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ABSTRACT 

This paper demonstrates the capability of particle filters for sequentially improving the simulation and 

forecast of wildfire propagation as new fire front observations become available. Particle filters, also 

called Sequential Monte Carlo (SMC) methods, fit into the domain of inverse modeling procedures, 

where measurements are incorporated (assimilated) into a computational model so as to formulate 

some feedback information on the uncertain model state variables and/or parameters, through 

representations of their probability density functions (PDF). Based on a simple sampling importance 

distribution and resampling techniques, particle filters combine Monte Carlo samplings with 

sequential Bayesian filtering problems. This study compares the performance of the Sampling 

Importance Resampling (SIR) and of the Auxiliary Sampling Importance Resampling (ASIR) filters 

for the sequential estimation of a progress variable and of vegetation parameters of the Rate Of fire 

Spread (ROS) model, which are all treated as state variables. They are applied to a real-world case 

corresponding to a reduced-scale controlled grassland fire experiment for validation; results indicate 

that both the SIR and the ASIR filters are able to accurately track the observed fire fronts, with a 

moderate computational cost. Particle filters show, therefore, their good ability to predict the 

propagation of controlled fires and to significantly increase fire simulation accuracy. While still at an 

early stage of development, this data-driven strategy is quite promising for regional-scale wildfire 

spread forecasting. 

KEYWORDS: Inverse problem, Particle filters, Importance sampling, Wildfire spread. 
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NOMENCLATURE 

ASIR - Auxiliary Sampling Importance Resampling 

c – Progress variable (unit: dimensionless) 

c – Vector incorporating the distribution of the progress variable c for the grid points where 

Equation (2) is solved for each sample particle 

CPU – Central Processing Unit 

d – Cumulative sum of weights 

dw – Wind velocity direction (unit: °) 

EKF – Extended Kalman Filter 

f, h – Functions representing the evolution and observation models 

I99% - 99% - confidence interval 

MC - Monte Carlo 

Mf –  Fuel moisture content (unit: dimensionless) 

mw – Wind velocity magnitude (unit: m/s) 

N  – Number of particles  

n - Normal direction to the isolines of the progress variable c 

n - Number of control parameters  

P – Function modeling the rate of spread as a function of the local properties (unit: 1/s) 

p - Number of assimilated measurements 

PDF – Probability Density Function 

q - Importance probability density 

R – Random number following a normal distribution 

RMS - Root Mean Square 

ROS - Rate Of Spread 

SMC - Sequential Monte Carlo 

SIR - Sampling Importance Resampling 

SIS - Sequential Importance Sampling 

t – Time (unit: s) 
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u - Random number with uniform distribution 

uw – Wind velocity projected along the normal direction to the front (unit: m/s) 

v – Modeling uncertainty vector 

W – Observation error covariance matrix 

w – Particle weight 

x - State vector  

x̂ - Mean of the state vector posterior distribution 

x, y - Coordinates over the computational domain 

z - Predicted measurements (simulation of observable quantities) 

zobs – Measurements (provided by remote sensing) 

 

Greeks 

π(x|z) - Conditional probability density of x when z is given 

Γ – Rate of fire spread (unit: m/s) 

δ – Fuel layer thickness (unit: m) 

ε – Measurement uncertainty vector (unit: m) 

Σ – Fuel particle surface-to-volume ratio (unit: 1/m) 

σx - Error standard deviation of the state vector 

π - Probability density 

µ – Point estimate for transition PDF characterization 

 

Subscripts and Superscripts 

k – Time counter  

f – Fire front (index for the progress variable isoline cf = 0.5) 

i, j – Particle index 

o - Observations 
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1. INTRODUCTION 

Because wildfire spread is a complex multi-physics/multi-scale problem, our ability to predict 

their behavior at large regional scales (i.e., at scales ranging from a few tens of meters up to several 

kilometers) remains limited [1]. The propagation speed of wildfires, also called the Rate Of Spread 

(ROS), is modeled in current wildfire spread simulators as a semi-empirical function of a reduced 

number of parameters that locally characterize the vegetation properties, the weather conditions and 

the terrain topography [2,3]. In such simulators, the wildfire spread is described as a front propagating 

towards the unburnt vegetation (fuel) at the ROS that is relevant to the local conditions, using a 

standard level-set or Lagrangian front-tracking technique. The input model parameters are not easily 

measurable and are therefore embedded with significant levels of uncertainties. For the wildfire spread 

simulation to be predictive and compatible with operational applications, these uncertainties need to be 

quantified and reduced. For this purpose, an inverse modeling approach, based on particle filters for 

the solution of a state estimation problem, is proposed in this paper.  

State estimation problems consist in using the available measurements together with prior 

knowledge about the physical phenomena and the associated uncertainties, in order to sequentially 

produce more accurate estimates of the dynamic variables of interest. Such problems can be solved 

using the Bayesian filtering approach [4-8]. This methodology formally involves the Bayes’ theorem 

and aims at minimizing the amount of uncertainty in the quantities of interest, as new information 

become available. Recent progress made in airborne remote sensing provides new ways to monitor 

real-time fire front positions; Bayesian filtering appears as an efficient framework to formulate some 

feedback information on the fire dynamics and to produce improved forecasts of the wildfire 

propagation. 

The most widely known Bayesian filter method is the Kalman filter [4-7]. However, this filter is 

limited to linear models and Gaussian assumptions regarding the statistical description of errors. While 

extensions of the Kalman filter are widely used for less restrictive cases by using linearization 

techniques, particle filters have been specifically developed to deal with non-linear models and non-

Gaussian errors [8,9]. Particle filters were introduced in the 1950s with a Sequential Importance 

Sampling (SIS) technique, which used recursive Bayesian filters together with Monte Carlo (MC) 
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simulations. The key idea was to describe the Probability Density Functions (PDF) of the state 

variables as a set of random particles (prior); each particle was then associated with a weight that was 

calculated using the measurements along with their uncertainties; the values of the particles and their 

associated weights allowed a more accurate PDF (posterior) to be retrieved. To avoid the degeneracy 

problem (i.e., to avoid that only a few particles participate effectively in the filtering process), Gordon 

et al. [10] added a resampling approach into the SIS filter. Resampling can be either applied if the 

number of effective particles falls below a specified threshold number, or at every step in a technique 

known as the Sampling Importance Resampling (SIR) filter. A large number of recent studies have 

highlighted the performance of the SIR filter over a wide range of applications [11]. Despite these 

applications, the SIR filter remains computationally intensive, as a large number of particles is 

required to obtain a complete and accurate statistical description of the state variables. In order to 

overcome these difficulties, Pitt and Shephard [12] introduced the auxiliary particle filters, whose 

main idea was to improve the prior information by using an additional set of particles (called auxiliary 

particles), so as to reduce the computational cost without degrading the accuracy of the result. In this 

perspective, Silva et al. [13] applied the Auxiliary Sampling Importance Resampling (ASIR) filter to 

solve a non-linear solidification problem, where simulated temperature measurements were used to 

estimate a transient line heat sink as well as the solidification front. Colaço et al. [14] compared the 

performance of the SIR and ASIR filters in the estimation of the heat flux applied to a square cavity in 

a natural convection problem; this study showed excellent estimates for the time variation of the 

unknown quantity. Hamilton et al. [15] applied the SIR filter to estimate the heat transfer coefficient 

between the product gases and the walls of an internal combustion engine chamber. The algorithm was 

able to recover the unknown function with small Central Processing Unit (CPU) times, even for very 

high uncertainties in the initial state. It was also demonstrated that the variance of the error between 

the mean solution and its true value decreases with the number of particles used in the filter. In other 

works, the sequential propagation of modeling errors was also studied to improve the choice of the 

particles at the next observation time (i.e., at the next assimilation cycle), in particular in the case of 

combined parameter-state estimation [8,16].  
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The application of inverse methods in the context of fire modeling has been considered only 

recently [17-20]. Gu [18] applied the SIR algorithm to synthetic cases of wildfire spread, in order to 

estimate average wind magnitude or wind direction of a semi-empirical model in the fire area using 

ground-based temperature sensor data. More recently, Rochoux et al. [19] demonstrated the 

applicability and performance of an Extended Kalman filter (EKF) algorithm for estimating input 

parameters of a Rothermel-based ROS model [2] using reconstructed measurements of the fire front 

locations in a real controlled fire experiment and a level-set front-tracking simulator called FIREFLY. 

Unfortunately, the predictions obtained with the EKF are believed to be of limited value for more 

realistic cases, like those involving regional-scale fires strongly coupled to atmospheric dynamics, 

with heterogeneous vegetation properties as well as non-constant wind velocity that enhance non-

linearities between environmental conditions and the fire propagation. A recent work by Xue et al [20] 

presented the application of the SIR algorithm of the particle filter for the prediction of wildfire 

spread. However, this work was based on temperature measurements spread through the region of 

interest and only involved (synthetic) simulated data.  

The objective of this paper is to address the challenges specific to the development of a robust 

inverse modeling approach for realistic wildfire spread. To better take into account the underlying 

model non-linearities and thus to provide more accurate posterior distributions of the state variables, 

we propose here a particle filter strategy based on the assimilation of the time-evolving fire front 

locations and the front-tracking fire spread simulator FIREFLY, such as in references [19,21]. Both 

the SIR and the ASIR algorithms of the particle filter are implemented and compared, when applied to 

actual measured data obtained from a controlled experiment. While limited to a reduced-scale fire at 

this early stage of development, this validation test is fundamental for providing valuable information, 

insight and understanding on the performance of the data-driven wildfire spread model.  

The paper is organized as follows: Section 2 presents the FIREFLY simulation capability of fire 

spread (also called the forward or direct model); the SIR and ASIR particle filter algorithms used for 

the solution of the state estimation problem are introduced in Section 3; and results are presented in 

Section 4 for a validation test based on comparisons with a small-scale (4 m x 4 m) controlled 

grassland fire experiment.  



9 
!

2. THE FIRE PROPAGATION MODEL (THE FORWARD MODEL) 

The propagation of wildfires results from complex interactions between pyrolysis, combustion, 

heat transfer and flow dynamics, as well as atmospheric dynamics and chemistry, among other 

phenomena. These interactions occur over a wide range of scales: vegetation scales that characterize 

the biomass fuel; topographical scales that characterize the terrain and vegetation boundary layer; and 

meteorological micro-/meso-scales that characterize atmospheric conditions. As in current operational 

wildfire spread models [3], we adopt in this study a regional-scale perspective and simulate a wildfire 

as a thin flame zone (i.e., as a front) that self-propagates normal to itself towards the unburnt 

vegetation. In this representation, the main quantity of interest is the ROS, that is the local propagation 

speed of the front. Note that the present study is limited to flat terrains and problems with complex 

topography are outside its scope. 

 

2.1. SUBMODEL FOR THE RATE OF SPREAD 

In this approach based on Rothermel’s model [2], the ROS is formulated as a semi-empirical 

function of a reduced number of parameters that locally characterize the vegetation (fuel) properties, 

the weather conditions and the terrain topography. The local ROS, denoted by Γ [m/s], can be written 

as 

Γ ≡ Γ(x, y,t) = P M f ,Σ,uw (x, y,t),...( )δ(x, y),  (1) 

where δ [m] is the fuel depth (e.g., the vegetation layer thickness) and P [1/s] is a function of the fuel 

moisture content Mf (mass of water divided by mass of dry fuel), the fuel particle surface-to-volume 

ratio Σ [1/m], and the wind velocity (at mid-flame height) uw [m/s]. In this paper, Σ, Mf and δ are 

treated as spatially-uniform parameters. Note that uw is spatially-distributed along the fire front 

evolving on the two-dimensional horizontal plane (x,y). This variable results from the projection of the 

wind velocity vector (assumed spatially-uniform over the two-dimensional horizontal plane (x,y) and 

defined by the wind velocity magnitude and direction, denoted by mw and dw, respectively) along the 

normal direction to the contour lines of the progress variable denoted by n = n(x,y,t). uw is also time-
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varying due to the anisotropy in the wind-aided wildfire spread and to the subsequent changing shape 

of the fire front. Thus, uw = uw(x,y,t).  

 

2.2. LEVEL-SET FRONT-TRACKING TECHNIQUE 

In the FIREFLY simulation capability, the propagation of the fire front at the ROS given by 

Equation (1) is simulated using a standard level-set front-tracking technique [19]. As in the premixed 

combustion literature [22], a progress variable, denoted c and also referred to as the level-set function, 

is introduced as a flame marker: c = 0 in the unburnt vegetation, c = 1 in the burnt vegetation; and the 

flame front is identified by the two-dimensional contour line cf  = 0.5, as shown in Figure 1.  

 

Figure 1: Schematic of the fire propagation model: (a) 2-D surface fire spread at the ROS Γ along 

the normal direction n to the front (b) Profile of the progress variable c throughout cf = 0.5. 

 

The locations of the fire front are reconstructed using the two following steps: 1) a level-set based 

solver for the progress variable c = c(x,y,t), and 2) an isoline algorithm for the reconstruction of the 

discretized fire front (xi, yi) with i ≤  1 ≤  Nf.  

 

2.2.1. PROPAGATION EQUATION 

The spatio-temporal evolution of the progress variable c = c(x,y,t) is calculated as a solution of the 

following propagation equation using the ROS model due to Rothermel in Equation (1): 

c = 1

c = 0

fire front

Rate of spread

Burned vegetation 
(c = 1) 

Unburnt vegetation (c = 0)

cf = 0.5

2-D computational domain

(a) (b)

Γ
n

Γ
cf = 0.5

(xf ,yf)



11 
!

∂ c
∂t

= Γ ∇c ,  (2) 

with Γ being the ROS [m/s] along the normal direction n = −!∇!/! ∇! !to the contour lines of the 

progress variable c. Equation (2) is solved by using a second-order Runge-Kutta scheme for time-

integration and a second-order total variation diminishing scheme with a Superbee slope limiter for 

spatial discretization, following choices made by Rehm and McDermott [23].  

 

2.2.2. RECONSTRUCTION OF THE DISCRETIZED FIRE FRONT 

The instantaneous position of the fire front (xi, yi) is extracted using a simple isoline algorithm, 

verifying c(xi, yi, t) = cf  with cf = 0.5 and i ≤  1 ≤  Nf (Nf being the total number of simulated markers). 

First, this algorithm extracts the contour line cf = 0.5 from the two-dimensional progress variable c 

with respect to the computational grid resolution on the horizontal plane (x,y) in FIREFLY. Second, 

this algorithm discretizes the contour line cf = 0.5 with a fixed number (Nf) of equally-spaced markers. 

Further technical details on the isoline algorithm are provided in reference [21]. 

 

2.2.3. FORWARD MODEL OPERATOR 

Following these two steps, the outputs of the FIREFLY model can be represented as a 

composition of the integration of Equation (2) that provides the state of the spatially-varying progress 

variable c at a given time, with the isoline algorithm which identifies the discretized contour line 

cf = 0.5 as the front marker locations (xi, yi) with i ≤  1 ≤  Nf. This composition of operations that leads 

to the location of the front markers (corresponding to a fine-grained discretization of the simulated fire 

front) is referred to as the forward model operator; this operator takes as inputs the initial condition of 

the progress variable c as well as the input parameters of the Rothermel-based ROS model Γ. 

 

3. THE INVERSE PROBLEM  

Particle filters [8-15] provide an attractive framework for integrating fire sensor observations 

with computational models, accounting for both observation and modeling errors (these errors are not 
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necessarily assumed to be additive or to follow a Gaussian PDF), and thus for providing accurate 

estimates of poorly known parameters [24] as well as improved predictions of fire spread dynamics.  

 

3.1. PRINCIPLES OF THE BAYESIAN SOLUTION FOR AN INVERSE PROBLEM 

Particle filters require the definition of the following mathematical quantities: 1) the state vector 

that describes the variables to be estimated/controlled in the particle filter algorithm, and 2) the 

observation operator that maps the state space onto the observation space. 

 

3.1.1. STATE VECTOR 

The vector xk ∈ Rn is called the state vector and contains the n model variables to be dynamically 

estimated. This vector advances in time in accordance with the evolution model of the parameters 

defined as follows: 

xk = fk (xk−1,vk ),  (3) 

where fk can be a non-linear function of the state vector xk-1 and of the uncertainty vector vk-1 ∈ Rn; the 

subscript k refers to the time tk. In this study, the vector vk is modeled with random variables following 

a Gaussian PDF. The objective here is to accurately estimate the fire front location together with two 

fuel parameters, namely, the fuel moisture content, Mf , and the fuel particle surface-area-to-volume 

ratio, Σ. Thus, the state vector is given by x = (c, Mf , Σ)T, where the vector c includes the spatial 

distribution of the progress variable c at the grid points at which Equation (2) is solved for each 

sample particle.  

As there is no explicit formulation of the evolution of the control parameters between two 

successive observation times, a random walk model is used as the evolution model for them. Note that 

this random walk model is such that the evolution function is identity and to which Gaussian noise 

(with zero mean and given variance) is added (see Section 4 for further details specific to the wildfire 

spread application). 

 

!  



13 
!

3.1.2. OBSERVATION OPERATOR 

The observation vector zk
obs

 ∈ Rp contains the p measurements of the fire front locations at the 

assimilation time tk. To estimate the model deviation from the measurements zk
obs, an observation 

model is introduced through the general, possibly non-linear, function hk, which describes the 

dependence between the state variables xk and the simulated fire front locations zk (predicted 

measurements) designated as: 

( , )k k k k=z x εh  (4) 

where zk ∈ Rp
 includes here the (xi

o, yi
o

 )-coordinates of the p discrete front locations at time tk, and the 

vector εk ∈ Rp represents the measurement uncertainty vector. The vector εk is also modeled with 

random variables following a Gaussian PDF. Note that p = 2 Nf
o (Nf

o is the number of markers along 

the observed front, each marker being associated with a pair of coordinates (xi
o, yi

o
 ), with i ≤  1 ≤  Nf

o). 

In this study, the observation operator represents the calculation of a distance between the fine-

grained discretization of the simulated fire front and the discretized observation fire front. Stated 

differently, the observation markers (xi
o, yi

o
 )!with i ≤  1 ≤  Nf

o are mapped onto the simulated fire front 

in order to determine their model counterparts (xi, yi ) with! i ≤  1 ≤  Nf
o. For this purpose, the 

observation operator pairs a subset of Nf markers along the fine-grained discretization of the simulated 

fire front with the Nf
o markers along the coarse-grained discretization of the observed fire front, 

associating each marker of the observed fire front with its closest neighbor along the simulated fire 

front (see Figure 2).  

The observation function hk may be defined in several ways (for instance using a projection 

scheme) but preliminary tests have shown that a simple treatment (taking 1 out of every Nf /Nf
o 

markers) provided reasonable results [21]. The number of observed front markers Nf
o is typically much 

lower than Nf, since FIREFLY requires a high-resolution computational grid and since observations 

are commonly provided with a much coarser resolution (Nf /Nf
o > 1).  One of the advantages of this 

mapping procedure is that it provides a local information on the discrepancies between simulated and 

observed fire fronts and not only a global information such as the difference in the burnt area or in the 

fireline perimeter. This local information is efficient at tracking the anisotropy in wildfire spread. Still, 
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the topology of the fire front can be complex in real-world wildfire spread cases, and/or only a section 

of the fire front can be observed due to the opacity of the fire-induced thermal plume or due to a 

limited monitoring. The performance of the mapping procedure needs therefore to be evaluated for 

such scenarios, where the pairing between simulated markers and observed markers becomes more 

challenging for complex fire front topologies. However, this issue is out of the scope of this study that 

aims at showing the potential of particle filters for wildfire spread forecasting; the extension of the 

mapping procedure to more realistic fire front topologies is one of the next challenges towards 

operational applications. Projection schemes reported in Ref. [21] are expected to provide a valuable 

answer to this issue and could be integrated to the particle filters algorithms in future works. 

 

Figure 2 - Calculation of the distance between simulated and observed fire fronts, defined as the vector 

formed by the distances between the paired simulated and observed front markers. In this illustration, 

Nf/Nf
o = 4. 

3.1.3. BAYES’ THEOREM 

The formal mechanism to combine measurements and prior information on the state variables is 

Bayes’ theorem [4-8]. Therefore, the term Bayesian is often used to describe the statistical inversion 

approach that is based on the following principles:  

1) Both state vector xk and observation vector zk
obs are modeled as random variables;  

2) The level of uncertainty in the realization of these random variables is described via PDF, 

denoted π(xk) and π(zk
obs), respectively;  

Simulated front 
(cf = 0.5)

Observed 
front

(x1, y1)

(x2 , y2 )

(x3, y3)

(x4 , y4 )

(x1
O , y1

O )

(x2
O , y2

O )

c = 0

c =1
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3) The sequences of these random variables are assumed to be discrete time Markov chains, which 

are assumed to satisfy the following properties [4-8]: 

(a) The distribution of the control vector xk at time tk is only determined by its most recent 

value at time tk-1, meaning that the future and past distributions of the control vector x are 

independent, that is, 

( ) ( )0 1 1 1, , ,x x x x x xk k k kπ π− −=K       (5) 

(b) The sequence of observation vectors zk
obs (k = 1, 2, 3,…) is a Markovian process with 

respect to the history of xk, that is, 

( ) ( )0 1, , ,z x x x z xobs obs
k k k kπ π=K       (6) 

(c) The sequence of state vectors xk (k = 1, 2, 3,…) depends on the past observations only  

through its own history, that is,  

( ) ( )1 1 2 1 1, , , ,x x z z z x xobs obs obs
k k k k kπ π− − −=K       (7) 

4) The objective of the Bayesian inverse problem is to retrieve the posterior PDF πposterior(xk), i.e., 

the update of the prior PDF π(xk) characterizing the prior information available on the state 

variables. This update is expected to be more consistent with the measurements.  

In this context, the Bayes’ theorem is stated as 

π posterior (xk ) = π (xk | zk
obs ) =

π (xk )π (zk
obs | xk )

π (zk
obs )

,           (8) 

where 

• π(xk) corresponds to the prior density of the state variables; 

• π(zk
obs) corresponds to the marginal probability density of the measurements, which plays the 

role of a normalizing constant; 

• π(zk
obs|xk) corresponds to the likelihood (i.e., the conditional probability of the measurements 

zk
obs given the state variables xk). In this paper, the measurement errors are assumed to be 

additive, Gaussian, with zero mean and a covariance matrix W, so that we can write: 
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   π (zk
obs | xk ) = (2π )

− p/2 W
−1/2
exp −

1
2
[zk
obs − zk ]

TW−1[zk
obs − zk ]

"
#
$

%
&
'
,        (9)  

with zk  are the predicted observed variables resulting from the FIREFLY simulation provided by 

Equation (4) (the prediction of the fire front locations at time tk with known parameters xk) and W 

is diagonal, as the measurement errors are assumed to be uncorrelated. 

 

3.2. THE BAYESIAN FILTERING PROBLEM 

In the present study, we consider a filtering problem that aims at finding the most accurate PDF of 

the control vector xk given the past observations up to time tk, that is at approximating the posterior 

distribution π(xk|z1:k
obs). The Bayesian filtering process can be divided into two steps, prediction and 

update, which can be generally described as follows: (i) We first choose a prior distribution of the 

control vector π(x0) over the state space at the initial time t = 0. Then, as one observation z1
obs is 

available at time t1, we predict the distribution π(x1) using the Markov property of x1, see Equation (7). 

(ii) Using Bayes’ theorem and in particular the likelihood π(z1
obs|x1), we can then estimate the posterior 

PDF πposterior(x1) = π(x1|z1
obs) using Equation (8). This algorithm can then be applied sequentially for all 

observation times (k = 1, 2, …, K).
 
 

The Kalman filter is a widely known Bayesian filtering method; it provides the exact analytical 

solution of the posterior distribution when dealing with linear models and additive Gaussian noises. As 

a mean of addressing the difficulties encountered in non-linear problems, Monte Carlo (MC) methods 

based on particle filters represent the posterior PDF of the state variables by using a finite number of 

randomly generated model trajectories; they do not constrain a priori the shape of the PDF that is to be 

found. The statistics made on the ensemble of realizations is used to reconstruct the posterior PDF of 

the control parameters by using Equation (8), which is then propagated to the next observation time 

(by using an evolution model of the state variables). 

As the number of particles becomes very large, this MC characterization becomes an equivalent 

representation of the posterior PDF, and the solution approaches the optimal Bayesian estimate [4-16]. 

In the following, some particle filters algorithms are briefly revised, as they were used in this work for 

estimating the wildfire ROS. 
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3.3. THE SEQUENTIAL IMPORTANCE SAMPLING (SIS) FILTER 

Most particle filters rely on the Sequential Importance Sampling (SIS). This algorithm is based on 

the calculation of an importance density, i.e., a density that is used to build the particles instead of the 

exact posterior density that cannot be exactly computed. The PDF of the state vector x is sampled with N 

particles. We consider the set of particles 0:{ , 0, , }i
k i N=x K  associated with the normalized weights 

{ , 0, , }i
kw i N= K satisfying

1
1

N
i
k

i
w

=

=∑ . The posterior density at time instant tk can be discretely 

approximated by [5-10]: 

π (xk z1:k
obs ) ≈ wk

i

i=1

N

∑ δ xk − xk
i( ),         (10) 

with δ (.) being the Dirac delta function and the weights computed from [9]: 

wk
i ∝wk−1

i
π (zk

obs xk
i )π (xk

i xk−1
i )

q(xk
i xk−1

i ,zk
obs )

,         (11) 

where the importance density 1: 1 1:( , )i i obs
k k kq −x x z  is assumed to be a Markovian process. The optimal 

choice of the importance density, which minimizes the variance of the importance weights conditioned 

upon control parameters 1
i
k−x  and measurements zk

obs, is given by 1 1( , ) ( , )i i obs i i obs
k k k k k kq π− −=x x z x x z . 

However, for most practical problems, this optimal choice is not analytically tractable and a suboptimal 

importance density is taken as the transition prior, that is, 1 1( , ) ( )i i obs i i
k k k k kq π− −=x x z x x

 
[9], so that 

Equation (11) reduces to 

wk
i ∝wk−1

i π (zk
obs xk

i ).          (12) 

Figure 3 shows a schematic representation of the Sampling Importance Sampling (SIS) Filter. Here, 

the key idea is to sample the prior PDF by a large set of random particles; the forward model is 

integrated for each particle and thus a weight is given to each model trajectory as a function of the 

distance to the measurements (likelihood), see Equation (9). 
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Figure 3: Schematic of the Sampling Importance Sampling (SIS) Filter. 

 

The SIS algorithm for the time period [tk-1, tk] is summarized in Table 1. 

Table 1. SIS algorithm [8,9]. 

STEP 1 
Draw new particles xk

i (i = 1,…,N) from the prior density π(xk|xi
k-1) and then use the likelihood density 

to calculate the corresponding weights wi
k= wi

k-1 π(zk
obs

 |xi
k). 

 
STEP 2 

Compute the normalized particle weights so that wi
k = wi

k  / Σi wi
k  (i=1,...,N). 

 
 

3.4. THE SAMPLING IMPORTANCE RESAMPLING (SIR) FILTER 

The application of the SIS particle filter might result in the degeneracy problem, meaning that after 

a couple of estimations all but very few particles will have negligible weights [5-10]. If this problem 

occurs, a large computational effort is devoted to updating particles whose contribution to the 

approximation of the posterior PDF is almost zero. In practice, this problem can be overcome by adding 

a resampling step in the SIS particle filter algorithm.  

The resampling process involves a mapping of the random measures { },i i
k kwx  into { }* 1,ik Nx  

with uniform weights equal to 1/N (where N is the number of particles). This leads to the elimination 

of particles with low weights and additional sampling in the vicinity of the particles with large weights 

(effective particles). Resampling could be performed if the number of effective particles falls below a 

certain threshold number, but in the following algorithm resampling is indistinctively applied at every 

Weight calculation

Likelihood functionPrior distribution of 
parameters

Monte Carlo sampling  Simulated fire front 
locations

Posterior distribution of 
parameters

Parameter evolution 
(k = k+1)

π(xk)
(xi

k)i = 1, ..., N (hk(x
i
k))i = 1, ..., N

Measurements

(zobsk

π(zobsk |xk)
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time tk. Such algorithm is called the Sampling Importance Resampling (SIR) filter [8,9] and can be 

summarized in the three main steps presented in Table 2. Note that in the first step the weights are 

given directly by the likelihood function ( | )obs i
k kπ z x  since the weights of the previous filtering step at 

time tk-1 (noted 1
i
kw − ) are uniform. 

 Table 2. SIR algorithm [8,9]. 

STEP 1 
Draw new particles xk

i (i = 1,...,N) from the prior density π(xk|xi
k-1) and then use the likelihood density 

to calculate the corresponding weight wi
k = π(zk

obs
 |xi

k). 
 

STEP 2 
Compute the normalized particle weights so that wi

k = wi
k  / (Σi wi

k )  (i=1,...,N). 
 

STEP 3 
Resample the particles as follows: 
a) Construct the cumulative sum of weights (CSW) by computing di = di-1 + wi

k for i=1,...,N, with d0=0 
 
b) Start from i = 1 and draw a starting point u1 from the uniform distribution U[0,1/N] 
 
c) For j = 1,…,N: 
         i) Move along the CSW by making uj = u1 + (j-1)/N 
         ii) While uj > di make i = i+1 
         iii) Assign sample xj

k = xi
k 

         iv) Update weight wj
k = 1/N (uniform) 

 
 

3.3. THE AUXILIARY SAMPLING IMPORTANCE RESAMPLING (ASIR) FILTER 

Although the resampling step reduces the effects of the degeneracy problem, it may lead to an 

updated sample containing many repeated particles. Hence, despite the fact that the weights are easily 

computed and that the importance density can be easily sampled within the framework of the SIR 

algorithm, the particles may quickly suffer from a loss of diversity. This problem, known as sample 

impoverishment, can be severe in the case of small state evolution noise [5,8,9]. In addition, by using 

the SIR algorithm, the state space is explored without the information conveyed by the measurements, 

that is, the particles at each time are generated through the sole application of the transition prior 

1( )i i
k kπ −x x  (see the first step in Table 2).  

With the Auxiliary Sampling Importance Resampling (ASIR) algorithm [8,9] presented in 

Table 3, an attempt is made to overcome these drawbacks by performing the resampling step at the 
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previous time tk-1 with the available measurements at time tk. The resampling is based on some point 

estimate µik, chosen either as the mean or as a sample of the transition density π(xk|xik-1), which 

characterizes the evolution of the control distribution from tk-1 to tk. For the sake of generality, the 

second approach was used in this work. If the noise of the evolution model is small, π(xk|xik-1) is 

generally well characterized by µik, meaning that this improved prior information will lead to a more 

efficient filtering than the standard SIR algorithm and thus all the resulting particles will have a similar 

weight. In the opposite, if the noise of the parameter evolution model is large, the single point estimate 

µik in the control space may not characterize well π(xk|xik-1) and the ASIR algorithm may not be as 

effective as the SIR filter. The use of such characterization µik means that the SIR and ASIR filters are 

not based on the same definition of the importance density.  

In general, a drawback of particle filters is related to the large computational cost due to the MC 

method. However, solutions exist to make particle filters affordable for more complicated physical 

problems. More advanced algorithms have been specifically developed to build an appropriate 

representation of the posterior PDF with a small number of particles and thus with a reduced 

computational time [8,9]. In addition, the use of surrogate models or response surfaces for the solution 

of the forward model appears as promising approaches for solving Bayesian filtering problems within 

a reasonable computational cost [25-28]. 

!  
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Table 3. ASIR algorithm [8,9]. 

STEP 1 
Draw new particles xk

i (i=1,…,N) from the prior density π(xk|xi
k-1) and then calculate some 

characterization (for example, the mean) µi
k of xk, given xi

k-1. Use the likelihood density to calculate 
the corresponding weight wi

k = wi
k-1 π(zk

obs|µi
k)  

 
STEP 2 

Normalize the particle weights so that wi
k = wi

k / Σi wi
k (i=1,...,N) 

 
STEP 3 

Resample the particles as follows: 
a) Construct the cumulative sum of weights (CSW) by computing di = di-1+wi

k for i = 1,...,N, with d0=0 
 
b) Start from i=1 and draw a starting point u1 from the uniform distribution U[0,1/N] 
 
c) For j = 1,…,N: 
         i) Move along the CSW by making uj = u1 + (j-1)/N 
         ii) While uj > di make i=i+1 
         iii) Assign sample xj

k = xi
k 

         iv) Update weight wj
k = 1/N (uniform) 

         v) Assign parent ij = i 
 

STEP 4 
Draw particles xk

j (i=1,…,N) from the prior density π(xk|xij
k-1), using the parent ij (particle index 

selected in the resampling of step 3), and then use the likelihood density to calculate the corresponding 
weights wj

k=π(zk
obs|xj

k) / π(zk
obs|µij

k). 
 

STEP 5 
Normalize the particle weights so that wj

k = wj
k / Σj wj

k (j=1,...,N) 
    
 

4. DATA-DRIVEN WILDFIRE SPREAD USING PARTICLE FILTERS 

In this paper, the SIR and ASIR algorithms are applied to natural fire propagation with the 

objective of accurately predicting the fire front position through the estimation of some physical 

parameters involved in the formulation of the Rothermel-based ROS in FIREFLY.  

Data were taken from an experimental database corresponding to a small-scale (4 m x 4 m) open-

field grassland fire occurring under moderate wind conditions [19], mw = 1 m/s blowing into a western 

direction (dw = 307 °, in a clockwise representation where 0 ° indicates the North direction). The fire 

spread was recorded during 350 s using a thermal-infrared camera; the resulting observations are the 

time-evolving positions of the fire front (see Figure 4) identified as the contour lines where the 

temperature reaches the value 600 K, generally considered as the temperature of combustion ignition. 



22 
!

Details of the measurement technique to retrieve the temperature field from thermal imaging are given 

in Wooster et al. [29] and the subsequent reconstruction of the fire front positions is highlighted in 

Figure 4. In the following state estimation process, we assimilate measurements of fire front locations 

every 14 s from t = 64 s to t = 106 s (the associated fronts are represented in black solid lines in 

Figure 4). This means that, in the particle filters, the update step is successively performed at t = 64 s, 

78 s, 92 s and 106 s. This also means that the prediction step allows the PDF of the state variables and 

parameters to be integrated during 14 s between two consecutive observation times. Each observed 

front is discretely represented with Nf
o = 200 markers, whose error standard deviation is estimated as 

0.047 m (based on the spatial resolution of the thermal-infrared camera). This error standard deviation 

is used to describe the measurement covariance matrix W.  

 

Figure 4: Arrival times of the fire front (in color) and observed fire fronts separated by 14 s (at 

t!= 64 s, 78 s, 92 s, 106 s) in black solid lines.  
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Figure 5: Extraction of the fire front location (right) from thermal-infrared imaging (left) at 

t = 106 s; the fire front is identified as the 600-K temperature contour line. 

 

The fire spread simulator assumes uniform properties of the (fuel) grass with a fuel layer 

thickness equal to δ = 8 cm (field measure), a fuel moisture content equal to Mf = 22 % (field 

measure), and a fuel particle surface-to-volume ratio Σ = 11480 1/m (values taken from Rothermel's 

database [2]). It is also assumed uniform and constant wind velocity magnitude and direction, 

respectively mw = 1 m/s and dw =!307 °. Note that, even though the wind properties are constant, the 

local wind velocity vector uw along the normal direction to the fire front is modified by the 

deformation of the shape of the propagating fire front (see Section 2.1. for further explanations).  

 It was found in Rochoux et al. [19] that these values significantly underestimate the position of 

the fire fronts (the associated simulation, also called the free run in this paper, is shown in Figure 6) 

and that a state estimation procedure is therefore required to produce fire spread simulations that are 

more consistent with observations.  
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Figure 6: Comparison between the direct simulation (free run) and the measured fire front positions 

from t = 64 s to t = 106 s. Observations are represented in black solid lines, simulated fire fronts 

associated with the prior PDF of the control vector at t = 50 s are represented in green symbols. 

 

The objective of the present inverse problem is then to search for the posterior PDF of the fire 

front location. Due to their importance and inherent uncertainties, the fuel moisture content, Mf, and 

the fuel particle surface-to-volume ratio, Σ, are also treated as state variables in this work and 

estimated through the application of the particle filter algorithms under analysis. Their error standard 

deviations are taken to be 30 % of their initial mean values, that is fσ  = 6.6 % for Mf and 

σΣ  = 3444 1/m for Σ. The initial distributions of those variables for the particle filter algorithms were 

assumed as Gaussian, given as Mf = N(22 %, 6.6 %) and Σ = N(11480 1/m, 3444 1/m). These two 

control parameters are assumed to be spatially-uniform. Note that no field measurement of the control 

parameters was performed during the controlled grassland fire experiment and that the validation of 

the results provided by the SIR and ASIR particle filters relies on the retrieval of the observed location 

of the fire front (the measurement error is small). 

The 4 m x 4 m domain is discretized with a regular mesh (Δx = Δy = 0.047 m), and the time step 

for integration of the progress variable equation is fixed to Δt = 0.02 s. For each pair of control 

parameters taken in the associated Gaussian PDF, the fire spread simulation is initialized using the 
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corresponding initial state of the fire position at time t = 50 s, and is then integrated in a time period of 

14 s to update the posterior PDF of c, Mf and Σ, at the 4 different observation times 

(t = 64 s, 78 s, 92 s, 106 s). As there is no explicit formulation of the control vector evolution between 

2 observation times, a random walk model is used; the error standard deviation introduced in the 

parameters from time tk-1 to time tk is equal to fσ for Mf and σΣ  for Σ, respectively. It reads 

1( ) ( )f k f k f fM t M t Rσ−= +                                                      (13) 

1( ) ( )k kt t Rσ− Σ ΣΣ = Σ +                                                              (14) 

with Rf and RΣ random numbers following a Gaussian distribution, with zero mean and unitary 

standard deviation.  

The state evolution model for the vector containing the values of the progress variable at each of 

the grid points, c(tk), is obtained from the discrete integration of Equation (2) as described in Section 

2.2. Uncertainties for c(tk) are assumed to be additive, Gaussian, with zero mean and a constant 

standard deviation of 0.01.  

The performance of the SIR/ASIR particle filters is analyzed in the observation space, in terms of 

the Root Mean Square (RMS) error between the simulated and observed fire front positions, at each 

observation time. At time tk, the RMS is calculated as follows: 

RMSk =
1
p

(zk , j
obs − zk , j )

2

j=1

p

∑ ,
                    (15)

 

where zk contains the p simulated fire front positions given by Equation (4), and zk
obs represents the 

corresponding observations. The 99%-confidence interval, denoted I99% and defined in the parameter 

space, is used as an additional diagnostic of the performance of the particle filters. It reads 

  99% ˆ 2.576k xI = ±x σ  ,                                              (16) 

where ˆ kx  represents the estimated mean value of the state variables and xσ  represents its associated 

standard deviation.  

The performance of both SIR and ASIR particle filters is presented in Table 4 in terms of RMS 

error at each observation/assimilation time and of the required computational time for the whole 

sequential Bayesian process, with different numbers of particles N. The different solutions of the 
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particle filters are also compared to the free run configuration (using standard Rothermel's database). 

Figures 7 and 8 present, along with the observations, the time-evolving location of the fire fronts (from 

t = 64 s to t = 106 s) estimated through the SIR and ASIR filters, respectively. These results show that 

both the SIR and ASIR filters are able to significantly reduce the distance between estimated and 

observed fire fronts and, thus, to closely track the observed fire fronts along time (see also Figure 6). 

The free run presents indeed the highest RMS errors for all observation times; the RMS errors for the 

SIR and ASIR filters are reduced by a factor of at least 2 for all observation times and in the best-case 

(i.e., at t = 92 s) by a factor of 4, with respect to the free run RMS errors. Furthermore, these results 

indicate that the discrepancy to the observations remains significant at t = 106 s due to the particular 

shape of the front, as shown in Figures 7 and 8. Note that here we do not have a spatial correction of 

the fire front position per observation time, as we assumed that the control parameters are spatially 

uniform and that tracking all the variations of the fire front topology at a given time was out of the 

scope of this study. Still, this representation is able to efficiently describe the propagation of the front 

in the wind direction and to accurately track the head of the fire, which is the main quantity of interest 

within an operational fire spread framework. 

Table 4 also presents the computational time necessary to perform the inverse modeling process. 

The SIR algorithm with N particles requires the same computational time as the ASIR algorithm for 

N/2 particles, due to the use of the characterization µk to improve the prior information. For instance, 

the computational cost for the SIR algorithm with 100 particles is similar to that of the ASIR 

algorithm with 50 particles. Table 4 also shows that, even though the number of particles is increased 

to 400, the SIR algorithm does not succeed in converging towards a solution closer to the observations 

than with 50 particles, whereas the computational cost is multiplied by 25. 
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(a) (b) 

(c) (d) 
 

Figure 7: Comparison between simulated and measured fire front positions from t = 64 s to t = 106 s 

using the SIR filter, for: (a) 25 particles, (b) 50 particles, (c) 100 particles and (d) 400 particles. 

Observations are represented in black solid lines; simulated fire fronts associated with the posterior 

PDF of the control vector are represented in red symbols.  
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Figure 8: Comparison between simulated and measured fire front positions from t = 64 s to t = 106 s 

using the ASIR filter, for: (a) 25 particles, and (b) 50 particles. Observations are represented in black 

solid lines; simulated fire fronts associated with the posterior PDF of the control vector are represented 

in blue symbols.  

 

Table 4. Computational times and RMS errors for SIR/ASIR filters. 

Filter 
Particle 
number 

(N) 

RMS error 
 (t = 64 s) 

RMS error 
 (t = 78 s) 

RMS error  
(t = 92 s) 

RMS error 
 (t = 106 s) 

CPU time 
(min) 

Free run - 0.3320 m 0.4062 m 0.4773 m 0.7629 m 1.639 
SIR 25 0.1417 m 0.1915 m 0.1103 m 0.2900 m 9.0996 
SIR 50 0.1418 m 0.1942 m 0.1107 m 0.2837 m 17.958 
SIR 100 0.1378 m 0.2108 m 0.1194 m 0.2797 m 36.465 
SIR 400 0.1791 m 0.2060 m 0.1105 m 0.2721 m 220.80 

ASIR 25 0.1607 m 0.1952 m 0.1088 m 0.2826 m 17.987 
ASIR 50 0.1461 m 0.1942 m 0.1212 m 0.2646 m 36.030 

These results indicate that the application of the SIR and ASIR filter to the problem studied in this 

paper provides very similar values of the RMS errors between the mean and the measured values of 

the fire front position. It is therefore important to perform an analysis in the parameter space to further 

examine the performance of the SIR and ASIR filters. Figures 9 and 10 show, for both SIR and ASIR 

filters with different numbers of particles N, the mean values of the posterior distributions, along with 

their 99% confidence intervals I99%, associated with the fuel moisture content Mf and the fuel particle 

surface-to-volume ratio Σ, respectively. The posterior mean value found in Rochoux et al. [19] with 
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the EKF algorithm is also represented. It is found that the EKF solution is within the confidence 

interval and relatively close to the mean solution of the particle filters. Both data assimilation 

approaches provide consistent results, meaning that the EKF algorithm behaves reasonably well in this 

case, despite of its linearity assumption on the observation model. On the other hand, while the SIR 

filter with 100 particles is found to provide the mean of the posterior PDF that is the closest to the 

value given by the EKF, the ASIR filter with 50 particles provides a solution that reduces more 

effectively the width of the confidence interval for both parameters. This means that the ASIR filter 

with 50 particles provides a more reliable solution and thereby features a better approximation to the 

real fire spread than the SIR algorithm. Note that the prediction given by the particle filters is based on 

the mean value of the sought state variables and on their confidence intervals. Therefore, while the 

mean values are similar for these two filters for the problem studied in this paper, the confidence 

intervals are better predicted by the ASIR filter. 

Figures 9 and 10, however, show that the width of the confidence interval remains relatively large 

for all examined cases. One factor that may affect the width of the confidence interval is the sample 

variability, meaning that several sets of control parameters may lead to the same simulated fire fronts 

close to the observations. The sample variability may be reduced if more sources of uncertainties such 

as the time-varying wind magnitude and direction are included in the Bayesian filtering procedure. 

Still, we note that the estimation of the pair of fuel parameters (Mf , Σ) is sufficient to track extremely 

well the time-evolving observed fire spread. While the new values of the fuel moisture content Mf and 

the fuel particle surface-to-volume ratio Σ are realistic, they should be viewed as effective values that 

incorporate the effects of a number of modeling choices. However, errors may also come from other 

model input parameters (such as the wind magnitude and direction) or from the ROS model 

parameterization itself.  

 

5. CONCLUSIONS 

This paper has explored the capability of particle filters (also called sequential Monte Carlo 

approach) to improve the predictions of wildfire spread simulations using measurements of a reduced-

scale controlled burning experiment. The proposed inverse modeling technique relied on the 
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estimation of a pair of parameters characterizing the properties of the grass vegetation. While both 

Sampling Importance Resampling (SIR) and Auxiliary Sampling Importance Resampling (ASIR) 

filters were able to sequentially track the displacement of the observed fire fronts, the ASIR filter 

allowed the retrieval of more accurate values of the control parameters (with a narrower confidence 

interval than the SIR filter) within a reasonable computational cost.  

Ongoing research aims at further improving the Bayesian filtering strategy in order to better 

account for modeling uncertainties and to obtain more physical values of the control parameters. In 

this perspective, the control vector could incorporate more input parameters of the rate of spread 

model. However, the state estimation problem would require a larger set of particles to allow for the 

optimal posterior probability density function to be retrieved. This extension of the control vector 

seems feasible since surrogate models appear as promising approaches to limit the computational cost 

of Bayesian filtering problems based on Monte Carlo sampling, even if the physical problem becomes 

more complex. Ongoing research also aims at extensively evaluating the data-driven strategy against 

data from regional-scale wildfire spreads and not only on reduced-scale controlled fires. Due to the 

recent technological progress in geo-location of wildfires through airborne or spaceborne remote 

sensing, this evaluation becomes possible in the near future. Still, in this paper particle filters have 

already shown potential to relate comprehensively computational fire modeling and fire sensor 

technology, which is highly needed in the fire research area. 

!  
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(a) 

 
(b) 

 
(c) 
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(e) 

 
(f) 

 
Figure 9: Sequential comparison of the estimation of the fuel moisture content Mf  provided by the SIR/ASIR algorithm and the EKF [19]. Black plain dots 

represent the optimal solution for the EKF; colored crosses represent the mean value of the posterior PDF (red for the SIR filter, blue for the ASIR filter); and 

dotted solid lines represent the 99%-confidence interval I99%. (a) SIR filter with 25 particles, (b) SIR filter with 50 particles, (c) SIR filter with 100 particles, (d) 

SIR filter with 400 particles, (e) ASIR filter with 25 particles, (f) ASIR filter with 50 particles. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 10: Sequential comparison of the estimation of the fuel particle surface-area-to-volume ratio Σ provided by the SIR/ASIR algorithm and the EKF [19]. 
Black plain dots represent the optimal solution for the EKF; colored crosses represent the mean value of the posterior PDF (red for the SIR filter, blue for the 

ASIR filter); and dotted solid lines represent the 99%-confidence interval I99% (a) SIR filter with 25 particles, (b) SIR filter with 50 particles, (c) SIR filter with 
100 particles, (d) SIR filter with 400 particles, (e) ASIR filter with 25 particles, (f) ASIR filter with 50 particles. 
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