemblies in dynamics with local nonlinearities, such as unilateral contact with fric-
tion. Our approach is based on a decomposition of an assembly into substructures
and interfaces. Within each substructure, the problem is solved using the finite ele-
ment method and an iterative scheme based on the multiscale LArge Time INcrement
(LATIN) method [3]. The objective is to calculate a large number of design configu-
rations [5], each of which corresponds to a set of values of all the variable parameters
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(friction coefficients, prestresses) introduced into the mechanical analysis. Here, us-
ing the capabilities of the multiscale LATIN method, instead of carrying out a full
analysis for each design configuration, we propose to reuse the solution of a particular
problem with one set of parameters in order to solve similar problems with other sets
of parameters) [6]. The multiscale LATIN method is a mixed method which deals with
both velocities and forces at the interfaces simultaneously and solves a homogenized
macroscopic problem in order to accelerate the convergence of the numerical scheme.
First, we introduce the multiscale LATIN strategy for the dynamic case, focusing par-
ticularly on the construction of the ”macroscopic” problem in space, which has a less
conventional meaning in this case than in statics. Then, we address the details of the
specific treatment of the interfaces which ensures continuity of loads and velocities.
Finally, we illustrate the efficiency of the method through a parametric study of 3D
examples.

2 The multiscale LATIN method

This multiscale domain decomposition method is based on three ingredients: spatial
decomposition of the domain, separation of the scales and a resolution algorithm.
The main features of these three ingredients are developed below. The details of the
method itself can be found in [3].

2.1 Decomposition into substructures and interfaces

An assembly is a set of substructures which communicate with one another through
interfaces, see Figure 1(a). Each interface represents a connection. The substructures
and interfaces have their own variables and equations (admissibility, equilibrium and
behavior). Two connected substructures are denoted ΩE and ΩE′ and the associated
interface is designated by ΓEE′ .
Each interface is a mechanical entity with its own variables and its specific behavior,
which depends on the type of connection. Many different types of connections, e.g.
frictional contact, can be modeled with this approach. The interface variables consist
of two force fields FE , FE′ and two dual velocity fields WE , WE′ , see Figure 1(b). By
convention, FE and FE′ represent the action of the interface on the substructures, and
WE and WE′ are the velocities of the substructures viewed from the interface. Thus,
the interface concept can be easily extended to the boundary, where the displacements
or the velocities or the forces are prescribed.
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Figure 1: Decomposition of the reference problem into substructures and interfaces

2.2 Multiscale extension

In order to ensure the theoretical scalability of the method, our approach introduces
a spatial description of the unknowns on two scales, called the macroscale and the
microscale. In this multiscale strategy, the interfaces play a major role of scale sep-
aration: the definitions of the microscopic and macroscopic fields are related to the
interface quantities of the substructured problem and are expressed prior to any dis-
cretization.

Let us consider an interface ΓEE′ whose unknowns (WE, FE) are divided into

WE = Wm
E +WM

E and FE = Fm
E + FM

E

, where WM and Wm denote respectively the macro parts and the micro complements
of the velocity field. The separation of the two scales is obtained by means of the pro-
jection operator ΠΓEE′ , defined for each interface. Over ΓEE′ , we write WM and FM

in the form XM =
∑

(X, eMi )eMi = ΠΓEE′X . The choice of the macroscopic projec-
tor influences the efficiency of the algorithm. The selection of the optimum projector
was studied in [4]. The basis functions {eMi } for a 2D problem are represented in
Figure 2. The macroscopic kinematics which results from this choice consists of two
translations, one rotation and one strain.

Figure 2: The affine basis functions {eMi } of an interface ΓEE′
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2.3 The substructured problem

� The problem within a substructure: The displacement field at any point M of
ΩE and at any time t of [0, T ] is uE(M, t), and the associated space is U [0,T ]. εE is the
strain field and the current state of the structure is characterized by the stress field σE ,
whose associated space is S [0,T ]. The mechanical problem to be solved within each
substructure ΩE is:

Find the evolutions of the displacement field uE(M, t) and stress field σE(M, t) such
that:

• Kinematic admissibility: ∀t ∈ [O, T ], uE ∈ U [0,T ]

– Initial condition: ∀M ∈ ΩE

uE(t = 0) = U0
E

duE
dt

(t = 0) = V 0
E (1)

– Boundary condition: ∀t ∈ [O, T ],∀M ∈ ΓEE′

duE
dt

∣∣∣
ΓEE′

= WE u
E

∣∣
∂Ω1

= Ud F
E

∣∣
∂Ω2

= Fd (2)

• Equilibrium: ∀t ∈ [0, T ],∀u̇∗ ∈ U [0,T ]
0 , σE ∈ S [0,T ]∫

ΩE

(
ρ
d2uE
dt2

+ fd

)
u̇∗dΩ +

∫
ΩE

Tr (σEε(u̇
∗)) dΩ =

∑
E′

∫
ΓEE′

FEE′u̇∗dΓ (3)

• Elastic behavior: ∀t ∈ [0, T ],∀M ∈ ΩE

σE = KEε(uE) (4)

where KE is the Hooke’s operator.

� The problem at the interfaces: The mechanical problem to be solved at each in-
terface ΓEE′ is:

Find the evolutions of the force fieldsFE(M, t), FE′(M, t) and velocity fieldsWE(M, t),
WE′(M, t) such that:

• Behavior: ∀t ∈ [O, T ],∀M ∈ ΓEE′

(FE, FE′) = AΓEE′ (WE,WE′)

where the behavior is expressed as an evolution law AΓEE′ . This law can be
nonlinear, e.g. for frictional contact.
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2.4 Resolution strategy: the LATIN method

The LATIN (LArge Time INcrement) method [7] is a general, mechanics-based com-
putational strategy for the resolution of time-dependent nonlinear problems which op-
erates over the entire time-space domain. It has been applied successfully to a variety
of problems [10, 9, 8, 4].
In our particular case of linear elastic substructures, the solution uE(M, t), σE(M, t)
can be calculated from the boundary values WE(M, t), FE(M, t). Thus, a solution s
is represented only by the force and velocity fields on both sides of an interface. The
solution of Problem sref is expressed as a set of time-dependent fields within each
substructure and at the corresponding interfaces:

sref =
∑
E

sE sE =
{
FE(M, t),WE(M, t)

}
� Separation of the difficulties:

The LATIN approach is based on the idea of dealing with each difficulty sepa-
rately in order not to have to solve a global problem and a nonlinear problem at the
same time. The equations are divided into global linear equations and local nonlinear
equations, so that sref = Ad ∩ Γ is the intersection of two subspaces:

• Ad, the space of the solutions of the linear equations associated with the sub-
structures ΩE: kinematic admissibility, equilibrium, elastic behavior and admis-
sibility of macroquantities;

• Γ, the space of the solutions of the local equations related to the interfaces ΓEE′

and expressing their behavior.

� A two-step iterative strategy:
The LATIN method consists in seeking fields of Γ and Ad alternatively in two

search directions E+ and E−, as shown in Figure 3. Each iteration involves two
stages, called the local stage and the linear stage:

Local stage: given sn ∈ Ad, find ŝ such that:

ŝn+1/2 ∈ Γ (interfaces)
ŝn+1/2 − sn ∈ E+ (search directions) (5)

Linear stage: given ŝ ∈ Γ, find sn+1 such that:

sn+1 ∈ Ad (substructures)
sn+1 − ŝn+1/2 ∈ E− (search directions) (6)

In our particular case of linear elastic substructures, the search directions are defined
as follows:

ŝn+1/2 − sn ∈ E+ ⇐⇒ F̂E − FE = k0(ŴE −WE)

sn+1 − ŝn+1/2 ∈ E− ⇐⇒ FE − F̂E = −k0(WE − ŴE)
(7)
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Figure 3: An iteration of the LATIN method

where k0 is a scalar parameter of the method. As long as k0 is positive, the solution
of the problem does not depend on the value of this parameter, which affects only the
convergence rate of the algorithm. In the dynamic cases which we are studying here,
the optimum value of k0 for a 1D problem is given by [10]:

k0 =
√
ρE

where E is the Young’s modulus and ρ the density. k0 can be interpreted as a local
impedance of the material.
An error indicator η is used to control the convergence of the algorithm. This indicator
is a measure of the distance between the two solutions sn+1 and ŝn+1/2:

η =

∑
E ‖sn+1 − ŝn+1/2‖2∑

E ‖sn+1‖2 +
∑

E ‖ŝn+1/2‖2
(8)

where: ‖sn+1‖2
E =

∫ T
0

∫
∂ΩE

F T
Ek

−1
0 FE +WEk0WEdSdt

2.5 The local stage: ŝn+1/2

This stage consists in building ŝn+1/2 ∈ Γ knowing sn ∈ Ad. Then, (ŝn+1/2 − sn)
must follow the search direction E+ defined as follows:

(F̂E − FE)− k0(ŴE −WE) = 0 (9)

Let us consider the case of a perfect interface ΓE′E . The unknowns are (ŴE, ŴE′ , F̂E, F̂E′)
and must verify the behavior equation:

F̂E + F̂E′ = 0 ŴE = ŴE′ (10)

The solution of Equations 9 and 10 is:

ŴE = ŴE′ =
1

2
(WE +WE′)−

1

2k0

(FE + FE′) (11)

F̂E = −F̂E′ =
1

2
(FE − FE′)−

k0

2
(WE −WE′) (12)
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The local stage consists in solving local problems at this interface. The case of more
complex interfaces (contact, friction,...) was developed in [4].

2.6 The linear stage: sn+1

This stage consists in building sn+1 ∈ Ad knowing ŝn+1/2 ∈ Γ:

• Macro admissibility: in order to ensure the admissibility conditions of the macro
variables, we introduce Lagrange multipliers W̃M

E at the interfaces.

• Search direction: the unknowns (WE, FE) must follow the search direction.
Equation 7 must be modified by introducing the Lagrange multipliers defined at
the interfaces. The new search direction E− is defined as follows:

(FE − F̂E) + k0(WE − ŴE − W̃M
E ) = 0 (13)

• Equations associated with the substructures: the unknowns (WE, FE) must ver-
ify the dynamic equilibrium (3) and elastic behavior (4) equations.

These equations lead to the resolution of an independent problem, called the ”micro”
problem, in each substructure:
Find uE(M, t), ∀t ∈ [0, T ],∀u̇∗ ∈ U [0,T ]

0 , σE ∈ S [0,T ]∫
ΩE

(
ρ
d2uE
dt2

+ fd

)
u̇∗dΩ +

∫
∂ΩE

k0
duE
dt

u̇∗dS +

∫
ΩE

KEε(uE)ε(u̇∗)dΩ =∑
E′

∫
ΓEE′

(
F̂E + k0ŴE + k0W̃

M
E

)
u̇∗dΓ (14)

� Discretization: In each substructure, using a classical finite element discretization
uE(M) = {N}T{U} and εE(M) = [B]{U}, Equation 14 leads to the resolution of
an evolution problem: Find U(M, t),∀t ∈ [O, T ] such that:

[ME]Ü(t) + [cE]U̇(t) + [KE]U(t) = F̂ + k0(Ŵ + W̃M) (15)

where [ME] and [KE] are the classical finite element mass and stiffness matrices.
Matrix [cE] is less classical and due only to the LATIN method. These matrces are
defined by:

ME =
∫

ΩE
ρ{N}T{N}dΩ

cE =
∫
∂ΩE

k0{N}T{N}dS
KE =

∫
ΩE

[B]KE[B]dΩ
(16)

In order to solve the evolution problem (15), the finite element discretization must
be associated with an explicit time integration scheme. We chose to use the classical
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central difference scheme:

U̇t+∆t = U̇t +
∆t

2
(Üt + Üt+∆t)

Ut+∆t = Ut + ∆tU̇t +
∆t2

2
Üt

(17)

Then, the linear system which needs to be solved at each time step has the following
form: ( 2

∆t
[ME] + [cE]

)
U̇t+∆t = F̂t+∆t + k0(Ŵt+∆t + W̃M

t+∆t)− [KE]Ut

+
( 2

∆t
[ME]−∆t[KE]

)
U̇t +

(
[ME]− ∆t2

2
[KE]

)
Üt (18)

We use a lumped mass matrix [ME], and [cE] is also a diagonal matrix. System (18)
cannot be solved because there are two unknowns, U̇t+∆t and W̃M

t+∆t. Therefore, we
divide Field U̇ into two fields, U̇1 and U̇2, such that U̇ = U̇1 + U̇2 and fields U̇1 and
U̇2 are solutions of two microproblems:( 2

∆t
[ME] + [cE]

)
U̇1
t+∆t = F̂t+∆t + k0Ŵt+∆t + f(Üt, U̇t, Ut) (19)( 2

∆t
[ME] + [cE]

)
U̇2
t+∆t = k0W̃

M
t+∆t (20)

Equation 19 can be easily solved after a local stage. Equation 20, however, cannot be
solved without the knowledge of W̃M . This linear system (20) can be easily inverted
because of the very small number of degrees of freedom of W̃M (four DOFs per
interface for a 2D problem). Thus, we can write:

W 2,M = L−1
E W̃M (21)

where W 2,M = ΠΓEE′ U̇
2
∣∣∣
ΓEE′

and LE represents a homogeneous behavior operator for Substructure ΩE . These op-
erators are calculated only once for all the substructures at the beginning of the algo-
rithm. W 2,M is the macro part of the restriction of U̇2 to the interfaces.

� The macro problem: The admissibility of the macroquantities at all the interfaces
and the homogeneous behavior of all the substructures (Equation 21) lead to the defi-
nition of the ”macro” problem.
In order to explain the construction of the macro problem, let us consider a perfect
interface. The admissibility of the macroquantities at such an interface corresponds to
the continuity of the velocities and to the equilibrium of the macroscopic forces. For
an interface ΓEE′ , one has:

WM
E = WM

E′ and FM
E + FM

E′ = 0 (22)
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The decomposition of Field U̇ into U̇1 + U̇2 using the search direction (13) and the
projector ΠΓEE′ involves some other relations for W 1,M and W 2,M (the macro parts of
the restrictions of fields U̇1 and U̇2 to the interfaces):

WM = W 1,M +W 2,M

F 1,M − F̂M + k0(W 1,M − ŴM) = 0 (23)

F 2,M + k0(W 2,M − W̃M) = 0

With such admissibility conditions, we need to introduce two Lagrange multipliers for
each interface, as shown in Figure 4.

Figure 4: Lagrange multipliers W̃M
E and W̃M

E′ for a perfect interface

The contribution of the perfect interface ΓEE′ to the macro problem (Equation 24)
is expressed through Equations 21, 22 and 23. The quantity W̃

M

E is a vector which
contains all the Lagrange multipliers of Substructure ΩE .

[
LE −LE′

k0(1− LE) k0(1− LE′)

][
W̃

M

E

W̃
M

E′

]
=

[
−W 1,M

E +W 1,M
E′

−F 1,M
E − F 1,M

E′

]
(24)

This problem couples all the macro variables of the entire structure and enables us to
define the Lagrange multiplier W̃M

E for all the substructures. W 1,M
E is the macro part

of the solution of the first microproblem (Equation 19); F 1,M
E is calculated using the

search direction (Equation 23).

2.7 The algorithm

The LATIN method consists in processing linear and local stages alternatively. Algo-
rithm 1 shows the key steps of an iteration of the multiscale method.
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Algorithm 1: The micro/macro LATIN method (velocity approach)

- Linear stage

• Loop over the substructures:
First microproblem: Determination of (U̇1

E,W
1
E) given (ŴE, F̂E)

(Equation 19). Calculation of W 1,M
E = ΠγEE′W

1
E , then of F 1,M

E ,
using the search direction and the admissibility conditions of the
macroquantities.

• Macro problem:
Determination of W̃M

E given W 1,M
E and F 1,M

E (Equation 24)

• Loop over the substructures:
Second microproblem: Determination of (U̇2

E,W
2
E) given W̃M

E

(Equation 20)

Calculation of U̇E = U̇1
E + U̇2

E

- Local stage

• Loop over the interfaces:
Determination of (ŴE, F̂E) given (WE, FE) (Equations 11 and 12)

Iteration until convergence

2.8 Strategy for the parametric study

At each iteration, the LATIN method leads to an approximate solution of the prob-
lem over the whole time interval. The idea consists in reusing this approximation to
find the solution of a problem similar to that for which it was calculated in the first
place. The multiple-solution method uses the fact that the LATIN algorithm can be
initialized with any solution (usually an elastic solution) provided that it verifies the
admissibility conditions. Therefore, the key to our technique consists in initializing
the process associated with the similar problem (the “perturbed” structure) using the
results of the calculation carried out previously on the “initial” structure. Thus, a first
approximation of the solution of the perturbed problem (with strong mechanical con-
tent) becomes immediately available. This idea has already been applied successfully
to a variety of static and quasi-static problems [6]. In this work, we use it in the con-
text of the multiscale LATIN method in dynamics.

In our particular case of contact between elastic structures, the interfaces play a vital
role: they enable one to initiate the calculation of the perturbed structures without
having to save all the data of the substructures first, and to search for the solution of
the perturbed problem using an initial solution adapted to the target problem. In the
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best-case scenario, only a few iterations are necessary and the solution is obtained
inexpensively. If the solutions of the “initial” and “perturbed” problems are close
enough, the latter can still be derived at significantly lower cost than by using a full
calculation. For a simple parametric study, the parameters change only between iter-
ations. Thus, each calculation is initialized by the solution of the previous one. The
algorithm of the full parametric study is summarized in Algorithm 2.

Algorithm 2: Parametric study with the LATIN Method

Initialization

• Loop over the substructures:
Construction and factorization of [ME], [cE], [KE].

• Loop over the interfaces:
ŴE = ŴE′ = WE = WE′ = 0
F̂E = F̂E′ = FE = FE′ = 0

Definition of the limits of the parameter sets
Loop k = 1, 2, ... number of parameter sets

• Restoration of the quantities at the interfaces

• Iteration until convergence:

Global stage
Local stage
Convergence test

• Save the interface solution for the kth parameter set

3 Examples: 3D academic example

In order to test the method previously developed, let us consider a 3D case. This
example concerns the propagation of a compression wave in a bar composed of two
parallelepipeds (Figure 5). Each parallelepiped can be decomposed into several sub-
structures. The interface between the two parallelepipeds can be perfect or can involve
frictional contact. The bar is 1m-long and 0.25m-wide. Its Young’s modulus is 200
GPa, the mass density 7800 kg/m3, and Poisson’s ratio 0.3. The loading consists of a
prescribed velocity going from 0 initially to a maximum value of 1 m/s over a period
of 60 µs.
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Figure 5: Numerical example

3.1 Comparison between the single-scale and multiscale methods

The purpose of the test was to evaluate the efficiency of the multiscale method. In
order to do that, we assumed a perfect interface between the two parallelepipeds and
decomposed each parallelepiped into 2 substructures. Figure 6 shows the mesh used
for the test, which contains about 5,600 DOFs. We used 79 time step of 5 µs each for
a total duration of 395 µs.

Figure 6: The mesh used for the bar

Figure 7 shows the velocity field along the (O, x) axis (defined in Figure 5) as a
function of time. Using the single-scale method (Figures 7(a) and 7(b)), iterations are
necessary for the wave due to the applied velocity to propagate through the structure.

(a) Single-scale method
for Iteration 5

(b) Single-scale method
for Iteration 10

(c) Multiscale method
for Iteration 1

Figure 7: Velocity field V along the (O, x) axis (m/s) vs. time (µs) and x (cm)

In the case of the multiscale method (Figure 7(c)), the first iteration of the method
gives a good estimate of the solution, thanks to the macroscopic problem which pro-
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vides a representation of the macroscopic part of the solution.

The efficiency of the multiscale method is illustrated by the evolution of the error
indicator during the process. Figure 8 shows the convergence rate of the single-scale
and multiscale methods using 4 and 24 substructures.

Figure 8: Evolution of the error indicator during the process

These curves show that the convergence rate of the multiscale method is better than
that of the single-scale method. Moreover, the convergence rate of the multiscale
method does not depend on the number of substructures. The multiscale approach is
scalable, whereas the convergence rate of the single-scale method is highly dependent
on the number of substructures.

3.2 Parametric study

In order to illustrate the efficiency of the method in carrying out parametric studies, let
us consider the same example, this time with frictional contact at the interface between
the two parallelepipeds. In the following parametric study, the friction coefficient f is
assumed to be known and takes 11 different values between 0 and 0.5 in increments
of 0.05. Figure 9 shows the calculation cost for each value of f , which indicates that
the strategy is efficient: 565 iterations were required for 11 different values of the
parameter, compared to 4,345 iterations using the direct approach.

f 0 0.05 0.1 0.15 0.2 0.25 0.3 .. 0.5
Nb. of iterations 395 56 36 28 21 12 ≈4

Time (normalized) 1. 0.14 0.09 0.07 0.05 0.03 <0.01

Figure 9: Cost of the parametric calculations

Figure 10 shows the evolution of the error indicator during the process. Each change
in f increases the error indicator, but the number of iterations required decreases.
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Figure 10: Evolution of the error indicator during the parametric study

3.3 Frictional contact with a gap

In the previous parametric study, the parameter set consisted of only the friction co-
efficient f between the two parallelepipeds. This example enabled us to study the
influence of this coefficient on the solution. In such a study, the contact conditions
must be verified strictly.
The objective of this section is to show that the multiscale LATIN method is indeed
capable of carrying out such a calculation. In order to do that, let us consider the same
example of two parallelepipeds with a frictional contact interface, this time with an
initial 40-µm gap between them. The gap between the two parallelepipeds creates
a shock wave when they come in contact. We analyzed this problem with both the
multiscale LATIN method and the finite element code LS-DYNA3D.

(a) Multiscale LATIN method (b) LS-DYNA3D

Figure 11: Displacement of a point on either side of the interface as a function of time

Figure 11 shows the displacement of a point on either side of the interface with the gap
as a function of time. In the result obtained with the multiscale LATIN method (Fig-
ure 11(a)), the behavior of the interface is verified: the gap is visible at the beginning
of the curve; then, the two parallelepipeds come into contact. In the result obtained
with LS-DYNA3D (Figure 11(b)), the behavior of the interface is not verified exactly.
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One can see that sometimes the two parallelepipeds are not in contact as they should
be, and that they interpenetrate at the end of the calculation. These results show that,
contrary to LS-DYNA3D, the multiscale LATIN method is suitable for studying the
influence of the friction coefficient on the solution.

4 Conclusion

As was already proven in statics, the extension of the multiscale LATIN method to
dynamics which we study in this work marks a real advantage compared to the single-
scale method. The algorithm, associated with an explicit time integration scheme, is
very efficient.
The strategy for parametric studies already used in statics also gives good results in
dynamics. Compared to other commercial finite element tools, this solution is partic-
ularly well-adapted to the study of friction coefficients. The strategy proposed here,
associated with the multiscale approach, is very efficient and can also be fully par-
allelized. The next step will consist in implementing this strategy within a cluster
architecture and evaluating its efficiency for problems with very large numbers of de-
grees of freedom.
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[8] P. Ladevèze, A. Nouy, “On a multiscale computational strategy with time and
space homogenization for structural mechanics, Computer Methods in Applied
Mechanics and Engineering, 192, 3061-3087, 2003.
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