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(3) LAGEP, CNRS - Université Claude Bernard Lyon 1, France
(4) LCIS-ESISAR, Grenoble INP, France

June 9, 2010

Abstract

The D1Q3 lattice Boltzmann (LB) shallow water equation is analyzed
in detail and compared with other numerical schemes. Analytical results
are derived and used to discuss the accuracy and stability of the model.
We show how such D1Q3 LB models for canal reaches may be easily
coupled with various hydraulic interconnection structures to build models
of complex irrigation networks.

1 Introduction

Generally, an irrigation network consists of a primary open-air canal connected
to secondary canals and/or pressurized network of water distribution. Canals
consist of several long reaches (usually several kilometers long) separated by
engineering works (like sliding gates for instance) [8, 4]. The open-channel hy-
draulic part is the most complex one. Its dynamical behavior is characterized
by important time delays (due to water transport), wave superposition effects
and strong nonlinearities (mainly around the works). The overall network has
to be carefully managed in order to supply the various water flow demands with-
out violating strict water level constraints at several places along the reaches
and near the hydraulic works. This complex control and optimization prob-
lem requires efficient and reliable numerical algorithms to describe the open-air
hydrodynamics.

Within the long reaches with uniform sections, 1D shallow water model are
usually used successfully, whereas 2D/3D models are often required to describe
nonlinear turbulent flows as well as important erosion/sedimentation effects near
the gates. Recently we have proposed a bi-fluid lattice Boltzmann (LB) model
that describes the flow near a gate, with or without sediment transport and
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erosion [14], fully resolving all the components of the velocity flow. However,
this detailed model is computationally demanding and should only be used in
the regions where the vertical component of the flow velocity plays an essential
role.

In this paper, we use a lattice Boltzmann (LB) approach to solve the 1D
shallow water (SW) equation and its coupling with other models. Whereas 2D
LB-SW models have been considered in several papers [16, 5, 22], the 1D model
is –to our knowledge– only investigated in one article by Frandsen [6].

In what follows we present a detailed analytical discussion of the accuracy
and stability of the 1D model, as well as a comparison with other time-dependent
numerical solvers. We show that the LB-SW model is accurate, fast and rather
stable. We also consider the coupling between several 1D models separated by
gates whose behaviors are described by a phenomenological equation. More
advanced coupling will be discussed briefly and described in a forthcoming pub-
lication.

2 The shallow water equation

2.1 Governing equations

We consider here the water flow in a rectangular open channel with slope, I, and
width, B, as represented in (Fig.1). The flow and level dynamics of water in such
a channel is usually modelled by the shallow water equations which are derived
from the conservation laws of mass and momentum, using some assumptions on
the flow. These assumptions are that the slope is small, the length of the reach
is assumed sufficiently large compared to the water level height, the pressure
is assumed to be hydrostatic and the fluid is incompressible. Finally, internal
viscosity effects are neglected. The Saint-Venant (or shallow water) equations
are then

∂th+ ∂x(hu) = 0 (1)

∂t(hu) + ∂x

(
1
2
gh2 + hu2

)
= F (2)

where h denotes the water depth, u the depth-averaged horizontal velocity of
the flow, and g the gravitational acceleration. The force term, F = gh(I − J),
accounts for the bed slope, I, and the bed friction, J , where I = ∂hb/∂x with
hb the bed height and J is modelled with the classical Manning formula [8]:

J =
n2u2(
Bh
B+2h

)4/3
(3)

with n the Manning coefficient and B the width of the canal.
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Figure 1: Longitudinal (left) and lateral (right) views of an open rectangular
hydraulic channel

2.2 Lattice Boltzmann model

The lattice Boltzmann (LB) method has proven to be a powerful numerical tool
to simulate the fluid flows and other physical phenomena [15, 1, 2, 20].

In this method, one considers the dynamics of idealized fluid particles on
a lattice. The key quantities in the LB model are the density distributions,
fi(x, t), denoting the density of particles entering site x at discrete time t with
velocity vi. The vi are chosen to match the spatial lattice so that, in one time
step, ∆t, particle with velocity, vi, arrives at the lattice point at x + vi∆t.
Usually a LB model uses only a small number of velocities, vi.

One assumes that the particles entering the same site at the same time with
density, f ini (x, t), collide. As a consequence, a new distribution, fouti (x, t), of
particles results. Then, during the next time step, t+∆t, the particles emerging
from this collision phase move to a new lattice site, determined by their new
speeds. Therefore, the dynamics of a LBM consists of the alternation of collision
and streaming phases

Collision : fouti (x, t) = f ini (x, t) + Ωi(f in)
Streaming : f ini (x+ vi∆t, t+ ∆t) = fouti (x, t) (4)

where f in denotes the vector of all f ini , ∆x is the lattice spacing and ∆t is
the time step. Ωi is the collision operator, which is commonly defined by the
Bhatnagar-Gross-Krook(BGK) model [15]

Ωi(f in) =
1
τ

(feqi − f
in
i ) (5)

where τ is a relaxation time constant and the feqi are the so-called equilibrium
distribution functions. feqi depend on the physical process to be described. We
shall specify its form below, for the shallow water model.

Equations (4) and (5) may be combined to obtain the evolution equation

fi(x+ vi∆t, t+ ∆t) = fi(x, t) +
1
τ

(feqi − fi) (6)

where f stands for f in.
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When an external force, F , exists, the lattice Boltzmann equations are mod-
ified. Several versions have been proposed in the literature [18, 10, 9, 11]. For
a constant force, F , the following expression can be used:

fi(x+ vi∆t, t+ ∆t) = fi(x, t) +
1
τ

(feqi − fi) + wi
∆t
c2s
viF (7)

where wi and cs are parameters that are determined by the geometry of the
lattice and chosen to obtain isotropy for the model.

In the present paper, we consider a 1D model for the water flow. A D1Q3
model geometry (1 dimension and 3 velocities) has been chosen with the notation
of figure 2

-�

v2 v1v0

u
Figure 2: Lattice Boltzmann D1Q3

in which v0 = 0, v1 = v, v2 = −v and v = ∆x/∆t. In this model, the following
values are used for wi and c2s =

∑
i>0 wiv

2 :

w0 =
2
3
, w1 = w2 =

1
6
, c2s =

v2

3
(8)

In order to recover the physics of the shallow water equations, the equilibrium
distribution functions must satisfy the following three conditions, expressing
mass and momentum conservation, as well as the desired form of the momentum
tensor ∑

i

feqi = h (9)∑
i

vif
eq
i = hu (10)

∑
i

v2
i f

eq
i =

1
2
gh2 + hu2 ≡ Πeq (11)

where h, the water level, and u, the velocity, are defined as:

h =
∑
i

fi, hu =
∑
i

vifi (12)

When equations (9-11) hold, the equilibrium distribution functions are uniquely
determined by the macroscopic variables h and u. One gets

feq0 = h− 1
2v2

gh2 − 1
v2
hu2

feq1 =
1

4v2
gh2 +

1
2v
hu+

1
2v2

hu2 (13)

feq2 =
1

4v2
gh2 − 1

2v
hu+

1
2v2

hu2
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These equilibrium distribution functions will be used in the next section to
show that the shallow water equations dynamics may be recovered from the
LB model. A dissipative contribution will be obtained that differs from that
proposed in [22] but agrees with the results of [5].

Finally, the force term will be evaluated using several methods. First we
consider the centered-scheme proposed by Zhou [22]. This scheme was shown
be accurate up to the second-order in the space and time discretization steps [22]
but our simulations show that this is not always the case. Zhou’s force model
assumes an LB eq. (7) with

Fi = ghi

I − n2ui(
Bhi

B+2hi

)4/3

 (14)

where hi = h(x,t)+h(x+vi∆t)
2 and ui = u(x,t)+u(x+vi∆t)

2 . Therefore a kind of mean
force term is thus used, derived from the mean values of the water levels and
velocities at the current lattice point and at the ”next” lattice point in direction
i.

Unfortunately, Zhou’s expression for the force does not conserve mass locally.
As shown below, second order corrections to the mass conservation laws are
present, as well as a second order correction to the momentum balance equation.
Therefore we will also implement Guo’s force model [9], which is the standard
way to add an external force in the LB method. It will however change the
relation (12) between hu and the f ′is. The accuracy of Guo’s force will be
shown to be first order only in an exact calculation.

Finally, we shall also consider a simplified Guo’s force model, which turns
out to be easier to implement and more accurate than the other two in our
benchmarks.

2.3 Chapman-Enskog expansion

The hydrodymanic equations associated with the above LB model can be de-
rived from a multiscale Chapman-Enskog expansion. Such a procedure shows
that the LB model recovers the continuity equation and the viscous Saint-Venant
(shallow water) equations. Discrepancies are third order in ∆t and ∆x and in
the dissipative term. In recent literature [22], the viscous term is unfortunately
incorrectly calculated. The correct form has been briefly indicated in an ap-
pendix of [5], omitting the complete expression for LB case. For this reason,
we give below a full derivation of the hydrodynamic equations. We also give
the explicit expression of the non-equilibrium part of the density distribution
which, to the best of our knowledge, has never been published for the shallow
water LB model. Note however that in our derivation we do not consider the
case with the force term.

The multiscale Chapman-Enskog expansion method is described in detail
in [2]. It contains several steps that are summarized below:
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(1) A Taylor expansion, up to second order of the LB dynamics (6)

∆t∂tfi+vi∆t∂xfi+
1
2

∆t2∂2
t fi+

1
2
v2
i∆t2∂2

xfi+vi∆t2∂x∂tfi =
1
τ

(feqi −fi) (15)

(2) An expansion in a formal parameter ε (usually interpreted as the Knudsen
number) of the distribution functions

fi = feqi + εf
(1)
i + ε2f

(2)
i + ... (16)

(3) A multiscale analysis to separate the two time scales in the problem. Here
we assume that the process is governed by a fast convective scale and a slow
dissipative scale. Therefore we express the spatial and temporal variables t and
x in terms of new variables t1, t2 and x1.

∂t = ε∂t1 + ε2∂t2 (17)
∂x = ε∂x1 (18)

The multiscale approach gives a way to properly approximate the second order
time derivative in (15).

(4) The first two moments of eq. (15) are taken (sum over i and multiplication
by vi and sum over i). The right-hand side exactly vanishes at all order in ε,
due to the conservation laws. We obtain, for the convective scale

∂t1h+ ∂x1(hu) = 0 (19)
∂t1(hu) + ∂x1Πeq = 0 (20)

and, for the dissipative scale

∂t2h+
1
2

∆t∂2
t1h+

1
2

∆t∂2
x1

Πeq + ∆t∂x1∂t1(hu) = 0 (21)

∂t2(hu) + ∂x1Π(1) +
1
2

∆t∂2
t1(hu) +

1
2

∆t∂2
x1
Seq + ∆t∂x1∂t1Πeq = 0 (22)

Then, after some algebra (see [2]) the two scales can be recombined to give the
hydrodynamic equations, at the scale x and t

∂th+ ∂x(hu) = 0 (23)

∂t(hu) + ∂x

[
Πeq + εΠ(1) +

1
2

∆t (ε∂t1Πeq + ∂xS
eq)
]

= 0 (24)

where the quantities Π and S are tensors defined as

Π =
∑
i

v2
i fi Πeq =

∑
i

v2
i f

eq
i Π(1) =

∑
i

v2
i f

(1)
i (25)

and
S =

∑
i

v3
i fi Seq =

∑
i

v3
i f

eq
i (26)
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We can recognize the continuity equation. But we see that eq. (24) is not yet in
the final form of a shallow-water equation because Π(1) is unknown. To compute
it we need to compute f (1).

(5) The nonequilibrium distribution f (1) can be obtained from the order O(ε)
of eq. (15)

f
(1)
i = −τ∆t [∂t1f

eq
i + vi∂x1f

eq
i ] (27)

The time derivative can be expressed as

∂t1f
(0)
i =

∂f
(0)
i

∂h
∂t1h+

∂f
(0)
i

∂(hu)
∂t1(hu) (28)

because, in the Chapman-Enskog expansion, we assume that f depends on x
and t only through the conserved quantities h and hu. Then using equations
(19) and (20), we obtain

εf
(1)
i = −τ∆t

[
−∂f

eq
i

∂h
∂x(hu)− ∂feqi

∂(hu)
∂xΠeq + vi∂xf

eq
i

]
(29)

Using that
∂xΠeq = 2u∂x(hu) + (gh− u2)∂xh

we obtain the explicit expressions:

εf
(1)
0 = τ∆t

[(
1− gh

v2
− 3

u2

v2

)
∂x(hu) + 2

(
u2

v2
− gh

v2

)
u∂xh

]
εf

(1)
1 = −1

2
εf

(1)
0

εf
(1)
2 = −1

2
εf

(1)
0 (30)

Eqs. (30) are important because they give the relations between the standard
hydrodynamic quantities and the nonequilibrium density distributions εf (1)

i ≈
fi − feqi . We see that the f (1)’s depend on the spatial derivatives of h and
u. From these equations, an initial condition fi(x) = feqi + εf

(1)
i can be built

properly out of given values for h(x), u(x), ∂xh and ∂x(hu).

(6) Finally the dissipative contribution of (24)

Γ = −∂x
[
εΠ(1) +

1
2

∆tε∂t1Πeq +
1
2

∆t∂xSeq
]

(31)

can be computed from f (1). As above, we also replace ε∂t1Πeq by (∂Πeq/∂h)∂t1h+
(∂Πeq/∂hu)∂t1hu. After some algebra we obtain that

Γ = ∆t
(
τ − 1

2

)
∂x

[
−∂Πeq

∂h
∂xhu−

∂Πeq

∂hu
∂xΠ(0) + ∂xS

eq

]
(32)
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Using the expressions

Πeq =
1
2
gh2 + hu2 =

1
2
gh2 +

1
h

(hu)2

and
∂xS

eq = v2∂xhu h∂xu = ∂xhu− u∂xh
we obtain that

Γ = ∆t
(
τ − 1

2

)
∂x
[
(v2 − gh− 3u2)∂xhu+ 2(u2 − gh)u∂xh

]
(33)

¿From the above expression for Γ, it follows that the shallow water equations
with dissipation, resulting from the LB dynamics, are

∂th+ ∂xhu = 0 (34)

and

∂thu+ ∂xhu
2 + g∂x

1
2
h2 = v2∆t

(
τ − 1

2

)
∂x

[
(1− gh

v2
− 3

u2

v2
)∂xhu

+2(
u2

v2
− gh

v2
)u∂xh

]
(35)

We observe that the shallow water equation associated with the LB model con-
tains many contributions to the viscous terms, whose physical relevance remains
to be discussed. However, we will see below that the 1D LB model remains nu-
merically stable even when τ is close to 1/2, provided the Froude number is not
approaching 1. Therefore, the viscous contributions can be made small and the
LB model approximates the non-viscous shallow water equation.

Note also that in the limit of h→ 0 and u→ 0, we obtain the more standard
viscous term

Γ = v2∆t
(
τ − 1

2

)
∂2
xhu

However, it has to be noticed that even in this limit, the viscosity

ν0 = v2∆t
(
τ − 1

2

)
(36)

is not at all the one pointed out in [22] which depends only on the lattice
properties as ∆tc2s(τ − 1/2). Here, from (8) we have c2s = v2/3.

Our result (35) will be confirmed in section 4 in which the real part of the
eigenvalues of the linearized model will be examined.

3 Analysis of the steady state with zero flow

In this section we derive an analytical solution of our discrete LB model when
the external force term is present. To the best of our knowledge, exact solutions
of an LB model with a non-constant force term have not been published before.
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x

h
b
(x)

h(x)

x

h
b
(x)

h(x)

Figure 3: Two situations of a canal reach where u = 0 and h + hb = const is
an exact solution. Left: there is a net slope but two walls prevent flow motion.
A computational domain with the so-called half-way bounce back left and right
boundary conditions is used. Right: there is a local deformation of the bed but
no global slope. A periodic computational domain can be used.

In order to solve the LB dynamics exactly we have to consider the simple
situation sketched in Fig. 3. A fluid is at rest in a canal reach, with a free
surface level which is horizontal. Therefore the solution to the problem is a
water depth h(x) such that h(x) + hb(x) = const for all x, where hb(x) is the
bed height at location x. This simple benchmark gives a test of the accuracy
of the way to add the external force to a LB model. We shall consider both
Zhou’s and Guo’s methods. The result of this analysis is that Zhou’s method
solves the water profile to machine accuracy but no longer satisfies exactly the
correct mass and momentum balances.

3.1 Zhou’s expression for the force term

Zhou [22] proposed the following way to include the force term:

f0(x, t+ ∆t) = f0(x, t) +
1
τ

(feq0 − f0)

fi(x+ vi∆t, t+ ∆t) = fi(x, t) +
1
τ

(feqi − fi) + wi
∆t
c2s
viFi i 6= 0

(37)

with
F1 = F (x+

∆x
2

), F2 = F (x− ∆x
2

), wi
∆t
c2s

=
∆t
2v2

.

The water height, h, and water current, hu, are still given by

h =
∑
i

fi =
∑
i

feqi hu =
∑
i

vifi =
∑
i

vif
eq
i

despite the additional force term. As a consequence, we have∑
i

fneq =
∑
i

vif
neq
i = 0. (38)

9



For a fluid at rest, u = 0, and we have the additional relations:

feq1 = feq2 ≡ feq =
1

4v2
gh2

and
feq0 = h− 1

2v2
gh2

Also, from the definition of hu, we have 0 =
∑
i vifi and thus f1 = f2. In the

steady state, the LB equations give

f0(x) = f0(x) +
1
τ

(feq0 − f0) .

Therefore
f0 = feq0 = h− 1

2v2
gh2.

This implies that
fneq0 = f0 − feq0 = 0

and thus, from (38) fneq1 + fneq2 = 0. Since for u = 0 we also have fneq1 = fneq2 ,
we conclude that

fneq1 = fneq2 = 0 (39)

Therefore, for the situation at rest, with Zhou’s external force, the density
distribution functions are simply

f0 = feq0 = h− 1
2v2

gh2 f1 = f2 =
1

4v2
gh2 (40)

With f = feq, the LB equation for i = 1 reads

f1(x+ ∆x) = f1(x) +
∆t
2v
F (x+

∆x
2

) (41)

or, equivalently

f1(x+ ∆x/2) = f1(x−∆x/2) +
∆t
2v
F (x). (42)

Using

f1 = f2 = feq =
1

4v2
gh2,

we obtain
1

4v2
gh2(x+

∆x
2

) =
1

4v2
gh2(x− ∆x

2
) +

∆t
2v
F (x). (43)

Therefore, Zhou’s model imposes

g

2
h2(x+ ∆x

2 )− h2(x− ∆x
2 )

∆x
= F (x), (44)
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which is a second-order accurate discrete form of the steady shallow-water eq. (2)
with u = 0

∂x
g

2
h2 = F (x)

The above two equations describe the situation of a fluid at rest in a container
whose bottom is not flat. For the case we consider here, the force, F , depends
on the derivative ∂xhb(x) of the bed profile.

With F = −gh∂xhb(x) and ∂x g2h
2 = F (x) we clearly obtain ∂x(h+ hb) = 0,

i.e. h+ hb = const. In the discrete case, Zhou defines

F (x+
∆x
2

) = −gh(x+ ∆x) + h(x)
2

(
hb(x+ ∆x)− hb(x)

∆x

)
(45)

Then, with x− = x−∆x/2 and x+ = x+ ∆x/2 eq. (44) becomes:

g

2
h2(x+)− h2(x−)

∆x
= −gh(x+) + h(x−)

2

(
hb(x+)− hb(x−)

∆x

)
(46)

Since
h2(x+)− h2(x−) = [h(x+) + h(x−)][h(x+)− h(x−)],

the solution of this discrete equation is simply

h(x+) + hb(x+) = h(x−) + hb(x−) = const

Therefore, with Zhou’s force, the water profile, in the steady state with u = 0
is resolved correctly to machine accuracy.

Mass and momentum balance equation

However, in Zhou’s model, the fact that F is not calculated at the same point
x for i = 1 and i = 2, has the consequence that (by taking the first moment of
eq. (37) )

hout(x) =
∑
i

fouti =
∑
i

f ini +
∆t
2v

(
F (x+

∆x
2

)− F (x− ∆x
2

)
)
6= hin(x)

and thus the mass is not exactly constant during the collision process. A Taylor
expansion shows that this correction is second order in the lattice spacing, ∆x,

∆t
2v

(
F (x+

∆x
2

)− F (x− ∆x
2

)
)

= F ′(x)
(∆x)2

2v2

However, if we sum up hout(x) over all x, we recover exact mass conservation
provided that F (L + ∆x

2 ) = F (−∆x
2 ). On the other hand, if for instance hb

has a constant slope, there will be a net increase (or decrease) of mass during
evolution. This effect is easily observed in numerical simulations in which F (L+
∆x
2 ) 6= F (−∆x

2 ).
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A similar analysis can be made for the momentum balance. By definition
a force F acting during a time ∆t will increase the momentum by an amount
∆j = F∆t. Since the momentum is defined as j =

∑
i fivi, we have

F∆t =
∑
i

fouti vi −
∑
i

f ini vi

By multiplying (37) by vi and summing over i, we get (remember that, by
construction of feq,

∑
i f

eq
i vi = hu):

∆j = v(fout1 −fout2 )−v(f in1 −f in2 ) =
1
τ

(hu−
∑
i

f ini vi)+
∆t
2

(F (x+∆x/2)+F (x−∆x/2)).

(47)
With the definition, hu = j =

∑
i f

in
i vi, we get the relation:

∆j =
∆t
2

(F (x+ ∆x/2) + F (x−∆x/2)) = ∆tF + ∆t
(∆x)2

4
F ′′.

Therefore, unless the second spatial derivative, F ′′(x), vanishes, the momentum
balance is only correct to first order in ∆x.

3.2 Guo’s force model

Guo’s method [9] to add a body force is local and ensures exact mass conser-
vation. Furthermore, the relation between the mometum,

∑
i fivi, and the flow

speed, u, is modified to impose an exact momentum balance.
In the case of a D1Q3 model, Guo’s force model reads:

fouti (x, t) = fi(x, t) +
1
τ

(feqi − fi) + (1− wi)A+
∆t
c2s
viB

fi(x+ vi∆t, t+ ∆t) = fouti (x, t),
(48)

where A and B have to be determined in terms of the actual body force applied
to the system. Guo has shown that A and B also depend of the fluid speed, u.

The above formulation guarantees a local mass conservation since
∑
i wi = 1

and
∑
i vi = 0

hout =
∑
i

fouti =
∑
i

fi +
1
τ

∑
i

(feqi − fi) +A
∑
i

(1− wi) +
∆t
c2s
B
∑
i

vi = hin

In order to obtain an exact solution to the LB equation, let us ignore for a
while Guo’s results and let us assume that the A and B are still unknown. This
will allow us to also discuss the case of an added force term as in (7).

We still define j =
∑
i vifi as the momentum. In case of a body force F ,

the change of momentum during a time ∆t is F∆t and from the first moment
of the LB eq. (48) we have:

F∆t =
∑
i

vif
out
i −

∑
i

vifi =
1
τ

(∑
i

vif
eq
i −

∑
i

vifi

)
+ ∆tB.

12



Therefore the momentum balance requires τ∆tF = hu −
∑
i vifi + τ∆tB, be-

cause, by definition of feq,
∑
i f

eq
i vi = hu. This leads to the following redefini-

tion of the relation between the speed, u, and the momentum,
∑
i vifi:

hu =
∑
i

vifi + τ∆t(F −B). (49)

Note at this stage that choosing B = F would preserve the usual definition of
hu in terms of the first moment of the fi. But, otherwise, this new relation may
cause a new difficulty: from (3) we see that, in the shallow water model, F may
be a non-linear function of u. Therefore eq. (49) is an implicit definition of u.

Here we consider the case of a fluid at rest. When u = 0 we have already
observed that feq1 = feq2 = feq = 1

4v2 gh
2 and feq0 = h − 1

2v2 gh
2. In addition,

from the new definition of hu, we have 0 =
∑
i vifi + τ∆t(F −B) and thus

f1 − f2 = −τ ∆t
v

(F −B) (50)

Since feq1 = feq2 the above relation also requires:

fneq1 − fneq2 = −τ ∆t
v

(F −B) (51)

In a time-independent-state, the LB equation for i = 0 is:

f0(x) = f0(x) +
1
τ

(feq0 − f0)− 1
3
A.

Therefore
f0 = feq0 +

τ

3
A i.e. fneq0 =

τ

3
A (52)

For the other directions, i = 1 or 2, the LB equations yield

f1(x+ ∆x) = f1(x) +
1
τ

(feq − f1) +
5
6
A+

∆t
2v
B (53)

and
f2(x−∆x) = f2(x) +

1
τ

(feq − f2) +
5
6
A− ∆t

2v
B. (54)

By taking this last equation for x+ ∆x, we get

f2(x) = f2(x+∆x)+
1
τ

(feq(x+ ∆x)− f2(x+ ∆x))+
5
6
A(x+∆x)−∆t

2v
B(x+∆x)

(55)
Adding eqs. (53) and (55), we get[

f1 − f2 +
1
τ
fneq2 − 5

6
A+

∆t
2v
B

]
x+∆x

=
[
f1 − f2 −

1
τ
fneq1 +

5
6
A+

∆t
2v
B

]
x

13



From (50) and (51) we have f1 − f2 = −τ ∆t
v (F −B) and fneq1 = fneq2 −

τ ∆t
v (F −B). Therefore the above equation becomes[

−τ ∆t
v

(F −B) +
1
τ
fneq2 − 5

6
A+

∆t
2v
B

]
x+∆x

=[
−τ ∆t

v
(F −B)− 1

τ
fneq2 +

∆t
v

(F −B) +
5
6
A+

∆t
2v
B

]
x

(56)

which we can finally write as[
−τ ∆t

v
F +

∆t
v

(
τ +

1
2

)
B +

1
τ
fneq2 − 5

6
A

]
x+∆x

=[
(1− τ)

∆t
v
F −

(
1
2
− τ
)

∆t
v
B − 1

τ
fneq2 +

5
6
A

]
x

(57)

The structure of this equation is[
G+

1
τ
fneq2

]
x+∆x

=
[
H − 1

τ
fneq2

]
x

with

G = −τ ∆t
v
F+

∆t
v

(
τ +

1
2

)
B− 5

6
A H = (1−τ)

∆t
v
F−

(
1
2
− τ
)

∆t
v
B+

5
6
A

If we choose A and B such that H(x) = −G(x), we obtain[
G+

1
τ
fneq2

]
x+∆x

= −
[
G+

1
τ
fneq2

]
x

which implies that

G+
1
τ
fneq2 = 0 (58)

The condition that H(x) = −G(x) requires:

−τ ∆t
v
F +

∆t
v

(
τ +

1
2

)
B − 5

6
A = −(1− τ)

∆t
v
F +

(
1
2
− τ
)

∆t
v
B − 5

6
A

and thus

B =
(

1− 1
2τ

)
F or F −B =

1
2τ
F (59)

This means that the definition (49) of u in terms of the fi’s becomes

hu =
∑
i

vifi +
∆t
2
F (60)

as previously obtained by Guo. Now, from (58) and B = (1−1/(2τ))F we have

fneq2 = −τG

=
∆t
4v
F +

5τ
6
A (61)

14



and, from (51)

fneq1 = −∆t
4v
F +

5τ
6
A. (62)

In order to determine A we use the condition
∑
i f

neq
i = 0, resulting from the

fact that
∑
i fi = h =

∑
i f

eq
i . From (52), fneq0 = (τ/3)A,

τ

3
A− ∆t

4v
F +

5τ
3
A+

∆t
4v
F = 0

and thus
A = 0 (63)

Let us now compute the water profile h(x). Eq. (53), with A = 0 and
B = (1− 1/(2τ))F is:

f1(x+ ∆x) = f1(x) +
∆t
2v
F. (64)

With f1 = feq1 + fneq1 = 1
4v2 gh

2 − ∆t
4v F , this equation becomes

1
4v2

gh2(x+ ∆x) =
1

4v2
gh2(x) +

∆t
4v

[F (x) + F (x+ ∆x)] (65)

that is

g
h(x+ ∆x)− h(x)

∆x
h(x+ ∆x) + h(x)

2
=

1
2

[F (x) + F (x+ ∆x)] . (66)

This relation has to be compared with the corresponding continuous equation
gh∂xhb = F .

For a non-flat profile hb(x) of the canal bed, we have F = −gh∂xhb. In the
discrete case, let us define

F (x) = −gh(x)h′b(x)

where h′b is a discrete approximation of the x-derivative of hb. Eq. (66) then
becomes:

h(x+ ∆x)− h(x)
∆x

= −h′b(x)− h(x+ ∆x)
h′b(x+ ∆x)− h′b(x)
h(x+ ∆x) + h(x)

. (67)

If we take h′b(x) = [hb(x+ ∆x)− hb(x)]/∆x, we get

h(x+ ∆x) + hb(x+ ∆x) = h(x) + hb(x)− h(x+ ∆x)
h(x+ ∆x) + h(x)

h′′b (x)(∆x)2 (68)

where h′′b (x) is defined as h′′b (x) = [h′b(x + ∆x) − h′b(x)]/∆x. Therefore, unless
h′′b vanishes (which happens if the canal slope h′b is constant), the exact solution
h+ hb = const with an error in O((∆x)2).
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Therefore, Guo’s force solves the problem with only first order accuracy.
This contradicts the general idea that, in the LB model, the addition of a body
force does not alter the second-order accuracy of the scheme.

Note that here, we have no boundary conditions that reduce the accuracy
but we have used a first-order accurate approximation of ∂xhb. Therefore let us
now consider a second order accurate version of h′b

h′b(x) =
hb(x+ ∆x/2)− hb(x−∆x/2)

∆x

Note that we still have h′b(x+ ∆x)− h′b(x) ∝ ∂2
xhb(x+ ∆x/2)∆x = O(∆x)

If we now define h̃(x) = h(x+ ∆x/2), eq. (67) becomes

h̃(x+ ∆x/2) + hb(x+ ∆x/2) = h̃(x−∆x/2) + hb(x−∆x/2) +O((∆x)2) (69)

We again observe a departure from the constant profile of order (∆x)2.

3.3 The constant force model

It is now interesting to investigate the constant force model as expressed in (7).
In the formalism of this section, it corresponds to choosing

B = F A = 0

As a consequence, we obtain that, for u = 0, fneq1 = fneq2 . With feq0 = 0
(because A = 0), we further have fneq1 +fneq2 = 0. Thus fneq1 = fneq2 = 0. Then
eq. (57) becomes [

1
τ
fneq2 +

∆t
2v
F

]
x+∆x

=
[
−1
τ
fneq2 +

∆t
2v
F

]
x

(70)

This no longer implies that both terms are zeros. Instead, the solution is

fneq2 (x+ ∆x) = −fneq2 (x)− τ ∆t
2v

(F (x+ ∆x)− F (x))

Unless F = const, this contradicts the fact that fneq2 = 0. Therefore, for
F = F (x), there is no steady state solution of the LB equation with u = 0.
This shows that the constant force model makes no sense when the force is not
constant.

4 The linearized model

In this section we give an exact time-dependent solution of the linearized D1Q3
LB shallow water model. We consider the case of a periodic system, without
external force, for which a discrete Fourier analysis can be done.

The spectrum of the evolution operator is investigated numerically for the
full range of wave numbers k. In the hydrodynamic limit k → 0 an exact
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expression for the eigenvalues can be found, accurate to O(k2). The results
of this section will confirm the validity of our Chapman-Enskog solution (35),
demonstrate the second-order accuracy of the LB scheme and give the stability
region of the linearized model.

4.1 Linearisation of the shallow water equation

We first derive the dispersion relation associated with eqs. (34,35) linearized
around a constant height, h = h0, and constant speed, u = u0. With h0 + ∆h
and u0 + ∆u, the linearized dissipative term (33) is

Γ = v2∆t
(
τ − 1

2

)
h0

[
(1− φ2 − 3φ2Fr2)∂2

x∆u+ (1− 3φ2 − φ2Fr2)
u0

h0
∂2
x∆h

]
(71)

where

φ =
√
gh0

v
Fr =

u0√
gh0

(72)

The quantitiy φ is the ratio of the wave speed to the lattice speed and Fr is the
Froude number. With these definitions we have that the water speed in lattice
units is

u0

v
= Frφ

We can now express the continuity and shallow water equation in a matrix
form:

∂t

(
∆h
∆u

)
=
(
−u0 −h0

−g −u0

)
∂x

(
∆h
∆u

)
+ ν0

(
0 0
r u0
h0

s

)
∂2
x

(
∆h
∆u

)
(73)

where

ν0 = ∆tv2

(
τ − 1

2

)
(74)

and
r = 1− 3φ2 − φ2Fr2 and s = 1− φ2 − 3φ2Fr2. (75)

We now consider a solution of the form(
∆h
∆u

)
= exp(iωt+ ikx)

(
∆h0

∆u0

)
and the matrix equation now reads[

iω − ik
(
−u0 −h0

−g −u0

)
+ ν0k

2

(
0 0
r u0
h0

s

)](
∆h0

∆u0

)
= 0

A solution exists only if

det
(

iω + iku0 ikh0

ikg + ν0k
2r u0
h0

iω + iku0 + ν0sk
2

)
= 0
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This yields an equation for ω whose solution is

ω± =
1
2

−(2u0k − iν0sk
2)± 2k

√
gh0

√
1− ir ν0u0

gh0
k − ν2

0s
2

4gh0
k2


(76)

We are interested in a solution accurate to order O(k2), which describes the
hydrodynamical regime. Therefore we use the first-order Taylor expansion of√

1 + x = 1 + x/2 and we obtain, using expressions (72) and (75) for φ, Fr, r
and s

ω± =
(
−u0 ±

√
gh0

)
k + i

ν0

2
[
1− φ2 − 3φ2Fr2 ∓ Fr

(
1− 3φ2 − φ2Fr2

)]
k2

(77)
which is the dispersion relation for the shallow water equation derived from the
Chapman-Enskog expansion of the LB model. With ∆x = v∆t, and ν0 given
by (36) we can get a dimensionless form of this dispersion relation

ω±∆t =

(
−u0

v
±
√
gh0

v2

)
(k∆x)

+
i

2

(
τ − 1

2

)[
1− φ2 − 3φ2Fr2 ∓ Fr

(
1− 3φ2 − φ2Fr2

)]
(k∆x)2

(78)

In the next section, we shall compare this dispersion relation with the eigenval-
ues of the LB dynamics. For this purpose we shall need to know eiω±∆t. Up to
order O(k2), we can write

eiω±∆t = 1 + iβ±k∆x− α±(k∆x)2 (79)

From (78) we get

β± = −u0

v
±
√
gh0

v2
= −φ(Fr∓ 1) (80)

and α±

α± =
1
2

(
τ − 1

2

)[
1− φ2(1 + 3Fr2)±

(
φ2(3 + Fr2)− 1

)
Fr
]

+
1
2
β2 (81)

Relation (79) will be re-obtained in the next section by an exact solution of the
eigenvalue problem accurate to order O(k2). See eq. (95).

4.2 Linearization of the LB equations

Let us now consider the linearization of the LB dynamics around h = h0 and
u = u0. If h0 and u0 are constant fi = feqi (h0, u0) is a solution of the LB
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equations (6) with feq given by (13). We now consider a small perturbation εi
around feqi (h0, u0)

fi = feqi (h0, u0) + εi

Then we immediatly obtain

h =
∑
i

fi = h0 +
∑

εi, hu =
∑
i

fivi = h0u0 + (ε1 − ε2)v

u =
hu

h
= u0 −

u0

h0

∑
i

εi + (ε1 − ε2)
v

h0
(82)

hu2 = h0u
2
0 − u2

0

∑
i

εi + 2(ε1 − ε2)vu0

We can now compute feqi (h, u) for all i.

feq0 (h, u) = feq0 (h0, u0) +
(

1− gh0

v2
+
u2

0

v2

)∑
i

εi −
2u0

v
(ε1 − ε2) (83)

feq1 (h, u) = feq1 (h0, u0) +
1
2

(
gh0

v2
− u2

0

v2

)∑
i

εi +
(

1
2

+
u0

v

)
(ε1 − ε2)(84)

feq2 (h, u) = feq2 (h0, u0) +
1
2

(
gh0

v2
− u2

0

v2

)∑
i

εi −
(

1
2
− u0

v

)
(ε1 − ε2)(85)

Then, in terms of the perturbation, εi, the LB shallow water equation becomes ε0(x, t+ ∆t)
ε1(x+ v∆t, t+ ∆t)
ε2(x− v∆t, t+ ∆t)

 = M

 ε0(x, t)
ε1(x, t)
ε2(x, t)

 (86)

with

M =
1
τ

 τ − φ2(1− Fr2) 1− φ2(1− Fr2)− 2u0
v 1− φ2(1− Fr2) + 2u0

v
φ2

2 (1− Fr2) τ − 1
2 + φ2

2 (1− Fr2) + u0
v

φ2

2 (1− Fr2)− 1
2 −

u0
v

φ2

2 (1− Fr2) φ2

2 (1− Fr2)− 1
2 + u0

v τ − 1
2 + φ2

2 (1− Fr2)− u0
v


(87)

where φ and Fr are defined in (72). Thus, M depends on 3 dimensionless
parameters, which are τ ≥ 1/2, φ2 and Fr2.

We can now analyze the LB scheme by taking the discrete Fourier transform
of eq. (86). We define

ε(x, t) =
∑
k

Ak(t)eikx

where k = 2`π/(N∆x), ` = 0, 1, ..., (N − 1) and we obtain

Ak(t+ ∆t) = Mk(φ,Fr, τ)Ak(t) (88)
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with

Mk =

 1 0 0
0 e−ik∆x 0
0 0 eik∆x

M. (89)

To simplify the notation, we define

a =
φ2(1− Fr2)

τ
b =

1
τ

u0

v

and
c = − 1

2τ
+
a

2
+ b d = − 1

2τ
+
a

2
− b

Then, the matrix Mk reads

Mk =

 1− a −2c −2d
a
2e
−ik∆x (1 + c) e−ik∆x de−ik∆x

a
2e
ik∆x ceik∆x (1 + d) eik∆x

 (90)

Let us now show how the eigen values of Mk can be related to the dispersion
relation found in (77). We consider solutions of the form ε(x, t) ∝ eikx+iωt as
we did for the linearized shallow water equation. Here, it means that we assume
that Ak(t) can be written as eiωtAk(0). Eq. (88) then reads

eiωteiω∆tAk(0) = Mke
iωtAk(0).

A solution exists provided that

(Mk − eiω∆tI)Ak(0) = 0

has non-trivial solutions. That means that eiω∆t must be an eigen value of Mk.
Eq. (79) gives the expected expression of eiω∆t, in the hydrodynamic limit, to
order O(k2).

The eigenvalues of Mk can easily be found numerically for all values of τ ,
φ, Fr and k. This is discussed in the next section. But before, we consider an
analytical solution of the eigenvalue problem, accurate to order O(k2). With

γ− = e−ik∆x γ+ = eik∆x

the eigenvalue equation associated with Mk reads:

(1− λ)(γ− − λ)(γ+ − λ) + cγ−(γ+ − λ)(1− λ)
+ dγ+(γ− − λ)(1− λ)
− a(γ− − λ)(γ+ − λ) = 0 (91)

For γ− = γ+ = 1 i.e. for a wave number k = 0, the above equation reads

(1− λ)2(1 + c+ d− a− λ) = 0
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Since c+ d− a = − 1
τ the three eigenvalues are

λ+ = 1 λ− = 1 λ3 = 1− 1
τ

(92)

When the Froude number is 1, a = 0 and (91) becomes

(1− λ) [(γ− − λ)(γ+ − λ) + cγ−(γ+ − λ) + dγ+(γ− − λ)] = 0

There is clearly an eigenvalue λ = 1 and the other two are defined through

λ2 − λ[γ+ + γ− + cγ− + dγ+] + 1 + c+ d = 0

In general, eq. (91) can be written as

λ3−λ2(1−a+γ++γ−+cγ−+dγ+)+λ[1+c+d+(γ++γ−)(1−a)+cγ−+dγ+]+
1
τ
−1 = 0

The two eigenvalues λ± corresponding to water height h and water flow hu
are such that λ± = 1, for k = 0, due to the conservation laws. Therefore, to
order O(k2), we have:

λ = 1+iβk∆x−α(k∆x)2 γ+ = 1+ik∆x−1
2

(k∆x)2 γ− = 1−ik∆x−1
2

(k∆x)2

(93)
where α and β are parameters to be determined. Note that we could similarly
obtain the third eigenvalue λ3 of the problem because, for k = 0, eq. (92) tells
us that this eigenvalue is 1− (1/τ).

Eq. (91) can then be solved order by order. As this is a rather tedious and
lengthy (but straigtforward) calculation, we only give the results.

Order O(k2), value of β: At order O(k2), eq. (91) yields

β± = −φ(Fr∓ 1) = −u0

v
±
√
gh0

v2
(94)

as expected from the dispersion relation describing waves propagating at speeds
−u0 ±

√
gh0.

Order O(k3), value of α: At order O(k3), we obtain a condition for α which
is

α± =
1
2

(
τ − 1

2

)[
1− φ2(1 + 3Fr2)± (φ2(Fr2 + 3)− 1)Fr

]
+

1
2
β2 (95)

Relations (94) and (95) are in perfect agreement with the dispersion relation
obtained from the Chapman-Enskog expansion of the LB shallow water model.
See eqs. (80) and (81).
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4.3 Numerical analysis of the eigenvalue problem

In this section we compare the eigenvalues λ ofMk obtained numerically (Matlab
solutions) for all values of 0 ≤ k∆x < 2π and our analytical expression λ± =
eiω±∆t with iω±∆t given by (78), namely

iω±∆t = i

(
−u0

v
±
√
gh0

v2

)
(k∆x)

−1
2

(
τ − 1

2

)[
1− φ2 − 3φ2Fr2 ∓ Fr

(
1− 3φ2 − φ2Fr2

)]
(k∆x)2

(96)

In Fig. 4, we show Re(λ±) and Im(λ±) for two arbitrary choices of the model
parameters φ, Fr and τ . The solid lines correspond to our analytical expression
eiω±∆t and the dots to the exact eigenvalue (found numerically). For Froude
number Fr = 1, we observe in the lower right panel that the eigenvalue has a
null imaginary part due to the fact that the wave is at rest. For small enough
wave number k, we clearly observe an agreement between the eigenvalues of the
LB model and the dispersion relation of the shallow water equation. Actually,
Fig. 5 shows the quantities

∆(k) = |Re
(
λ− eiω±∆t

)
| or ∆(k) = |Im

(
λ− eiω±∆t

)
| (97)

as a function of the wave number k. The quantity ∆ is the difference between
the shallow water dispersion equation and the LB model. We see that the LB
model is second-order accurate because the error ∆ grows as O((k∆x)3) for the
imaginary part (i.e. the wave propagation process) and grows as O((k∆x)4) for
the real part (i.e. the dissipation process). The results of this section confirm the
validity of our analytical derivation (Chapman-Enskog expansion) and confirm
that the LB model is a second order accurate solver of the shallow water eq. (35).

4.4 Numerical stability

The stability of the LB scheme is guaranteed if |λ|, the norm of the eigenvalues
of Mk, is not larger than 1 for all k = 2`π/(N∆x), with ` = 0, 1, ..., (N − 1).
Our analytical expression (79) approximates the value of λ only for small-to-
moderate values of k. Therefore this expression cannot be used to assess the
parameter range for which unconditional stability is achieved. On the other
hand, a numerical investigation can be considered. We simply have to explore
the space of possible values for the parameters φ, Fr and τ . For each of them
one computes all eigenvalues λ of Mk(τ, φ,Fr). If, for all k, |λ| ≤ 1, then the
LB model is unconditionally stable for the chosen set of parameters.

As an illustration, Fig. 6 shows the norm of the three eigenvalues ofMk(τ, φ,Fr),
as a function of all values of the wave numbers 0 ≤ k∆x < 2π. We observe a
numerical instability of the model for the chosen parameters because some eigen-
value have a norm larger than one. A systematic investigation of the numerical
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Figure 4: The real (left) and imaginary (right) parts of the eigenvalues λ of
Mk(τ, φ,Fr), as a function of k∆x The eigenvalues found numerically are shown
as dots and are compared to the shallow water dispersion relation eiω±∆t (solid
lines). This figure illustrates two possible choices of the model parameters τ , φ
and Fr.
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On the left, the accuracy of the real part of the dispersion relation is found to
be second order because ∆(k∆x) ∝ k4, as indicated by the solid line of slope
4. On the right, we show the accuracy of the imaginary part of the dispersion
relation. The error between the LB model and the shallow water equation grows
as (k∆x)3, as proved by the solid line which has slope 3.
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Figure 6: Norm of the eigenvalues of Mk(τ, φ,Fr), as a function of k∆x, outside
the numerical stability region. Left and right panels illustrate two different
choices of τ , φ and Fr. The dots show the three eigenvalues obtained numerically
and the lines corresponds to eiω±∆t.
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Figure 7: Stability region in the φ−1 − Fr plane, for different values of τ (gray
dots), which all give the same limit. The black dashed line is the theoretical
value corresponding to the Courant condition (99).

stability is given in Fig. 7. We observe that the relaxation time, τ , plays no role
in the stability of the D1Q3 model for the shallow water, provided it is larger
than or equal to 1/2.

We note that Froude number, Fr = 1, is possible, provided that φ is small
enough (i.e 1/φ large enough).

The stability range observed in Fig. 7 can be explained by a simple theo-
retical argument. Since the LB model describes waves propagating at speed
−u0 ±

√
gh0, we must have the conditions

−u0 +
√
gh0 < v − u0 −

√
gh0 > −v (98)

so that the waves propagate slower than the lattice speed v, the speed at which
information travels in the lattice. This is a kind of a Courant condition. By
dividing these equations by

√
gh0, we obtain

1− 1
φ
< Fr <

1
φ
− 1 (99)

This line is represented in Fig. 7 (solid, dashed line) and shows a very good
agreement with the numerically observed stability limit.

We can also explain these limits of the stability region by analyzing the
dispersion relation (78). We can write eiω±∆t = eiβ±k∆xe−η±k

2(∆x)2 where

η± =
1
2

(
τ − 1

2

)[
1− φ2 − 3φ2Fr2 ∓ Fr

(
1− 3φ2 − φ2Fr2

)]
(100)

25



Clearly, η < 0 is a sufficient condition for the numerical scheme to be unstable,
because, for k → 0, eiω±∆t → λ±. When τ ≥ 1/2, a negative value of η depends
only on the choice of φ and Fr. It turns out that η+ can be factorized as

η+ = −1
2

(
τ − 1

2

)
φ2 (Fr + 1)

(
Fr− 1

φ
+ 1
)(

Fr +
1
φ

+ 1
)

(101)

Thus, for φ ≥ 0 and Fr ≥ 0, η+ becomes negative if

Fr− 1
φ

+ 1 > 0 i.e. Fr >
1
φ
− 1

This is precisely the limit we found from the Courant condition.
Furthermore, we see that η− can be factorized as

η− =
1
2

(
τ − 1

2

)
φ2 (Fr− 1)

(
Fr− 1− 1

φ

)(
Fr− 1 +

1
φ

)
(102)

In the region obeying the Courant condition (i.e. Fr < φ−1 − 1) we certainly
have Fr < φ−1 + 1 and Fr > 1 − φ−1 Therefore the condition for η− to be
negative (and the numerical scheme unstable) is Fr ≥ 1, as already obtained
numerically.

These limits are also verified by the simulation in section 5.5

5 Benchmark

In this section, we validate numerically the analytical description derived in
the previous section. More specifically we compare the LB model with the
Preissmann scheme and the finite volume (FV) method with respect to the
numerical stability, precision and performance.

5.1 Simulation setup

We consider the steady flow in a canal of length L where the inflow discharge
and the outflow water height are fixed at values Q0 and h0. In this case, the ana-
lytical solution can be obtained by integrating the ordinary differential equation
for h(x):

∂xh =
gh(I − J)
gh− u2

(103)

with the boundary condition h(L) = h0 and J = n2Q2
0

B2h2( Bh
B+2h )4/3 , u = Q0

Bh .

This exact solution is calculated by using the ode45 solver of Matlab, and
referenced as href . This benchmark is illustrated in Fig. 8.

The numerical schemes we want to compare are time-dependent solvers. We
start the simulation with an initial condition and let the fluid reach its new
steady state. The initial condition is a uniform profile of the water height
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Figure 8: Steady state water level (above) and discharge (below) used for the
comparison benchmark. The continuous line represents the reference solution
computed from a numerical integration of the steady state shallow water equa-
tion.

h(x, 0) = h0 and discharge Q(x, 0) = Qe. Where Qe is the discharge corre-
sponding to this uniform water height and calculated by the condition I = J .

So, Qe =
√
IBh0
n

(
Bh
B+2h

)2/3

.
In order to avoid a sudden change, the inflow discharge, Qin, will be increased

in ramp from the initial value Qe to the final value Q0. For the numerical
application, we get h0 = 0.1m, Q0 = 1.5Qe, I = 2, 6.10−3, B = 0.1m and
n = 0.0103.

All three methods are implemented in Matlab and none of them has been
fine tuned for performance optimization. The FV code was initially developed
by Guy Simpson [19].

5.2 Preissmann implicit scheme

The approximation of the function, f (h or u), and its derivatives in space and
in time is based on the following expression:

f(x, t) = (1− θ)[φf ji+1 + (1− φ)f ji ] + θ[φf j+1
i+1 + (1− φ)f j+1

i ]
∂f
∂x (x, t) = 1

∆x [(1− θ)(f ji+1 − f
j
i ) + θ(f j+1

i+1 − f
j+1
i )]

∂f
∂t (x, t) = 1

∆t [(1− φ)(f j+1
i − f ji ) + φ(f j+1

i+1 − f
j
i+1)]

(104)
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Figure 9: Preissmann implicit scheme

where i is the space index, j the time index and 0 ≤ θ ≤ 1, 0 ≤ φ ≤ 1, are
weighting coefficients. If θ > 0.5 we get an unconditionally stable scheme. For
simulation, we choose θ = 0.75 and φ = 0.5.

To solve the shallow water equation, we perform the Preissmann scheme for
h and u in time and space, and obtain a system of nonlinear equations that can
be solved by using the Newton-Raphson method. The boundary condition can
be carried out by adding two equations: Bh1u1 = Qin and hN = h0.

5.3 Finite volume method

-� Li

1 i i+ 1 N

Figure 10: Finite volume method

Firstly, we rewrite the shallow-water equations as:

∂U
∂t

+
∂E
∂x

= S (105)

where U =
[

h
hu

]
is the solution vector, E =

[
hu

1
2gh

2 + hu2

]
is the flux

vector, and S =
[

0
gh(I − J)

]
is the source vector.

By integrating (105) over an arbitrary segment Li, the basic equation of the
finite volume method is obtained:

∂

∂t

∫
Li

Udx+ [E]xi+1
xi

=
∫
Li

Sdx. (106)

Rewriting the last equation in discrete form, the governing equations become:

Li
∆Ui

∆t
+ [E]xi+1

xi
= LiSi. (107)

The flux can be estimated by solving a series of local Riemann problems (See
[19].), (107) can now be solved by the standard explicit forward Euler method.
Note that in the code which was provided to us the Riemann problem is solved
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with first order accuracy, although a second order accurate solution is also pos-
sible.

The boundary condition for the inflow discharge is carried out by setting
h1 = h2 and Bh1u1 = Qin; the boundary condition for the outflow water height
is implemented as hN = h0 and hNuN = hN−1uN−1.

5.4 LB method

- �f1 f2

1 i i+ 1 N

Figure 11: LB method

The LB scheme has been described in full detail the previous sections. Here
we only describe how to implement the boundary conditions. In reference to
Fig. 11 the inflow discharge is obtained by imposing: f1 = Qin

B − f0 − f2. The
outflow water height is carried out by f2 = h0 − f0 − f1. But this solution will
create a rapid change in f2 and cause oscillations for the discharge at the right
extremity. So we use the following relaxation algorithm:

• Calculate the new value of f2 as: f2 = h0 − f0 − f1.

• Calculate the new discharge: q = v(f1 − f2)

• Calculate the true discharge at the outflow-end: qt = (1 − α)q + αqt−∆t

where α ∈ [0; 1]

• Re-calculate the value of f2: f2 = f1 − qt

v

5.5 Simulation

With all three methods (LB, Preissmann, FV) a simulation is run until a steady
flow is reached. Different numbers of points, N , are used to test the precision.
For each N , the spatial step is defined as ∆x = L

N and the time step, ∆t = ∆x
v ,

where v is fixed (v = 2). These values are used for all three methods. We
consider that the steady solution hs is attained if e < 10−8 where e is the
relative distance of the water height profile between two consecutive iterations.
It is calculated as:

e =
‖ht − ht−∆t‖
‖ht‖

(108)

with ‖x‖ =
√∑

i

x2
i . The relative error, ε, is calculated as:

ε =
‖hs − href‖
‖href‖

. (109)
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Figure 12: Precision of different methods.

The CPU time, TCPU , is determined as the time to reach the steady solution.
The results are displayed in (Fig.12) and (Fig.13). The Zhou’s force model and
Guo’s simplified force term (the latter was obtained in section 3.2 with A = 0
and B =

(
1− 1

2τ

)
F ) behave identically. Both exhibit second-order accuracy

from 8 to 512 grid points before showing an error increase when N = 1024.
This suggests that the convective scaling ∆t ∝ ∆x we used should be replaced
by a diffusing scaling ∆t ∝ ∆x2 when ∆x becomes small.

The Guo force term is only first order accurate and is also less precise in
magnitude. The Preissmann scheme has a same performance as Zhou’s force
term, except for N = 64 and N = 128. In these cases, the steady solution is
reached with e = 0, so ε can not be reduced.

Finally, the finite volume method is first order (as expected), and is the least
accurate.

We previously mentioned that Guo’s force term leads to an implicit definition
of u while Zhou’s force term does not. In calculating the CPU time, we used
Zhou’s force term.

For all methods, the CPU time increases by a factor of 4 when the number of
points is doubled, because the number of iterations is also doubled to reach the
steady solution (due to our scaling of ∆t versus ∆x). We observe that the LB
solver is much faster than the two others. It is more than 100 times faster than
the Preismann methods and about 10 times faster than the FV approach. This
fact can be explained by examinating in detail the calculation of each scheme.
For the LB method, at each time step, just feq and fout need to be evaluated to
obtain h and u. For the FV approach, we have to solve a series of local Riemann
problems and the source term is calculated by point-implicitly method (see [19]),
which results great amount of operators to execute. In Preissmann schema, a
iteration method is use to find the solution of a system of N non-linear equation
which requires a great number of evaluation of these equations. As a result, this
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Figure 13: CPU calculation time

schema is far slower than the two others.
Finally we consider the numerical stability of these three schemes. The

Preissmann scheme is implicit and unconditionally stable. The stability region
of the LBM is limited by Fr < 1 and Fr < 1

φ − 1 as indicated in (Fig.7). This
conclusion can be verified by the simulation, as follows.

We consider a long canal of length, L = 8m, with no slope and no friction.
We impose periodic boundary conditions by setting f in1 (x1) = fout1 (xN ) and
f in2 (xN ) = fout2 (x1) (see Fig.11). We initialize this canal with a water height

perturbed as h(x, 0) = h0 + 0.1e−
(x−4)2

0.1 with h0 = 0.1m. An initial speed u
is imposed according to the chosen Froude number, according to the relation

u = Fr
√
gh0. In order to choose φ the lattice speed v is adjusted as v =

√
gh0

φ .
We do this simulation with different values of τ .

The stability of the system is tested by using the entropies notion [17].
Entropies of the system (1–2) without friction and slope are functions (h, u)→
E(h, u) such that for some function F : (h, u)→ (h, u), called the entropy flux,
we have:

∂F

∂h
= u

∂E

∂h
+ g

∂E

∂u
and

∂F

∂u
= h

∂E

∂h
+ u

∂E

∂u
. (110)

With these functions, if we letR =
∫ L

0
E(h, u)dx then we have Ṙ = −[F (h, u)]L0 =

0 because of the periodic boundary condition. This means that R is a conserved
scalar quantity which can be used to test the stability of the integration scheme.
A possible entropy function for the shallow water equations (1,2) is introduced
in [7]:

E(h, u) =
1
2
hu2 +

1
2
gh2, F (h, u) =

1
2
hu3 + gh2u (111)

We will consider that the considered discretization scheme is stable if after 10000
iterations the entropy value has not exceeded 1% of its initial value. We follow

31



the same procedure for the FV method, but this time, taking into account only
Fr and φ, since τ is not a parameter of the FV scheme. The results are presented
in Fig.14.
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Figure 14: The stability region of LBM (lines) and finite volume method (+).
The Courant condition is presented as a dashed line. There is a slight difference
with Fig. 7 because the simulation is non-linear.

As expected, the limits of stability of the LB method are the Courant con-
dition and Fr < 1. However, we can modify the present D1Q3 model to obtain
a new model which is stable for both Fr < 1 and Fr > 1 as is described in [3].

6 Coupling experiments

In this section, we show how to use the 1D shallow water LB model to simulate
a complex canal structure by coupling two or more canal sections. We will first
consider many examples of hydraulic works like submerged gates, pumping sta-
tions, spillways, branching junctions or mixed interconnection structures. Then
we will apply the proposed coupling methodology (and the 1D shallow water
LB model for single reaches) to develop the full model of a real example: the
Canal de la Bourne network which irrigates the East of Valence (Drôme, France)
agricultural plains with the water from the Vercors Mountains. Finally some
numerical simulations will prove the efficiency of the proposed methodology.

6.1 Coupling relations

When coupling two 1D canal sections that are described with a LB model,
some of the fi’s are known and other are unknown at the junction. In order to
connect two segments coupled by a gate or a pump station, one has to compute,
for each segment, the missing distributions. Referring to Fig. 15 we denote
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Figure 15: The known (f ′2, f
′
0 and f1, f0) and unknown (f2 and f ′1) distributions

fi at a connection point.

by fi the density distributions of the up-stream system, and by f ′i the density
distributions of the down-stream system. The unknown variables are then f2

and f ′1. They can be obtained by solving an equation describing the physical
properties of the coupling.

6.1.1 Connection through a gate
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Figure 16: Gate structure

A gate in a submerged regime is presented in Fig. 16. The flow rate Q
through the gate is governed by the difference between the up-stream water
level h and down-stream level h′, and is given by the well known gate eq. [8]

Q = Bgαθ
√

2g(h− h′) (112)

where Bg is the gate width, α the gate coefficient, θ the gate opening and g the
gravity.

The coupling through a gate imposes that the flows Q and Q′ are the same.
From the definition of the water level and the discharge, we have the relations:

h = f0 + f1 + f2

h′ = f ′0 + f ′1 + f ′2
Q = vB(f1 − f2) = vB′(f ′1 − f ′2) = Bgαθ

√
2g(h− h′)

(113)

where B denotes the width at up-stream and B′ the width at down-stream of
the gate. So we obtain a system of two equations that we can solve for f2 and
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f ′1 {
B(f1 − f2) = B′(f ′1 − f ′2)
vB(f1 − f2) = Bgαθ

√
2g
√

(f0 + f1 + f2)− (f ′0 + f ′1 + f ′2)
(114)

From the first equation, we have f ′1 = B/B′(f1− f2) + f ′2. By replacing this
in the second equation, we have:

f1 − f2 = k

√
r + f2(1 +

B

B′
), k =

Bgαθ
√

2g
vB

, r = f0 − f ′0 + f1(1− B

B′
)− 2f ′2

(115)
which is equivalent to

f2
2 − (2f1 + (1 +B/B′)k2)f2 + f2

1 − k2r = 0 (116)

This is a second-order equation in f2 and we take the positive solution:

f2 =
1
2

(
2f1 + (1 +B/B′)k2 + k

√
4(1 +B/B′)f1 + (1 +B/B′)2k2 + 4r

)
(117)

And f ′1 is calculated by:

f ′1 = B/B′(f1 − f2) + f ′2 (118)

6.1.2 Connection by a pumping station
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Figure 17: Schematic description of a pumping station

A pumping station is illustrated in Fig. 17. The relation between the flow
rate, Q, and water level, h, before the pump and Q′ and h′ after the pump are
that

Q = Q′ +Qp
h = h′

(119)

where Qp is the flow rate taken by the pump.
Using the same notation as introduced in Fig. 15 and from the definition of

the water depth and the flow rate we obtain{
vB(f1 − f2) = vB′(f ′1 − f ′2) +Qp
f0 + f1 + f2 = f ′0 + f ′1 + f ′2

⇒

{
f2 = 1

1+B/B′ (2f
′
2 + f ′0 − f0 + (B/B′ − 1)f1 − Qp

vB )
f ′1 = 1

2+B′/B (2f1 + f0 − f ′0 + (B′/B − 1)f ′2 −
Qp

vB )

(120)

34



6.1.3 Connection through a spillway

6
6h
hs

-Qs

Figure 18: Spillway structure

Spillways, such as represented in Fig. 18, are commonly used in irrigation
networks to guarantee (stabilize) the water level in the upstream part whatever
the water flow is. The flow rate through the spillway is given by [8]:

Qs =
{
LsRs

√
2g(h− hs)3, if h ≥ hs

0 if h < hs
(121)

where Ls is the spillway’s width, Rs, the spillway’s coefficient, h, the water level
at up-stream and, hs, the spillway’s height. By the definition of h and Q, we
have:

vB(f1 − f2) =
{
LsRs

√
2g(f0 + f1 + f2 − hs)3, if f0 + f1 + f2 ≥ hs

0 if f0 + f1 + f2 < hs.
(122)

This nonlinear equation can be solved by any numerical method to obtain the
unknown f2. More complex models for the spillway can be used without mod-
ifying the general structure of these constitutive equations. Again the other
unknown f ′1 is determined using the water conservation assumption by eq. (118).

6.1.4 Branching canal

We can also define the coupling relation in the case of a canal that splits in
two branches. In terms of the distributions fi, the situation is illustrated in
Fig. 19. An up-stream section with distributions f meets two down-stream
sections described with distribution functions f ′ and f ′′, respectively.

-
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f1 f0 f2

f ′1 f ′0 f ′2

f ′′1 f ′′0 f ′′2

Figure 19: The known (f ′2, f
′
0, f ′′2 , f

′′
0 and f1, f0) and unknown (f2, f ′1 and f ′′1 )

distributions fi at a connection point.

At the branching, the water height is the same for the three branches,
whereas the up-stream discharge is divided in two parts. Thus, the following
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relations have to be satisfied
h = h′ = h′′

Q = Q′ +Q′′
(123)

Where h, Q are water height and discharge in the up-stream canal at the junc-
tion, while h′, Q′, and h′′, Q′′ are water heights and discharges in the two down-
stream branches.

The above three equations can be expressed in terms of the distributions f0 + f1 + f2 = f ′0 + f ′1 + f ′2
f0 + f1 + f2 = f ′′0 + f ′′1 + f ′′2
vB(f1 − f2) = vB′(f ′1 − f ′2) + vB′′(f ′′1 − f ′′2 )

(124)

where B, B′, and B′′ denote the canal’s width in the three branches. After
isolating the unknown distributions, this systems becomes f2 − f ′1 = −f0 − f1 + f ′0 + f ′2

f2 − f ′′1 = −f0 − f1 + f ′′0 + f ′′2
Bf2 +B′f ′1 +B′′f ′′1 = Bf1 +B′f ′2 +B′′f ′′2

(125)

which can be solved as
f2 = 1

K [−(B′ +B′′)f0 + (B −B′ −B′′)f1 +B′f ′0 + 2B′f ′2 +B′′f ′′0 + 2B′′f ′′2 ]
f ′1 = 1

K [Bf0 + 2Bf1 − (B +B′′)f ′0 + (B −B′ +B′′)f ′2 +B′′f ′′0 + 2B′′f ′′2 ]
f ′′1 = 1

K [Bf0 + 2Bf1 +B′f ′0 + 2B′f ′2 − (B +B′)f ′′0 + (−B −B′ +B′′)f ′′2 ]
(126)

where K = B +B′ +B′′

6.1.5 Connection through a mixed structure

Finally, we show how to connect two canal sections with a mixed structure
consisting of different elements placed in parallel (such as two gates side by
side, a gate and a spillway, etc.). We present here the case of two gates and one
spillway as represented in Fig. 20. The other cases can be treated similarly.
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θ1 θ26?
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6
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hs

Figure 20: Structure with 2 gates and 1 spillway in parallel.

The flow rate is determined by:

Q = Qg1 +Qg2 +Qs
Qg1 = α1Bg1θ1

√
2g(h− h′)

Qg2 = α2Bg2θ2

√
2g(h− h′)

Qs =
{
LsRs

√
2g(h− hs)3, if h ≥ hs

0 if h < hs

(127)
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As in previous sections, we have the following relations:

Q = vB(f1 − f2) = vB′(f ′1 − f ′2)
h = f0 + f1 + f2

h′ = f ′0 + f ′1 + f ′2

(128)

Again, these equations need to be solved by a numerical method to obtain the
unknowns f2 and f ′1.

6.2 Simulation example
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Figure 21: Structure of the Bourne irrigation system

Our simulation example is a model of the canal de la Bourne irrigation net-
work. This network was built in the late 19th century to irrigate the plains
around Valence in France. It is still in use now and its fine modelling and
control has become a new challenge. Indeed, the demand on water consider-
ably increased these last few decades as, more recently, the constraints on the
quantity of water which may be withdrawn from the upstream natural river
La Bourne became more and more binding limitations. A sketch of the canal
network is presented in Fig. 21. The main reach (from x = 0 to x = x6) is about
30 km long. The main irrigation network consists of:

• An upstream reservoir at Ecancière which supplies the canal through two
gates and has a constant water level.

• A pumping station at Martinet which pumps water from Isère river to the
canal or can produce electricity during the Autumn and Winter seasons.

• A gate at Mondy which consists of two submerged gates and a spillway (see
the mixed interconnection structure developed in the previous section).

• A gate at Orme with the same structure as the one in Mondy.

• A Secondary canal, termed S3, which takes water from the canal through
a submerged gate.

• A spillway, just after S3, which aims at maintaining the water supply for
S3.
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• Two reservoirs at Lafarge and Freydier which receive the water from the
canal through spillways.

To simulate this system, we divide it into 6 segments and use the previously
presented methods to connect them. The parameters used are presented in
Tables 1-3. The lattice Boltzmann model is carried out with ∆x = 100(m),
∆t = 40(s) and τ = 0.7;

L1 L2 L3 L4 L5 L6

Length (m) 5900 6900 2650 7000 100 3325
Slope (10−4) 2, 753 2, 753 2, 441 2, 4 2, 4 2, 4
Width (m) 5,605 5,605 5,1 4,36 4,36 4,36

Manning coefficient 0.033

Table 1: Parameters for the reaches

α1 α2 B1 (m) B2 (m)
Ecancière

0,66 0,66
2,4 2,4

Mondy 1,07 2,9
Orme 2,9 2,9

Gate in S3 0,66 2

Table 2: Parameters for the gates

Rs Ls (m) hs (m)
Mondy

0.35

0,8 1,3
Orme 1,91 1,7

Spillway S3 9,6 0,8
Lafarge 4 1,35
Freydier 2 1,57

Table 3: Parameters of the spillways

The model has first to be initialized. From the shallow water equations (1,2),
it could be noticed that the water flow equilibrium profile is necessarily uniform
while the water level profile is generally non-uniform (unless the condition I = J
holds which is the case only when the friction forces precisely equilibrate the
”gravity” forces). The steady state initial profiles are thus constructed in the
following way:

• Choose the water height h(x+
6 ) and calculate the flow rate of the steady

state Q0 = Q(x6)

• Integrate eq. (103) to obtain the water height h(x), x ∈ [x5, x6] with the
boundary condition at x6
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• Calculate the water height up-stream of the spillway S3 h(x+
5 ) by imposing

the discharge through the spillway Q0

• Integrate eq. (103) to obtain the water height h(x), x ∈ [x4, x5] with the
boundary condition at x+

5

• Choose the flow rate withdrawn by the secondary canal S3 QS3 and in-
tegrate eq. (103) to obtain the water height h(x), x ∈ [x3, x4] with the
boundary condition at x+

4 : h(x+
4 ) = h(x−4 ) and the discharge Q1 =

Q0 +QS3

• Choose the water height at x+
3 and determine the gates opening by using

the discharge Q1, the gate equations and the spillway equations.

• Integrate eq. (103) to obtain the water height h(x), x ∈ [x2, x3] with the
boundary condition at x+

3

• Choose the water height at x+
2 and determine the gates opening by using

the discharge Q1, the gate equations and the spillway equations.

• Integrate eq. (103) to obtain the water height h(x), x ∈ [x1, x2] with the
boundary condition at x+

2

• Choose the discharge supplied by the pump station Qp

• Integrate eq. (103) to obtain the water height h(x), x ∈ [0, x1] with the
boundary condition at x+

2 : h(x+
2 ) = h(x−2 ) and the dischargeQ2 = Q1−Qp

• Use the boudary condition at x4 and the discharge QS3 to initialize the
secondary canal S3.

These initial conditions are presented in Fig. 22 and Fig. 23. Starting with
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Figure 22: Initial conditions for the principal canal
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Figure 23: Initial conditions for the secondary canal

this equilibrium configuration for the irrigation network, we use the following
scenario for the simulation of the transient behaviour of the model. Firstly,
at time t = 0(h) the opening of the first gate at Ecancière increases by 90%,
following a ramp, to reach its final value with a rate of 5.6× 10−4(%/s). Then
at time t = 1(h) the pumping station at Martinet starts to withdraw water from
the canal. The withdrawal flow rate increases with a rate of 0.02(m3/s) to reach
its final value at 0.5(m3/s). Finally, at time t = 2(h), the gate opening in S3
increases by 30%, following a ramp, to reach its final value with the same speed
as for the gate at Ecancière. The simulation results are presented in Fig. 24 and
Fig. 25. We can see the wave propagation phenomenon with constant speed and
the discharge discontinuity corresponding to withdrawal at the pumping station
and in the secondary canal. These simulation results agree with the measured
values for this scenario.

Finally, from a complexity point of view, it could be noticed that with the
computer used to perform this simulation (with a code written in Matlab) it
is only possible to update up to 1.3 × 104 sites per second. A simulation over
1 year for the above network described with 159 sites requires about 2.5 hours
of CPU times. A C++ implementation is typically 100 times faster, without
any code optimization, and reduces the time needed for this 1-year simulation
(with the same spatial and temporal resolutions) to the order of a few minutes
of CPU times. For real scale irrigation networks we are thus far beyond real
time requirements. However this efficiency may be useful for reduced scale
experimental micro-canals (with typically fast dynamics associated with low
frictions and short reaches which are only a few meters long, rather than a
few kilometers long), for complex irrigation networks (with a complex tree of
secondary canals connected trough dozens of hydraulic works, many pumping
stations or reservoirs, etc.) or for other fluid flow application examples for the
ideas presented in this paper.
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Figure 24: Evolution in the main canal
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Figure 25: Evolution in the secondary canal
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7 Conclusions

In this work, we discuss the capability of the Lattice Boltzmann method to
solve the 1D shallow water equation. We proposed an exact analytical study
of its accuracy and its stability when the system is linearized around a water
level, h, and a velocity, u. We derived the dissipative term as well as the non-
equilibrium part of the distribution function, fi. Our derivation is validated
by numerical simulations. Our results show that the viscosity term reported in
some recent publications on the LB method for the shallow water equations has
been incorrectly calculated. We also propose a detailed analysis of the way to
add an external force on the LB model. Exact analytical solutions of the LB
model with force have been obtained in a simple situation.

Furthermore we compare the 1D LB model with two other solvers: an im-
plicit finite difference scheme and a finite volume approach. Our comparison
showed that the LB model is more precise and significantly faster than the
other methods. However the stability region of the LB model is limited by
the Courant condition and sub-critical flow conditions, unless some model ex-
tensions are considered, such as the asymmetric D1Q3 LB model which can
correctly describe the transition between the fluvial and torrential regimes.

A coupling methodology to interconnect several 1D models is also developed.
It is found to give very good results. Therefore our coupling strategy allows
us to simulate many canal sections interconnected through different types of
structures (e.g. gates, spillways, pumping stations or branchings).

Other coupling problems, such as the coupling between a 1D and a 2D
LB shallow water models, or between two 1D models with different resolutions
are also possible although not described here. See [21] for more details. The
coupling of LB shallow water models with a fully resolved, free surface flow
model, such as that developed in [12, 13], is currently under investigation and
will be reported in a forthcoming publication.

All these results show the promising potential of the LB approach to simulate
a realistic complex network of irrigation canals.
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