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Introduction

The rapid progress of wireless sensor technologies in mobile environments (e.g., GPS, Wi-Fi, RFID) has lead to the development of new services for individuals, administrations and companies based on the monitoring of people mobility. For instance, mobility profiles play a central role in context-based search and advertising [START_REF] Bayir | Track me! a web based location tracking and analysis system[END_REF], location modeling [START_REF] Ashbrook | Using gps to learn significant locations and predict movement across multiple users[END_REF], traffic planning and route prediction [START_REF] Harrington | Route profiling: putting context to work[END_REF], air pollution exposure estimation [START_REF] Demirbas | imap: Indirect measurement of air pollution with cellphones[END_REF]. The last decade has witnessed a huge growth in the analysis of mobility [START_REF] Giannotti | Mobility, data mining and privacy[END_REF]. These studies focus only on mining trajectories and their applications [START_REF] Li | Movemine: Mining moving object databases[END_REF][START_REF] Luo | Finding time period-based most frequent path in big trajectory data[END_REF] [START_REF] Monreale | Wherenext: A location predictor on trajectory pattern mining[END_REF][START_REF] Wang | Human mobility, social ties, and link prediction[END_REF][START_REF] Zheng | Mining interesting locations and travel sequences from gps trajectories[END_REF], but do not take into account the contextual information of the individual trajectories. Related contexts of the trajectories are essential data to produce accurate and valuable models of mobility patterns. Recent work has opened this way [START_REF] Atzmueller | Detecting community patterns capturing exceptional link trails[END_REF][START_REF] Lemmerich | Mining subgroups with exceptional transition behavior[END_REF][START_REF] Kaytoue | Exceptional contextual subgraph mining[END_REF].

Considering a network whose vertices depict places or points of interest (POI) and edges stand for trips and are labeled by sets of transactions 1 , that correspond to characteristics of the travels, the problem considered hereafter is to discover and characterize geographical areas that are attractive places and routes for specific contexts. Such areas are frequently visited together in certain contexts, e.g. by users of similar profiles or with trips of similar characteristics. The problem is thus to identify contextual subgraphs (i.e., subgraphs related to a context) that are exceptional in the sens of the Exceptional Model Mining (EMM) approach [START_REF] Leman | Exceptional model mining[END_REF]. EMM aims to build a model on the whole data and a model on data related to a context (generally called pattern), and the exceptionality is assessed by a quality measure that compares the two models. For network analysis, this problem was introduced in [START_REF] Kaytoue | Exceptional contextual subgraph mining[END_REF] where a simple model based on the number of trips associated with an edge was used. In this paper, we study exceptional subgraphs with respect to mobility models that consider into the length or the surrounding demography of the trips. Two mobility models from statistical physics are used: The gravity model [START_REF] Zipf | The p 1 p 2/d hypothesis: The case of railway express[END_REF] and the radiation model [START_REF] Simini | A universal model for mobility and migration patterns[END_REF].

The rest of the paper is organized as follows. Section 2 introduces the problem of exceptional contextual subgraph mining and the related algorithm. The mobility models are defined in Section 3. We report an extensive empirical study in Section 4 and briefly conclude in Section 5.

Exceptional contextual subgraphs

We define a graph G = (V, E, T, EDGE) to model urban mobility. V denotes city areas, E denotes the trips from one area to another, and T is a set of transactions of a relation R of schema S R = [R 1 , . . . , R p ]. Each attribute R i takes values in dom(R i ) that is either nominal or numerical. Thus a transaction t ∈ R is a tuple (t 1 , . . . ,t p ) with t i ∈ dom(R i ). EDGE is a mapping of a transaction to an edge: EDGE :

T → E. For example, if t k ∈ R is a transaction such that EDGE(t k ) = e i j = (v i , v j ), t k is a trip from v i to v j .
Besides the definition of G, we introduce the notion of context and its use to select subgraphs on G. Let a context be a tuple C = (C 1 , . . . ,C p ) with C i a restriction on dom(R i ). C i can take two different forms depending on the type of R i :

• If R i is nominal, C i = a or C i = i , with a ∈ dom(R i ) and i = dom(R i ) • If R i is numerical, C i = [a, b], with a, b ∈ dom(R i ), a < b.
We say that a transaction (t 1 , . . . ,t p ) satisfies or supports a context

C iff ∀i = 1 . . . p, t i ∈ C i .
Given a context C, the contextual graph derived from G is the weighted graph G C = (V, E,W C ) where W C (e) is the number of transactions associated to e that satisfy C = (C 1 , . . . ,C p ):

W C (e) = |{t = (t 1 , . . . ,t p ) | EDGE(t) = e and ∀i = 1 . . .t, t i ∈ C i }|
Several contexts may be associated to the same contextual graph (i.e. in case of local dependencies between attribute values) and, in such cases, we retain the (unique) most specific one, also called closed context. It is defined up to an order relation defined as follows: A context C 1 is said to be more specific than a context C 2 , denoted C 1 C 2 , iff:

• C 2 i = i or C 1 i = C 2 i = a ∈ dom(R i ), for R i a nominal attribute, • [a 1 i , b 1 i ] ⊆ [a 2 i , b 2 i ] with C 1 i = [a 1 i , b 1 i ] and C 2 i = [a 2 i , b 2 i ], for all numerical attributes R i . A context C is thus closed iff ∀C such that G C = G C , C C .
In Exceptional Model Mining (EMM) approach, a pattern (in our case a context) interest is evaluated by its deviation from a null model. An edge e ∈ E is considered to be exceptional with respect to a context C, if the observed weight W C (e) is large compared to the expected weight W C (e). Several discriminative measures can be used. In this paper, we consider the Weighted Relative Accuracy (W RAcc) [START_REF] Lavrac | Rule evaluation measures: A unifying view[END_REF] widely used in supervised pattern mining:

W RAcc(C, e) = 1 W (E) × W C (e) -W C (e) with W (E) = ∑ x∈E W (x) and = (dom(R 1 ), . . . , dom(R p ))
This measure was also used in [START_REF] Kaytoue | Exceptional contextual subgraph mining[END_REF] in which the expected weight is defined as:

W C (e) = W (e) × W C (E) W (E) (1) 
This gives the standard definition of the W RAcc measure where the expected weight is a portion of the total weight W (e). In the following, this definition of W C (e) is denoted M 0 . This mobility model is rather simplistic because it does not take into account the length of trips or the surrounding demographics. In the next section, we propose to use two other mobility models M g and M r of expected weights.

The mining task we consider is to compute the complete set of closed exceptional graphs, that is to say the couples (C, G C ) where C is closed and G C is the subgraph made of edges whose associated W Racc measure computed with respect to models M 0 ,M g or M r is greater than a threshold min threshold and W C (e) > min weight. The algorithm to solve it is presented in Algorithm 1. Cosmic enumerates contexts in a depth-first search manner. In each recursive call, it enumerates an attribute R i by exploring all its possible values (From Line 6 to Line 28). If all the attributes have been instantiated (i = p, Line 2), the subgraph G c is calculated with respect to W RAcc and M , if it is exceptional we add it to the result set E . The detailed description of Cosmic is provided in [START_REF] Kaytoue | Exceptional contextual subgraph mining[END_REF]. 

Algorithm 1: COSMIc

Input: C = (C 1 , • • • ,C p ), G = (V, E, T,
E ← E ∪ (C, G C ) 5 else 6 if (R i is symbolic) then 7 for a ∈ dom(R i ) ∪ { i } do 8 C ← (C 1 , • • • ,C i-1 , a,C i+1 , • • • ,C p ) 9
T is the set of transactions that satisfy C 10 C is the most specific context that covers all transactions in

T 11 if (C = C ) then / * C is closed * / 12 if G C = / 0 then 13 COSMIc(C ,G, i + 1) 14 else 15 stack ← ([min a i ∈dom(R i ) a i , max b i ∈dom(R i ) b i ], true) 16 while (stack is not empty) do 17 ([a, b], left)← unstack(stack) 18 C ← (C 1 , • • • ,C i-1 , [a, b],C i+1 , • • • ,C p ) 19
T is the set of transactions that satisfy C 

Mobility models

In mobility modeling [START_REF] Masucci | Gravity versus radiation models[END_REF], urban travels depend on the distances and level of attraction. Thus, the expected amount of transactions between any pair of vertices (v i , v j ) is not uniform but depends on the distance d i j between v i and v j , and on the surrounding populations (or level of attraction) n i and n j of these vertices. W (e i j ) can therefore be considered exceptional, given its associated values of d i j , n i and n j , whereas such situations can not be identified by standard W Racc measure. For example, W (e i j ) can be very large for two points of interest v i and v j , while we expect much lower W (e i j ) with regard to their distance d i j and/or their population n i and n j . We propose to model the expected weight of an edge using the gravity or the radiation models as defined below:

W C (e) = m(e) × W C (E) W (E)
with m(e) the mobility model, denoted in the following either g(e) for the gravity model, or r(e) for the radiation one.

The gravity model

In the gravity model, the most widely used mobility model, the number of expected transactions g(e i j ) between v i and v j is defined as [START_REF] Masucci | Gravity versus radiation models[END_REF]:

g(e i j ) = n i × n j × f (d i j )
where f (d i j ) is known as the deterrence function and represents the influence of the distance. In the traditional form of the gravity model, f (d i j ) is a priori defined as 1

d γ i j
, with γ an optional parameter, usually tuned by regression analysis. However, some recent papers [START_REF] Expert | Uncovering space-independent communities in spatial networks[END_REF][START_REF] Cazabet | Enhancing space-aware community detection using degree constrained spatial null model[END_REF] have shown better results using a deterrence function learned from data as follows:

f (d) = ∑ x,y|d xy =d W (e xy ) ∑ x,y|d xy =d n x × n y (2) 
In the rest of this article, we will refer to this model as gravity, and denote it M g .

The radiation model

Some authors have criticized the gravity model, since it is unable to predict different fluxes between locations with similar densities and at the same distance, but have different population densities between them. They therefore proposed the radiation model, for which the expected number of transactions between two points depends on the number and size of other points around them. Formally, the number of expected transactions between v i and v j using the radiation model [START_REF] Simini | A universal model for mobility and migration patterns[END_REF] is given by:

r 0 (e i j ) = T i 1 -n i N × n i × n j (n i + s i j ) × (n i + n j + s i j ) with:
• s i j the population in a circle whose center is v i and radius d i j minus n i and n j .

• T i = ∑ j W (e i j ).

• N the total population.

While the original radiation model is parameter free, and thus do not have a deterrence function, a recent improvement [START_REF] Sarzynska | Null models for community detection in spatially embedded, temporal networks[END_REF] has been proposed. Using the same mechanism as the one used in gravity model to learn a deterrence function from data, it is defined as:

r(e i j ) = r 0 (e i j ) × f 2 (d i j )

where f 2 (d i j ) is the deterrence function defined as:

f 2 (d) = ∑ x,y|d xy =d W (e xy ) ∑ x,y|d xy =d r(e xy ) (3) 
We will refer to this model as radiation, and denote it M r .

Experiments

Synthetic experiments

To test the effectiveness of the mobility models, we performed synthetic experiments. We adapted the benchmark used in [START_REF] Sarzynska | Null models for community detection in spatially embedded, temporal networks[END_REF] to our problem of pattern mining.

The main idea is based on generating different synthetic datasets in which several patterns (exceptional subgraphs) are hidden, and evaluating the ability of the different models to identify these patterns. We picked up uniformly at random N vertices in the geographic space located in the bounding box between (45.8, 4.7) and (46.05, 4.95) (corresponding to the location of Lyon), and assigned to each vertex v i a population n i using one of following options: (1) uniform: we assign the same population n i = 100 for all the vertices, (2) random: we assign a population uniformly at random from [1, .., 100]. We injected 10 different patterns that constitute the set P = {p 1 , . . . , p 10 }. Each pattern p i is made of 5 to 10 edges, and each edge has between 10 to 20 transactions. The first 5 patterns are associated to specific contexts that are different from (C = (C 1 , . . . ,C p ) with C i = i for nominal attributes, and C i ⊂ [min dom(R i ), max dom(R i )] for numerical attributes), and the 5 last ones are associated to = (C i , . . .C p ) with C i = i or C i = dom(R i ). Then, noise is added to the transactions, governed by noise rate. We generate a set of other transactions called typical transactions, that are distributed w.r.t a particular probability distribution P(t i j ). These transactions represent the simple trajectories that do not depict an exceptional behavior. They represent 50% of the overall dataset and are generated using either (1) distance:

P(t i j ) = n i ×n j d i j ×Z 1 . Where Z 1 is a normalization factor Z 1 = ∑ i, j n i ×n j d i j , or (2) flux: P(t i j ) = n i ×n j (n i +s i j )×(n i +n j +s i j )×Z 2
. Where Z 2 is a normalization factor

Z 2 = ∑ i, j n i ×n j
(n i +s i j )×(n i +n j +s i j ) . Thus, we have 4 different configurations: (1) distance uniform, (2) distance random, (3) flux uniform, and (4) flux random.

For each generated dataset, we ran COSMIc with the three different models: M 0 , M g and M r . We evaluated the result of each of them with the Precision, Recall, and f score measures adapted to our case study. Let P = {p 1 , ..., p n } be the set of generated patterns, and R = {r 1 , . . . , r m } the set of returned patterns by Cosmic. The precision of a pattern r i ∈ R w.r.t P is computed by: Precision(r i , P) = max p j ∈P

|r i ∩p j | |r i | .
The recall of a synthetic pattern p i ∈ P w.r.t R is:

Recall(p i , R) = max r j ∈R |p i ∩r j | |p i | .
Finally, the global precision, recall, and F-score of the two sets of patterns (P, R) is:

Precision(R, P) = ∑ r i ∈R Precision(r i ,P) |R| , Recall(R, P) = ∑ p i ∈P Precision(R,p i ) |P|
, and Fscore(R, P) = 2 × Precision(R,P)×Recall(R,P) Precision(R,P)+Recall(R,P) . Each configuration was executed 10 times. better than those of M 0 whereas the precision remains similar. M r model is slightly better than M g when using the flux distribution probability. In fact, M r calculation is based on the flux hypothesis.

Experiments on real data

In this section, we compare the models M 0 , M g and M r using a real world dataset. To this end, we first present the data and we show some statistics about them. Second, we study the distribution of transactions predicted by each model. Finally, we compare the result patterns detected using these different models.

We use the V ÉLO'V dataset. V ÉLO'V is the bike-sharing system run by the city of Lyon (France) and the company JCDecaux2 . There are a total of 348 V ÉLO'V stations across the city of Lyon. Our experiments are performed on trips collected on October 2011. The overall number of trips is 565,065 transactions. Each trip includes the bicycle station and the time stamp for both departure and arrival, as well as some basic demographics about the users (gender, age, zip code, country of residence, type of pass). Hence, the V ÉLO'V stations are the graph vertices (|V | = 348), and directed edges correspond to the fact that a V ÉLO'V user checks out a bicycle at a station and returns it at another. Fig. 2 (left) reports the distribution of populations of areas containing stations. This figure shows that the population is not uniform. Thus, it will inevitably influence the results of gravity and radiation models. Fig. 2 (right) shows the distribution of distance of transactions. There is only few transactions with distances less than 200 meters. In fact, people find it useless to take bikes for very short distances. The number of transactions increases when the distance increases until it reaches its maximum values for distances around 1km and 2km. After that, the number of transactions decreases. Recall that in M 0 model, the expected number of transactions is simply the observed number of transactions. For example, if we take the station located in Part-Dieu, in M 0 model some edges are connected to areas located in the north west even if they are far away from Part Dieu. This exceptionality will be captured by mobility models since these edges are not expected by them. Meanwhile, it is clear that the distribution of expected transactions strongly depend on the distance for spacial models. Fig. 5 shows the distribution of expected transactions with respect to the following parameters: d i j (distance between source and destination), n i (source population), and n j (destination population). Distributions of transactions by distance are similar for M 0 and M g , while M r expects much more for distances less than 1km. For the two other distributions, M r expects more than the other models in most of the cases. Also, the number of expected transactions by M 0 is higher than M g when n i and n j are less than 3000, but it is lower when n i and n j exceed 3000. In fact, M g expects more transactions when n i and n j are greater.

M 0 M g M r
We computed the result patterns and we compared their ranking with respect to the three different models. To this end, we ranked the patterns based on their W RAcc scores using each model, and we computed the kendall tau between these rankings. Results are depicted in Fig. 6. As expected, the greatest kendall tau is between M g and M r , which is logical since they are spacial models based on similar information. The kendall tau of M 0 with the spacial models is lower, especially with M r . 

Conclusion

In this paper, we extended the problem of discovering exceptional contextual subgraphs by considering two well-known models from statistical physics: The gravity and the radiation models. Experiments on both synthetic and real-world datasets demonstrate that considering demographic and spatial information makes it possible to capture more complex phenomena.
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 1 Fig. 1 F-score, precision, and recall of each model in the different configurations.
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 1 Fig. 1 presents F-score, precision and recall of each model in each configuration, w.r.t different values of noise rate. F-score and recall of mobility models are always
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 2 Fig. 2 Statistics about the V ÉLO'V dataset, (left) distribution populations of areas containing stations (right) distribution of distance of transactions.
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 3 Fig.3and 4 compare expected edges starting from specific stations located respectively in Part Dieu and Cordeliers. They correspond to edges that contain at least 10 expected transactions. Recall that in M 0 model, the expected number of transactions is simply the observed number of transactions. For example, if we take the station located in Part-Dieu, in M 0 model some edges are connected to areas located in the north west even if they are far away from Part Dieu. This exceptionality will be captured by mobility models since these edges are not expected by them. Meanwhile, it is clear that the distribution of expected transactions strongly depend on the distance for spacial models.

Fig. 3 Fig. 4

 34 Fig. 3 Comparison of expected edges starting from a station located in Part Dieu.
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 5 Fig. 5 Distribution of expected transactions with respect to n i (source population), n j (destination population), d i j (distance between source and destination), and W RAcc values, for each model.

Fig. 6

 6 Fig. 6 Kendall tau of ranking of results based on the three different models M 0 , M g and M r .

Fig. 7

 7 Fig. 7 Boxplots of avg( n i ×n j d i j ) of exceptional transactions of each model.

Fig. 8

 8 Fig.8reports the top 5 patterns for each model. Gravity and radiation models have found exactly the same 5 best patterns, whereas M 0 model differs in some of them. In order to verify whether the spacial models have a real impact in the top patterns, we have compared the average value of n i ×n j d i j of the transactions that appear in the top 10 patterns in each model. Fig.7presents the results. This value is significantly lower in the spacial models comparing with the M 0 one. It means that the spacial models overweight the W RAcc quality of transactions with low values of n i ×n j d i j .

Fig. 8

 8 Fig. 8 Top 5 patterns found by each model M 0 M g and M r .

To avoid any ambiguity, notice that the term transaction is different from the one used in Database Management System
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