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Abstract

Numerical simulations of free surface flows are important to pro-

vide a prediction tool for the optimal management of irrigation canals.

Here we consider an alternative to solving the shallow water equations.

We propose a free surface model in which the vertical component of the

water current is fully resolved. We believe that such a detailed descrip-

tion can be useful to model the flow around gates or in other situations

where the vertical structure of the flow will be important such as in

the case of sediment transport and deposition. Our approach is based

on a two-fluid Lattice Boltzmann model. We compare the predictions

obtained from numerical simulation and experiments performed on a

laboratory micro-canal facility.

1 Introduction

Many models exist for the simulation of the water flow dynamics in open-

air channels. They lead to many more simulation tools. A number of the

more important ones among these tools have been analyzed and compared

in [Clemmens et al., 2005]. Certainly the most popular models for the un-

steady flow dynamics in canal reaches are derived from the Navier-Stokes

equations using some simplification assumptions. For instance considering

an incompressible fluid with constant vertical profiles of the horizontal ve-

locity field leads to the classical Saint-Venant or shallow water equations

with free moving surface as considered in many textbooks [Chow, 1985].
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For simulation or control purposes, such models derived from the Navier-

Stokes equations are further reduced or simplified in some way. A popular

simplification neglects the inertia terms in the balance equations and leads

to a second order differential equation for the water flows which does not de-

pend on the water level and may be integrated separately (see the diffusive

wave model in [Miller and Cunge, 1975]). If transport and diffusion coeffi-

cients are assumed to remain constant, this equation reduces to the Hayami

model which is linear. The transfer function between upstream and down-

stream water flows in this Hayami model (which is not a rational fraction

since the model is spatially distributed) may still be explicitly computed

or approximated by a second order delayed model [Henderson, 1989]. An-

other simplification relies on the linearization of the Saint-Venant model and

on the resulting transfer model which has been proven to be a reasonable

approximation of the reach dynamics [Baume et al., 1998]. Finally some

control approaches use a ”control model” which neglects slope and frictions

[Coron et al., 1999], this assumption being reasonable only for some specific

applications. Recently models of irrigation systems have also been proposed

[Hamroun et al., 2006] which are based on an explicit representation of the

power exchanges within the reach and trough the boundaries. They lead to

a thermodynamical circuit-like description of the system equivalent to the

closed form Shallow Water classical equations derived from the material and

momentum balance equations and from the phenomenological constitutive

3



equations for friction forces and hydraulic works.

However, although all these models may be efficient for some analysis,

simulation and (nonlinear) control purposes, they seem inadequate to handle

complex and moving geometries, spatial multi-scale phenomena and coupled

multi-phase problems (sediments or algae).

Whatever the chosen continuous model is, either for simulation or con-

trol purposes, it has to be reduced to a finite-dimensional model in some

way. Among the reduction schemes for the ”Saint-Venant-like” models, we

may wish to distinguish between total discretization schemes which lead to

discrete time models and partial (spatial) discretization schemes leading to

continuous time but finite-dimensional approximations. In the first class,

the Preissmann implicit finite difference scheme [Cunge et al., 1980] is such

a total discretization scheme and has been extensively used both for simula-

tion and control purposes (see [Malaterre and Rodellar, 1997] or [Sawadogo

et al., 1995]). Orthogonal collocation is an example of the second class, and

has been most frequently used to design a simplified ”control” model (see

[Dulhoste et al., 2001] for input-output linearization, [Besançon et al., 2001]

for backstepping or [Ouarit et al., 2003] for robust optimal control).

However it should be noticed that even in the case of spatial discretiza-

tion, a time discretization will be finally performed to integrate to system

of reduced differential equations.

In this paper we do not propose a continuous time and/or spatial model.
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We rather consider a totally discretized model. The idea is to use the Lattice

Boltzmann method [Chopard and Droz, 1998, Wolf-Gladrow, 2000, Succi,

2001] to propose directly a mesoscopic model defined on a discrete time-space

lattice. Hence modelling assumptions and model derivation are intrinsically

discrete. The starting point for such a model will be again the mass and mo-

mentum balance equations which are used in Navier-Stokes or Saint-Venant

models. But here these balance equations are ”collision rules” written for

the particles densities distribution and local momentum. Unlike in classi-

cal Lattice Boltzmann model for fluid dynamics (as [Zhou, 2004]) we here

consider a bi-fluid air/water model which implements the interaction of two

immiscible fluids. Interaction forces between the two kind of fluid particles

result in a surface tension and a practical phase separation [Shan and Chen,

1993]. As it will be shown this mesoscopic model appears to be sufficient to

recover the desired macroscopic dynamical behavior and naturally takes into

account the effect of the air pressure and evaporation. The final objective

of such a Lattice Boltzmann model, from our point of view, is to develop a

simulation tool able to handle :

• classical long range dynamical effects like water accumulation in reaches,

wave propagation resulting in time-varying delay and in some cases

wave superposition effects, variable water level profiles due to water

bed friction forces, etc.

• algae growth, transport and deposition which are a major problem for
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the operating of some hydraulic works.

• sediment transport phenomena which considerably affect the flow dy-

namics by modifying the cross section of the reaches.

• local dynamical effects like turbulent dynamics, the existence of both

torrential and fluvial water flows around the gates, sediment or algae

local accumulation or abrupt removal, etc.

We think that the simultaneous simulation of long range and local range

effects (hence slow and fast dynamics) is a major challenge for the unsteady

flow modelling in complex irrigation systems. Moreover it allows the defi-

nition of new control problems. For instance the work in [Malaterre et al.,

1998] classifies the existing control problems which may be addressed us-

ing existing classical models. This classification does not consider however

the kind of model we develop here, neither the kind of control problems we

expect to solve. For instance one may desire to control the reach bottom

profile in the presence of sediment transport and deposition or to remove a

stack of algae by an appropriate gate action. Investigations on the appli-

cation of the Lattice Boltzmann method for the simulation of free surface

flows are not complete. It will need more work to produce well validated

results and practical solutions for complex irrigation system simulation and

control problems as those presented for instance in [Clemmens et al., 1998].

We will greatly appreciate receiving comments from hydraulic and irrigation
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engineers with experience and practical problems.

The paper is organized as follows. In the next section the Lattice Boltz-

mann method is briefly summarized. The mesoscopic mass and momentum

balance equations are detailed as well as the water-air interaction forces.

The geometry assumptions and boundary conditions are defined for the case

of unsteady flows in a single reach. In section 3 the problem of modelling

the underflow gates dynamics is addressed. The classical gate equations re-

sulting from the Bernoulli equation are derived for two draining experiments

which are defined on a laboratory micro-channel. This experimental setup is

briefly presented. Then experimental and simulation results are presented

to validate the Lattice Boltzmann approach. Finally concluding remarks

summarize the obtained results from the proposed model and sketch some

future works and prospects for two-scale local-global modelling and control

problems.

2 Proposed Lattice Boltzmann model

2.1 Lattice Boltzmann models

The Lattice Boltzmann (LB) method is an acknowledged alternative to stan-

dard computational fluid dynamics techniques to solve the Navier-Stokes

equations and other partial differential equations.

The LB method for hydrodynamics is a mesoscopic approach in which a
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fluid is described in terms of density distributions fi(r, t) of idealized fluid

particles moving and colliding on a regular lattice. These fluid particles can

only take a finite number of possible velocities vi such that, in one time step

of the dynamics, particles move from one lattice site to another.

LB models are described in several textbooks or review papers. See for

instance [Chen and Doolen, 1998, Succi, 2001, Chopard and Droz, 1998,

Wolf-Gladrow, 2000, Sukop and Thorne, 2005].

Among the advantages of the LB method over more traditional numerical

schemes, there are its simplicity, its flexibility to describe complex flows and

its local nature (no need to solve a Poisson equation). Another benefit of

the LB method is its extended range of validity when the Knudsen number

is not negligible (e.g. in microflows) [Ansumali et al., 2007].

For regular computational domains, LB solvers can be parallelized very

naturally and scale well up to thousands of processors. A few papers ana-

lyze the CPU performance, memory usage and accuracy of the LB method

in comparison with more classical CFD techniques [Kandhai, 1999, Geller

et al., 2006]. Although a general conclusion is difficult to make, it is usually

observed that LB model are either comparable to the other methods, or

better with respect to the above criteria. In a recent study we show that the

LB approach for the 1D shallow water equation is 100 times faster than an

implicit finite difference code, for the same level of accuracy [Pham, 2009,

Pham et al., 2010]. Note that the LB method is memory intensive and a
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smart implementation can significantly improve its performance, both in se-

quential or in parallel (see for instance [Chopard, 2009, Donath et al., 2008,

Axner et al., 2008]).

The key quantities of a LB model are the density distributions fi(r, t)

and the “molecular velocities” vi, for i = 0 . . . z, where z is called the lattice

coordination number of the chosen lattice topology and z+1 is the number of

discrete velocities. The quantity fi denotes the density of particles entering

a lattice site r at time t with discrete velocity vi. Note that vi is a vector

so that molecular velocities have both a norm and a direction.

For instance, a common choice of velocities in 2D problems is the so-

called D2Q9 topology defined as

v0 = (0, 0) v1 = v(1, 0) v2 = v(1, 1) v3 = v(0, 1) v4 = v(−1, 1)

v5 = v(−1, 0) v6 = v(−1,−1) v7 = v(0,−1) v8 = v(1,−1)

(1)

In these expressions, v is a velocity norm defined as v = ∆x/∆t, with

∆x being the lattice spacing and ∆t the duration of the time step. Both

∆x and ∆t can be expressed in any desired unit system.

From the fi’s and the vi’s we can define the standard physical quantities

such as particle density ρ, particle current ρu, and momentum tensor Παβ,
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Figure 1: Illustration of the collision and propagation phases for the D2Q9

LB model. The arrows represent the fluid particles, their directions corre-

spond to vi and their length is proportional to fi. Particles at rest (with

v0 = 0) are not shown here.

by taking various moments of the distribution

ρ(r, t) =
∑

i

fi(r, t) ρ(r, t)u(r, t) =
∑

i

fi(r, t)vi Παβ =
∑

i

fi(r, t)viαviβ

(2)

where Greek subscripts label spatial coordinates.

Following our particle interpretation, we can say that, in a LB model, all

particles entering the same site at the same time from different directions (i.e.

particles with different molecular velocities vi) collide. As a consequence a

new distribution of particles results. Then, during the next time step ∆t, the

particles emerging from the collision move to a new lattice site, according to

their new speed. Therefore, the dynamics of a LB model is the alternation

of collision and propagation phases.

This is illustrated in fig. 1, for the D2Q9 lattice topology. In accordance
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with fig. 1, the collision-propagation dynamics can be written as

fi(r + ∆tvi, t + ∆t) = fi(r, t) + Ωi (f(r, t)) (3)

where Ω is a model specific function describing the outcome of the particle

collision (when subscript i is omitted, Ω denotes the (z + 1)-dimensional

vector with Ωi as components).

Although several forms for Ω exist, the so-called single relaxation time

model (also termed Lattice BGK model (LBGK) for its correspondence with

the BGK form of the continuous Boltzmann equation [Bhatnager et al.,

1954]) is still the most popular collision term. It reads

fi(r + ∆tvi, t + ∆t) = fi(r, t) +
1
τ

(feq
i − fi) (4)

where feq is called the local equilibrium distribution: it is a given function

which depends on the phenomena that we want to model (note that when

we refer to all fi or all feq
i , we drop the subscript i). The quantity τ is the

so-called relaxation time. It is a parameter of the model which is actually

related to the viscosity of the fluid (see below).

In eq. (4) the local equilibrium distribution feq depends on space and

time only through the conserved quantities. In a hydrodynamic process,

where both mass and momentum are conserved, feq will then be a function

of ρ and u.

Thus, in eq. (4), to compute fi(r+∆tvi, t+∆t) from the fi(r, t) one first

has to compute ρ =
∑

fi and u = (1/ρ)
∑

fivi before computing feq
i (ρ,u).
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Afterwards fi can be updated.

It is beyond the scope of this article to show the equivalence between

the LB model and the differential equations representing the correspond-

ing physical phenomena. This derivation requires rather heavy mathe-

matical calculations and can be found in several textbooks. See for in-

stance [Chopard and Droz, 1998, Chopard et al., 2002, Lätt, 2007] for a

derivation based on the so-called multiscale Chapman-Enskog formalism.

Or, see [Junk et al., 2005] for a derivation based on asymptotic expansions.

Here we will simply give the important results, without demonstration.

A central ingredient of LB models is to properly enforce the physical

conservation laws in the collision term. Hydrodynamics is characterized

by mass and momentum conservation which, in the differential equation

language, are expressed by the continuity and Navier-Stokes equations.

Conservation laws impose conditions on feq
i when a LBGK model is

considered. In order to have
∑

i fi(r + ∆tvi, t + ∆t) =
∑

i fi(r, t) (mass

conservation) and
∑

i vifi(r+∆tvi, t+∆t) =
∑

i vifi(r, t) (momentum con-

servation), feq
i must satisfy

∑

i

feq
i =

∑

i

fi = ρ
∑

i

vif
eq
i =

∑

i

vifi = ρu (5)

In addition, in order to recover a hydrodynamic behavior, one imposes that

Πeq
αβ, the second moment of feq, which is the non-dissipative part of the
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momentum tensor, has the standard Euler form

Πeq
αβ =

∑

i

feq
i viαviβ = pδαβ + ρuαuβ (6)

where p is the pressure.

Using the properties of the velocity vectors vi, it can be shown (see [Chopard

and Droz, 1998, Wolf-Gladrow, 2000, Succi, 2001]) that the following expres-

sion for feq satisfies the conservation laws (5)

feq
i = feq

i (ρ,u) = ρwi(1 +
viαuα

c2
s

+
1

2c4
s

Qiαβuαuβ) (7)

where the Qi’s are tensors whose spatial components are

Qiαβ = viαviβ − c2
sδαβ (8)

and wi are weights which depend on the lattice topology. For a D2Q9 model,

and the numbering given in (1), w0 = 4/9, w1,3,5,7 = 1/9 and w2,4,6,8 =

1/36. Note that in eq. (7) as in what follows, we use Einstein summation

convention over repeated Greek indices.

We can also show that the second moment of eq. (7) gives the correct

expression for the Euler momentum tensor (6), provided that the pressure

is related to the density ρ through an ideal gas relation

p = ρc2
s

where cs is the speed of sound, whose value is related to the lattice topology.

For D2Q9, c2
s = 1/3.
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From the above result we conclude that the pressure is directly obtained

from the numerical scheme, without having to solve a Poisson equation, as

it is usually the case when solving Navier-Stokes equations. LB models are

slightly compressible models.

Using expression (7) for feq, the behavior of the LB model (4) can be ana-

lyzed mathematically with, for instance a Chapman-Enskog method [Chopard

and Droz, 1998, Chopard et al., 2002, Lätt, 2007]. Several important results

are obtained. It is found that, to order ∆t2 and ∆x2, and for small Mach

number (u ¿ cs), the LB dynamics implies that ρ and u obey the continuity

equation

∂tρ + ∂αρuα = 0 (9)

and the Navier-Stokes equation

∂tu + (u · ∇)u = −1
ρ
∇p + ν∇2u (10)

with a kinematic viscosity ν depending on the relaxation time τ as

ν = c2
s∆t(τ − 1/2)

Finally, in the hydrodynamic regime, it is possible to obtain the expres-

sion of f in terms of the hydrodynamic quantities. We write the density

distributions fi as

fi = feq
i + fneq

i assuming fneq
i ¿ feq

i

where feq
i , by its definition (7) is already a function of ρ and u.
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The Chapman-Enskog expansion then gives (see for instance [Chopard

et al., 2002, Lätt, 2007])

fneq
i = −∆tτ

wi

c2
s

ρQiαβ∂αuβ = −∆tτ
wi

c2
s

ρQiαβSαβ (11)

where Sαβ = (1/2)(∂αuβ − ∂βuα) is the strain rate tensor. As we can see

from this relation, the derivatives of u are part of the LB variables.

Note finally that an external force F (usually called body force) can

be added to eq. (4). When F is constant with respect to space and time

variations, the new dynamics reads

fi(r + ∆tvi, t + ∆t) = fi(r, t) +
1
τ

(feq
i − fi) +

∆t

v2
vi · F (12)

Note that for non-constant body forces, several ways have been proposed in

the literature to modify eq. (4). A popular methods is described in [Guo

et al., 2002]. However, in the present work we shall still use (12), knowing

that we may thus introduce slight deviation to the Navier-Stokes behavior

when F = F(r, t).

2.2 The bi-fluid open-air canal model

2.2.1 The Shan-Chen Model

In this work, we are interested to simulate the flow of water in a canal.

We have chosen to consider a two-fluid LB model to describe the water+air

system and to model a free surface flow. Recently, free surface LB models

which do not require the explicit simulation of the gas phase have been
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proposed [Ginzburg and Steiner, 2003, Ginzburg, 2005, Koerner et al., 2005,

Xing et al., 2007, Ginzburg, 2007, Thürey and Rüde, 2009]. We plan to

consider them in a subsequent analysis but here we fully simulate the water

and the air above it.

Our two-fluid model is based on the Shan-Chen model for immiscible

fluids [Shan and Chen, 1993]. It is a LB model in which each fluid component

obeys a LB dynamics, as detailed in the previous section. A coupling is

introduced between the two fluids, in terms of a local repulsive force, in

order to create an interface between water and air.

In this model, each lattice cell contains two types of populations, denoted

Ri(r, t) and Bi(r, t), describing the often called “red” and “blue” fluids,

respectively. The density of each fluid is calculated separately from the

corresponding distribution functions (see [Martys and Chen, 1996, Shan and

Chen, 1993, 1994]):

ρR(r, t) =
z∑

i=0

Ri(r, t) (13)

ρB(r, t) =
z∑

i=0

Bi(r, t) (14)

(15)

The calculation of the total momentum at each location, however, has to

take into account the momentum of each of the two components [Martys

and Chen, 1996] :

u · (ρR

τR
+

ρB

τB
) =

jR

τR
+

jB

τB
=

1
τR

·
z∑

i=0

viRi(r, t) +
1
τB

·
z∑

i=0

viBi(r, t) (16)
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where τR and τB are the relaxation times of species R and B, respectively.

An interaction force is introduced between the particles of different kind

to mimic their mutual repulsion. The result is the existence of a surface

tension between the two fluids. This interaction force is supposed to occur

only within the nearest neighbors, and can be expressed as follows :

FR(r) = −ψR(r)GRB

z∑

i=0

ψB(r + ∆tvi)vi (17)

FB(r) = −ψB(r)GRB

z∑

i=0

ψR(r + ∆tvi)vi (18)

Here ψσ for σ = R, B denotes the function of the local density ψ(ρσ(r))

and GRB < 0 defines the amplitude of the interaction potential. These two

expressions are then introduced in the LB dynamics as a body force, as

shown in eq. (12).

2.2.2 The canal model

Our canal model has been described in previous works (see [Marcou et al.,

2006] and [Marcou et al., 2007]). Here we briefly recall the main ingredients.

Our model describes the water flow in an open-air channel. For the sake

of simplicity, we consider a vertical cut aligned along the canal axis. There-

fore a 2D free surface model is enough to capture the vertical component of

the velocity field.

Starting from a D2Q9 Shan-Chen model, we assume that the red fluid

represents the water and the blue fluid the air. In order to make the water
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more heavy than the air and to produce an hydrostatic pressure p(z) =

p0 − gz in the water, we add a gravity term as an extra body force

F = (0,−gρ)

to the LB equation. Note however that this gravity acts only on the water

component and ensures that the water remains at the bottom of the pool

and the air fluid at the top. As shown in (12) this method produces the

expected linear hydrostatic pressure field all over the water layer. Note also

that we run our simulation at low Mach number.

The interface between the two phases is usually several lattice sites large.

The surface of water is defined at the point at which the densities of the two

fluids are equal.

Finally note that our current model does not implement a subgrid model.

This can be easily added in a LB model and this addition will be considered

in a future development.

2.2.3 Boundaries

The second specificity of our model compared to the original Shan-Chen

model is the choice of the boundary conditions. We typically want to model

one or more adjacent canal sections (reaches), as well as an upstream inlet

and a downstream outlet of water. In addition to these inlet and outlet

boundaries, we have to define solid walls that prevent flow motion and a so-

called “atmosphere” upper boundary for the air component. For illustration,
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a diagram of a lattice for a two-reach system is shown in Fig. 2. Inlet and

outlet lattice sites are termed external gates in this figure.

For modelling the walls and the floor, we simply consider the so-called

bounce-back boundary condition. It has the main advantage of conserving

the mass, even with a hydrostatic pressure gradient at the wall. This is not

the case of other, more accurate boundary conditions. See [Marcou et al.,

2006, 2007] for a detailed discussion. The bounce-back consists in skipping

the ordinary BGK collision and setting the value of each outgoing distribu-

tion function at the value of the opposite incoming distribution function.

Atmosphere is modelled by imposing a fixed density to the air at any

atmosphere site, and imposing a zero density to the water. Note that if water

particles would be present on an atmosphere site, it would then disappear,

thus modelling an evaporation process.

Inlet and outlet gates may be modelled with a boundary condition that

imposes a desired water discharge Qup and Qdown at the upstream and down-

stream boundaries.

In many practical situations, the value of the discharge Q at the inlet and

outlet gates is not known a priori. Instead, we know the water heights before

the gate (for the upstream inlet), or after the gate (for the downstream one).

A constitutive equation relating the drop of water level at the gate and the

value of Q must then be used. Such a constitutive equation can be the
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Figure 2: LB computational domain for two open-air canal reaches, with

illustration of the different kinds of lattice sites.

well-known gate-equation

Q = αBO
√

2g
√

hup − hdown (19)

where α is a gate specific coefficient, O its opening and B is the channel

width. For an upstream gate, hup would denote the water level before the

gate (given as a boundary condition) and hdown would be the actual water

height just after the gate (given by the numerical simulation).

2.2.4 Parameters choice

As we saw in the previous sections, the model includes some parameters

whose values must be set. These parameters are the time and space steps

∆t and ∆x, the two fluids relaxation times τR and τB, the gravity g, the

fluids interaction potential GRB and the form of the interaction function

ψσ. In the following simulations, we did not seek a quantitative and accu-
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rate correspondence between the simulation results and a well-defined real

system, but rather a simple qualitative correspondence between the simu-

lated and experimental results. Indeed, the bi-fluid method we use imposes

an artificially large surface tension on the interface between air and water

and does not allow us to have the correct density ratio between air and

water. These constraints limit the possibilities of calibrating the model so

as to make it an accurate simulation of a real water-air free-surface system.

Thus, our setting of parameter values is mostly based on numerical stability

considerations. Table 1 lists the values of the parameters we used in our

simulations.

The choice of the plain Shan-Chen model to simulate open channel flow

has been made here mostly for its simplicity and because it implements the

phase separation in a physically sound way. It has allowed us to explore the

potential of the two-fluid LB approach to provide a new numerical model for

irrigation canals. The limitation indicated above needs to be overcome in

order to have quantitative predictions that can be applied in real problems.

In what follows we have tried to validate our approach by reproducing some

behavioral laws rather than detailed features of a given situation. We expect

that these behavioral rules (observed when a real canal traverses a gate)

reflect the fundamental conservation laws of the systems and, thus, will also

be valid when the model parameters are not tuned to their real values. The

result shown below in this paper seems to confirm this point of view.
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Other free-surface LB models have been recently proposed in the liter-

ature [Ginzburg and Steiner, 2003, Koerner et al., 2005, Xing et al., 2007,

Thürey and Rüde, 2009]. The next step is obviously to substitute the cur-

rent Shan-Chen model with one of them. This is our goal in a forthcoming

study. However, it has been noticed by several researchers (including us)

that the models of refs. [Ginzburg and Steiner, 2003, Koerner et al., 2005]

are not easy to re-implement.

3 Model Validation

In the shallow water equations, the vertical scale (i.e. typically the flow

depth) is assumed to be much smaller than the horizontal scale. The mo-

mentum equation along the vertical direction is then simplified to give the

hydrostatic pressure distribution. Although it is still possible to recover ap-

proximately the vertical component of the velocity field with this assumption

(see [Bates et al., 2005], chapter 10), the most common use of shallow water

models neglects the information on the vertical structure of the velocity field.

Indeed, near the gates or in the presence of sedimentation phenomena, as-

suming that the entire column of water moves at the same speed is certainly

not satisfying to describe locally the water flow in a canal with some accu-

racy. Another approach exists (see [Stansby and Zhou, 1998]) which incor-

porates non-hydrostatic pressure distribution in the shallow-water equations

and solves the flow field in a 2D vertical plane.
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The free surface LB model we developed also allows a complete descrip-

tion of the vertical component of the velocity field. Thus, it allows us for

example to simulate in detail the effect of a gate on the flow. It also allows

to model the transport, deposition and erosion of sediments whose deposit

clearly has a vertical structure (bumps and lows) which is related to the

vertical components of the flow.

Our modelling strategy is thus to use a free surface flow model which

takes into account the vertical movement of water when obstacles are present.

Such a detailed model can then be coupled with the classical shallow wa-

ter model in regions where geometry is compatible with the hypothesis of

a uniform velocity field in the z direction. Such an approach is typical of

multi-scale modelling, for which some parts of the system have to be de-

scribed with more detailed numerical models.

In this paper, we focus on the flow behavior near a submerged gate in

order to validate our free surface LB model. We expect the gate to influence

the discharge in function of its geometry and opening.

Since we do not have analytical results on the velocity field around the

gate, our validation is based on a comparison between the numerical sim-

ulations of the LB model and experiments realized with the micro-canal of

the Laboratoire de Conception et d’Intégration des Systèmes (LCIS, Greno-

ble Institute of Technology). The latter allows us to realize water levels

and discharge measurements in reaches separated by gates whose opening is
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adjustable either manually or according to an automatic control system.

In our experiments, we mainly consider the relationship which exists

between the water levels before and after the gate (hup and hdown) and Q,

the resulting discharge. Our observations, both on the micro-canal and on

numerical simulations, indicate that this relationship depends on the flow

regime.

In a regime where a stationary flow is established, the observed behavior

is that of eq.(19).

On the other hand, if we consider a transient regime where there is no

permanent flow, the observed relationship changes. Practically, when we

run a draining experiment (considering two pools connected to each other

so that one of them is emptying into the other one), we observe that

Q = βO(hup − hdown) (20)

As far as we know, this linear relationship is not acknowledged by the open

channel community, although it has to be noticed that non parabolic behav-

ior may de derived from eq.(19) if the gate parameter is varying with the

gate opening O and the head differential hup − hdown. This dependance has

been proved and investigated in [Lozano et al., 2009] for a similar geometry

of the sluice gate but different flow regimes.

In this paper we describe experimental and simulation results in these

two regimes. Our experimental data show that these two regimes are ac-

tually well differentiated and that the numerical model captures them cor-
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rectly.

3.1 Presentation of the Experimental Micro-Channel

Experimental results which are presented in this paper and compared to

the LB simulation data were obtained with the experimental micro-channel

located at the LCIS laboratory in Valence, France (http://lcis.grenoble-

inp.fr/).

The micro channel is a completely instrumented platform used to repro-

duce the flows in irrigation canals on a reduced scale. It is illustrated in

Fig. 3. The channel length is seven meters and it is supported by a metal

lattice girder. The channel part is connected to an upstream tank which

acts as source and whose level is maintained constant, a downstream tank

and an intermediate tank which is used as tank of storage. The slope of the

channel can be modified thanks to a mechanical jack as shown in Fig. 3. The

channel has three gates; upstream, downstream and a third in the center

makes it possible to experiment the case of interconnected reaches. These

gates are actuated by DC motors. They are rectangular sluice gates with

sharp edges of about 0.5 centimeter thick. They may be considered rigid

and sliding perpendicularly to the flow. All the reach width is left free for

the flow. It may be noticed that the geometry of the gates is similar to the

ones studied in [Lozano et al., 2009] where a complete study of the con-

ventional discharge equation is performed. In this work the dependance of
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the discharge coefficient with the gate opening and the head differential are

proved. This dependance may lead to apparently non parabolic relations

between the discharge and the head differential depending on the operating

conditions. This is indeed the case for the experiments presented in the

sequel. Similar considerations apply for the final downstream weir (outfall)

which is also realized with a 0.5 centimeter thick piece of plexiglass with

sharp edge fixed perpendicularly to the flow.

Figure 3: Experimental Micro-Channel

Ultrasonic sensors return a voltage ranging 0-10 Volts which gives an

image of the height of water levels in the places where they are placed.

A proportional valve and a pump are used respectively to ensure a con-

stant water level at downstream and upstream tanks of canal. They are

controlled by Crouzet automata of the type Millenium II. By mean of a
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Figure 4: Sight of the experimental Micro-Channel

dSPACE electronic card, all the data from the sensors are recorded on a

computer in order to be analyzed. In turn the computer, using the same

device, can control the actuators of the micro channel. The parameters of

the micro-channel are given in Table 2). A picture of the experimental plant

may be viewed on (Fig.4)

3.2 Draining experiment

3.2.1 Description and theory

The purpose of this experiment is to study the discharge Q at the gate in

the situation depicted in Fig. 5. The left pool is initially filled with a water

level hinit larger than in the right pool, whose water level hdown is kept

almost constant thanks to the outfall. When the gate separating the two

pools is open at time t = 0, the water flow from the left container to the
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Figure 5: Draining experiment - Diagram of the experiment. Two pools are

connected with each other. At the beginning of the experiment, the gate

between them is opened to produce a 6 mm clearance. In the downstream

pool, the presence of an outfall (6 cm high) ensures that the variations of

the downstream pool water level are small.

right one. In both the experiment and the numerical simulation, we measure

the water level h(t) in the upstream pool. We assume that the water level

is uniform in each pool: h(x, t) = h(t). This approximation is acceptable

if the flow is small enough and the length of the pool short enough. We

have checked that this assumption is valid on the micro-canal with a pool

of length 1.75 m and the typical magnitude of the discharge Q we used.

On the numerical simulations, we have also checked that the water level is

essentially horizontal within our parameters range.

Clearly, the behavior of h(t), as a function of time, depends on the

discharge Q(t) at the gate. We can compute an analytical expression for h(t)

under the assumption that either equations (19) or (20) holds. By comparing

these analytical expressions of h(t) with experimental data, we will be able

to decide which gate equation is correct for this particular experiment.
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Along with the hypothesis of negligible variations for the downstream

water level, the standard gate equation (19) yields the following analytical

expression for the evolution of the water level :

Q = −BLḣ(t) (mass conservation in the pool) (21)

Q = BαO
√

2g(h(t)− hdown) (classical gate equation) (22)

where L is the length of the pool. The dynamics of the water level is then

described by

ḣ(t) = a
√

h(t)− hdown, a =
−α ·O√2g

L
(23)

For 0 ≤ t ≤ 2b/a, the solution is

h(t) = hdown +
(
−a

2
· t + b

)2

(24)

Thus, the analytic solution for the water level in this experiment is a parabola.

It is obvious that this equation is only valid until an instant tmax = 2b/a

where both water levels become equal, after what h(t) stops its decrease and

remains constant (in real systems, however, hdown is not absolutely constant,

which rules out such an unphysical termination condition).

We can now perform the same calculation using gate equation (20). We

obtain the following equation for h(t)

ḣ(t) = −γ(h(t)− hdown), γ = βOL > 0 (25)

and the solution is (valid for all times t)

h(t) = hdown + (h(0)− hdown)e−βt (26)
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Therefore with the linear gate equation, h(t) has an exponential behavior

instead of a parabolic one.

3.2.2 Experimental observations

Fig. 6 shows the results of one experiment, done on the micro-canal. This

result is representative of several of the experiments we conducted. On

the left panel, we clearly see the fast decrease of the water height in the

left pool (blue curve) and we also observed the slight increase of the level

in the right pool, which shows that our approximation which consists in

considering hdown constant, may not be good enough. We will come back to

this problem at the end of this section.

On the right panel of Fig. 6, the relationship between ḣ(t) and the dif-

ference of water levels around the gate ∆h is shown. The quantity ḣ(t) is

computed by a numerical differentiation of h(t), after smoothing but it is

still very noisy. Due to this noise, which is difficult to filter out (some slightly

better results could be obtained with the method described in [Chartrand,

2005]), it is hard to decide between the linear or quadratic gate relation,

based on this graph.

As a better check, less sensitive to noise, we compare in Fig. 7 the

smoothed value of h(t) with the parabolic fit (right) and the exponential

fit (left). Although visually very similar, we can see from the error of the fit

that the exponential function corresponds better to the experimental data
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Figure 6: Draining experiment - Left : raw water levels. The blue curve is

the water level in the upstream pool. The green curve is the water level in

the downstream pool. The red curve is the water level in a reservoir located

upstream of the upstream pool, which is used to initialize the water level

in the upstream pool before the experiment. Right : dependency between

ḣ(t) and ∆h. Here ∆h is computed from the actual values of hup and hdown.

Since ḣ(t) is proportional to the discharge, this curve shows the relationship

between the discharge and the difference of water levels. We have superim-

posed to the numerical derivative of h(t) the fits obtained assuming either

the linear gate equation (straight line) or the standard gate equation (curved

line). Due to the numerical noise on ḣ(t), it is hard to discriminate the two

behaviors.
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than the parabolic function. The same observation is found when repeating

the experiment several times. This suggests that the classical gate equation

does not apply perfectly in this case.

Another test to check whether the classical gate equation is obeyed or

not is to compare the value of gate coefficient α obtained from the parabolic

fit with its reference value αref known for the micro-canal. From (23) we

have

α = − aL

O
√

2g
(27)

We calculated α for several draining experiments, including those where the

parabolic fit seemed better. We found values of α which range between 0.2

and 0.3. In previous works done on the micro-canal [Chaussinand, 2003], the

gate coefficient αref of the micro-canal was generally found to have values

between 0.6 and 0.7. This reference values have been obtained from station-

ary flow experiments for which we know that the gate operates accordingly

to the classical gate equation and by varying the gate opening in the 1-7 cm

range, close to the 0.6 cm opening used in the draining experiment.

It suggests that even if we assume that the gate obeys the classical

equation, the coefficient α we measure is not right. Note that according

to [Lozano et al., 2009], we may expect a variation of α as the gate opening

changes. However, the data reported in [Lozano et al., 2009] and the steady-

state calibration of our micro-canal tends to exclude the large variation of

α we measure here.
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Figure 7: Draining experiment - Left : exponential fit of the experimental

water level in the upstream pool. Right : parabolic fit. For both figures, the

blue, continuous lines represent the experimental data, while the red circles

represent the fit. Relative error with parabolic fit : 0.0147 ; relative error

with exponential fit : 0.0059. Gate coefficient calculated from the parabolic

fit coefficient : αnum = 0.3057
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3.2.3 Numerical simulations

Similar tests were done using LB simulations. The simulated system consists

in three pools. The first pool (the upstream pool) is the pool whose water

is drained during the simulation. The water of this first pool flows to the

second one (the downstream pool) through an internal gate.

In turn, the downstream pool communicates with a third pool (the evac-

uation pool) through an outfall which evacuates excess water from the down-

stream pool. This third pool contains a number of lattice sites with a specific

boundary condition that absorb the water that reach them. The water levels

in the upstream and downstream pools are recorded during the simulation,

as well as the discharge Q at the gate.

Results for these simulations are shown in Fig. 8 (water level evolution

and relation between ḣ(t) and ∆h = h(t) − hdown) and Fig. 9 (exponential

and parabolic fits). The case shown in these figures exhibit an exponential

behavior for the evolution of the water level. We can see that there are

small variations of the downstream water level, but not very important.

The discharge is approximately linear according to the water level difference.

The exponential fit is clearly better than the parabolic one. The simulation

shown on these figures was done with a 1000×100 lattice. Note that we have

also considered simulations on a 2000 × 200 lattice. The results obtained

confirm that the exponential fit is better than the parabolic one: on the

larger lattice, the error on the exponential fit decreases by 4 compared to
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the smaller one, whereas the error on the parabolic fit slightly increases.

Thus the conclusions from the LB simulations are approximately the

same as those from the experiments on the micro canal: during the draining,

the classical gate equation does not seem to apply.

3.2.4 Non-constant hdown

Now, as suggested before, we will reconsider our assumption that the water

level hdown is constant during the draining experiment. Fig. 6 clearly shows

that the downstream pool level actually varies strongly at the beginning of

the experiment and less afterwards.

Our neglecting of this variation of hdown(t) could explain why we did do

not obtain the correct α value from that parabolic fit.

Below we show the calculations that take into account these variations

∆hd of the water level in the downstream reach (still assuming that this

water level is uniform in the reach). These calculations are based on the

mass balance in the two reaches and on the classical gate equations for,

respectively, the underflow gate between the two reaches and the outfall of

the downstream reach. Thus we have hdown = houtfall + ∆hd, where houtfall

is the height of the weir. The discharge Qw over the outfall is assumed to

be given by the standard constitutive equation [Graf, 1993]

Qw = βB
√

2g(∆hd)3/2 (28)
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Figure 8: Draining experiment - LB Simulation on a 1000×100 lattice. Up :

evolution of the water level for both the upstream and the downstream pools.

Down : dependency between discharge and ∆h. As in the experimental case,

the dependency is linear.
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Figure 9: Draining experiment - LB Simulation on a 1000×100 lattice. Left :

exponential fit of the simulated water level in the upstream pool. Right :

parabolic fit. The blue, continuous lines represent the simulation data, while

the red circles represent the fit. Error with parabolic fit : 0.0071; Error with

exponential fit : 0.0041. The exponential fits the simulation data better.

Simulations performed on a 2000× 200 lattice give an error of 0.001 for the

exponential fit and 0.0086 for the parabolic fit. This provides even stronger

support for the validity of the linear gate equation over the quadratic equa-

tion.
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Therefore, the discharge Qg at the underflow gate is now

Qg = αBO
√

2g
√

hup − (houtfall + ∆hd) (29)

and the mass balance equations read

BL1ḣup = −Qg (30)

BL2
˙(∆hd) = Qg −Qw (31)

The quantities hup, L1 are the water level and the length of the main reach

and L2 is the length of the downstream reach. hup and hdown both vary

during the experiment while houtfall is a constant.

After some algebra, we obtain the following equations :

ḣup = −O
α
√

2g

L1

√
hup − (houtfall + ∆hd) (32)

˙(∆hd) =
α
√

2g

L2

(
Oα

√
hup − (houtfall + ∆hd)− β(∆hd)3/2

)
(33)

These equations do not provide a direct analytical expression for the water

levels. However, we can obtain the corresponding theoretical evolution for

the water levels numerically, after obtaining the α and β coefficients via the

Newton-Raphson optimization method.

After applying this new fitting method to the micro-canal experiment

whose results were showed in Figs. 6 and 7, we obtain the values 0.2731 and

0.3276 for respectively α and β. Thus, the value for α is very similar to

the one we found with the less accurate parabolic fit. An example of the fit

realized using these more accurate equations is shown in Fig 10.
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Figure 10: Draining experiment - Fit realized on the same experimental data

as those shown on Fig. 6 and 7 by using equations 32 and 33. The values of

the coefficients α and β are 0.2731 and 0.3276. The average relative error is

0.0142, which is very close to the value 0.0147 of the relative error for the

ordinary parabolic fit.
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Note that we could have repeated the same calculation also with the lin-

ear gate equation. However, since the above result shows that the variation

∆hd of the water level in the downstream pool has a negligible effect on the

fit, we do not expect that the quality of the exponential fit will change in a

relevant way.

We can thus conclude that during the draining experiment, the linear

gate equation applies better than the quadratic one, whether or not we take

into account the variation of hdown. The LB model we proposed recovers this

observed experimental behavior. As it will be shown in the next section, this

LB model also recovers the classical gate equation when the usual stationary

flow conditions are considered.

3.3 Validation of the classical gate equation in a stationary

experiment.

Let us consider the situation described in Fig. 11. A main pool is separated

from an upstream and a downstream reach by two gates, whose openings

are Oup and Odown, respectively. We assume that the water level hpool in

the central pool is uniform and that the α coefficients of both gates are the

same. Then, using the classical gate equation (19), the expressions for the

discharge Qup at the left gate and Qdown at right one are as follows :

Qup = αOup

√
2g

√
hup − hpool (34)

Qdown = αOdown

√
2g

√
hpool − hdown (35)
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Figure 11: Diagram of the stationary experiment. We consider the equi-

librium water level in a reach, as a function of the water levels of the two

connected reaches and of the gate openings.

where hup and hdown denote the water level in the leftmost and rightmost

pools.

If hup and hdown are maintained constant, the system eventually reaches

a steady state (that we call here “equilibrium”), in which the discharge at

both upstream and downstream gates are equal. This equilibrium condition

Qup = Qdown leads to the following equation :

Oup

√
hup − hpool = Odown

√
hpool − hdown (36)

Thus, we obtain the following value for the equilibrium water level hpool in

central reach, as a function of the gates openings and water levels in the
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upstream and downstream reaches :

Q ∝ O
√

∆h =⇒ hpool =
O2

uphup + O2
downhdown

O2
up + O2

down

(37)

We can also derive a similar relation assuming that the discharge at the

gate obeys the linear relation (20). From

Qup = βOup(hup − hpool) = Qdown = βO(hpool − hdown) (38)

we conclude that the equilibrium value of hpool should obey (if the linear

relation applies)

Q ∝ O∆h =⇒ hpool =
Ouphup + Odownhdown

Oup + Odown
(39)

We will now verify from the micro-canal experiments which one of the

formula (37) or (39) best fits the observed water level hpool. We note that

for both of these formula, the gate coefficient do not play a role as long as

both gates are identical.

The experimental setting reproduces the situation of Fig. 11. Note that

• the water level hup in the upstream reach is externally controlled to

remain constant

• the water level hdown in the rightmost reach is fixed due to an outfall

• the equilibrium water level hpool in the main reach is recorded

• the gate openings Oup and Odown can be adjusted to different values,

thus producing different values of the equilibrium water level hpool.
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Figure 12: Diagram of the stationary experiment on the micro-canal. The

small-sized studied reach in this experiment is the one between gates 2 and

3. Only three of the five available sensors are used during this experiment.

A first series of experiments was done on the entire micro-canal, with sensors

recording the equilibrium water level at several points of the main reach.

However, we observed that the hypothesis of uniformity of the water level

which must be verified for our experiment was not satisfied in this case.

Thus, further tests were done on a smaller reach where the water level can

be considered almost uniform (see Fig 12).

Fig. 13 shows the results obtained for one of these stationary experi-

ments. In this particular set of tests, we fixed Odown, while varying Oup,

the opening of the upstream gate. In this figure, the experimental data of

a sensor giving the water level at the middle of the reach as a function of

the upstream gate opening are shown (+ marks). They are compared with

the theoretical values for h computed from equations (37) and (39). The

dashed line assumes the classical gate equation and the dotted line assumes

the gate linear equation.
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We observe that the best fit of the experimental data is clearly obtained

for the classical gate equation (square root dependency between the dis-

charge and the water level difference). It means that the classical gate

equation is obeyed when the canal operates in a stationary regime.

In order to reproduce these micro-canal experiment with LB simulations

we had to consider a system with three reaches and four gates. The two

gates at the far ends of the computational domain are inlet and outlet gates.

They impose given flow conditions, as explained in section 2.2.3: we assume

fixed water heights in the non-simulated canal reaches, just before the inlet

gate and just after the outlet gate, respectively. This procedure allows us

to mimic the natural functionning of reals channels and the experimental

setting.

If, for instance, a constant discharge was used instead, it could cause

some numerical problems. Indeed, in some situations, the water level in the

upstream simulated reach could increase beyond the top of the lattice (for

example if the upstream internal gate has a very small opening or is closed)

before the rest of the system adjusts itself so that the imposed discharge is

realized.

On the other hand, the two ”internal” gates are simply modelled as holes

placed at the bottom of the vertical wall separating the pools. The height of

the hole defines the opening of the gate. No additional modelling feature is

required. Note that we proceed similarly to build the gate for the draining

44



experiment, in the previous section.

The water level in the reach located between the two internal gates is

studied. We observe the variations of the equilibrium water level according

to the changes in the parameters values (that is, in our case, the changes of

the opening of the internal gate located at the upstream end of the observed

reach).

In all our simulations, the same parameter values were used for the water

levels outside the system and for the gate openings, except for the upstream

internal gate, whose value was different for each simulation. This allowed us

to obtain the relation between the equilibrium water level and the upstream

gate opening. The plot is shown in Fig. 14.

We can see that the theoretical curve corresponding to the classical gate

equation seems to fit better the simulation data than the curve based on the

linear gate equation, as in the case of the micro-canal experiment.

The conclusion of this section and the previous one is that the gate equa-

tion depends on the flow regime and that the LB simulations reproduce this

subtle effect. To better understand the distinction between the two regimes

(steady flow through the gates or draining experiment), the flow pattern can

be compared in the numerical approach. Figs. 15 and 16 show a snapshot

of the velocity field as encountered in LB simulations for the two cases. We

clearly observe a qualitative difference between the flow patterns. In the

steady state case, we observe swirls that are absent in the draining process.
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Figure 13: Verification of the theoretical formulas determining the equilib-

rium water level, in the case of a short reach for the experimental micro-

channel. The equilibrium water level was measured for several experiments.

For each experiment, the opening of the upstream gate was changed. The

water levels in each of the three reaches was then recorded. We compare in

this figure the recorded experimental equilibrium water level in the studied

reach and its theoretical value, calculated according to the gate equations

(37) and (39) using measurements for the gate openings and water levels for

the upstream and downstream reaches.
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Figure 14: Verification, with the LB model simulations, of the theoretical

formulas determining the equilibrium water level in stationary regime with

two open gates for the same conditions as used to collect experimental data.

The figure shows the simulated equilibrium water level in the studied reach

for several opening of the inner upstream gate. The theoretical curve corre-

sponding to the classical gate equation seems to fit better to the simulation

data. The upstream and downstream water levels in the non-simulated

reaches are respectively of 50 and 20 lattices sites.
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Figure 15: Velocity field for the draining LB simulation. The arrows repre-

sent the average speed in a 4× 4 block of cells.

Note that the standard gate equation is derived from the Bernoulli law in a

steady-state situation. We may thus expect a departure from the standard

gate equation in the draining experiment, as the stationary hypothesis is no

longer valid.

Of course, a first principle derivation would be interesting but, so far,

we have not been able to proposed a clear cut theoretical explanation of

this observed discrepancy with the standard gate equation. Note also that

it is known that the gate coefficients may depend on the hydraulic vari-

ables [Lozano et al., 2009], showing that the standard gate equation has to

be considered with care. Therefore, the discrimination is a difficult task.
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Figure 16: Velocity field for the stationary LB simulation. The arrows

represent the average speed in a 4× 4 block of cells. The Reynods number

for the opening is around unity. The flow is not turbulent but recirculation

zone are clearly visible and some quantitative similarity with the flow pattern

of [Lozano et al., 2009] are observed.
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4 Conclusion

In this paper, we discussed a two-fluids water-air LB model with grav-

ity forces producing a hydrostatic pressure field in the water component.

In [Marcou et al., 2007], we have shown that this model also reproduces

some important features of the shallow water equations, for instance the

correct non-uniform water level in a slanted canal with friction forces. Al-

though the equivalence with classical models is important, the relevance of

this approach is more clearly stated here since we study the water dynamics

around a gate, a situation in which, clearly, the classical use of the Saint-

Venant equations (in which the vertical component of the velocity field is

not considered) do not apply.

We have shown that the LB model retrieves by its own the global lumped-

parameter behavior of the classical gate equation from the local 2D descrip-

tion of the water dynamics in each lattice points. A still more convincing

proof of the relevance of this model has been established in the emptying

experiment where the classical gate equation does not explain the experi-

mental results and where a linear gate equation fit the data much better.

In this case the LB model provides results which perfectly agree with the

experimental data.

Therefore, the LB model proves to be a computationally interesting alter-

native to classical discretization schemes applied to the free-surface Navier-

Stokes equations. The LB dynamics is stated directly as a discrete collision-
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propagation model for idealized mesoscopic fluid particles and provides re-

sults which match the experimental ones in a satisfying way. Note also that

the scheme is local and does not require any global step (such as the solving

of a Poisson equation).

Moreover, as it will be shown in a forthcoming publication, only simple

adaptations are sufficient to introduce algae or sediments populations in

the LB model. The description of sedimentation, transport and erosion for

”solid” point particles can be done by local and rather intuitive transition

rules, as shown in [Dupuis and Chopard, 2002]. Preliminary simulations

show moving sediments profiles in qualitative agreement with those observed

experimentally in the micro-canal.

Another potential interest of our approach is to include water evapo-

ration. It can be handled easily with the LB model since it is basically a

water-air model in which we can adapt the water-air interaction forces to

obtain a natural description of the evaporation process.

Among the future prospects of this work we intend to focus on two

aspects.

The first direction concerns the multi-scale coupling of this model with

classical shallow water models where only (1D or 2D) horizontal compo-

nents of the velocity field are represented. Such ”horizontal” model could

be described with discretization of the classical Saint-Venant equations, or

with ”one-fluid” LB model which already exists [Zhou, 2004]. Multi-scale
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coupling in such a sense is indeed a prerequisite to handle control problems

for large scale and complex irrigation systems where it is not possible to

describe the whole system at the detailed scale.

The second direction is concerned with special control problems which

could need such 2D vertical and numerically effective models. The first

foreseen problem is the cleaning or control of sediments in water reaches,

specially around the gates. The control of algae growth, transport and

sedimentation could be also of some interest. We obviously will greatly

acknowledge any suggestion for additional problems where this modelling

methodology could be useful as well.

We thank the Swiss National Science Foundation for financial support

and the reviewers for their many corrections and useful suggestions which

greatly improved the quality of this paper.
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H. Ouarit, L. Lefèvre, and D. Georges (2003). Robust optimal control of one-

reach open-channels. In Proc. of European Control Conference ECC’2003,

Cambridge, United Kingdom.

V.T. Pham (2009). Modélisation et commande des systèmes non-linéaire
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Tables

Table 1: : Parameter values.

GRB -80.0

∆t 0.00015

∆x 0.0003

g 10.0

τR 1.0

τB 2.0

Table 2: Micro-channel parameters used for experiments

length L 7 meter

width B 0.1 meter

slope I 1.6× 10−3

Manning-Strickler coefficient K 97

upstream gate parameter α1 0.66

downstream gate parameter α2 0.73

downstream outfall height (Hdev) 0.05 meter
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