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Abstract  

      Currently, automated learning systems are widely used for educational and training purposes within various organisations 
including, schools, universities and further education centres. There has been a big gap between the extraction of useful patterns 
from data sources to knowledge, as it is crucial that data is made valid, novel, potentially useful and understandable. To meet the 
needs of intended users, there is requirement for learning systems to embody technologies that support learners in achieving their 
learning goals and this process don’t happen automatically. This paper propose a novel approach for automated learning that is 
capable of detecting changing trends in learning behaviours and abilities through the use of process mining techniques. The goal is 
to discover user interaction patterns within learning processes, and respond by making decisions based on adaptive rules centred 
on captured user profiles. The approach applies semantic annotation of activity logs within the learning process in order to discover 
patterns automatically by means of semantic reasoning. Therefore, our proposed approach is grounded on Semantic Modelling and 
Process Mining techniques. To this end, it is possible to apply effective reasoning methods to make inferences over a Learning 
Process Knowledge-Base that leads to automated discovery of learning patterns or behaviour. 
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1. Introduction 

        Privation of conformance and suitability of automated learning contents is having an increasingly debilitating 
impact on learning, which has a strong influence on expected learning outcomes [1]. Studies have shown that 
challenges in current information-rich world is not only to make information available for learners at any time or in 
any form, but should essentially offer the right content to the right user and in the right format [2, 3]. This is necessary 
to provide continuous intelligent recommendation of leaning patterns and feedback on learner’s performance. The 
conceptual knowledge of monitored learning behaviour can be semantically annotated to adaptively suggest 
appropriate future learning paths, using user’s profile information to improve the learning progression [4]. Events 
within a process can be related to exactly one case and assigned a case identifier [5] which results in automatic creation 
of workflow processes achieved by using a semantic annotation scheme to represent the event logs about the user. 

 In this paper, process mining is used to discover sets of recurrent behaviours that can be found within a learning 
process. As a result, suitable learning patterns are determined by means of semantic reasoning which can then be used 
to address the problem of adapting learning to the captured user profiles.  

The rest of the paper is structured as follows; in Section 2, appropriate related work is analysed and discussed. Section 
3, presents our proposed learning model to express user profiles as well as the representation of learning components. 
In addition, we discuss the generation of the learning process model and how we semantically annotate the process 
model describing in detail its ontological representation and reasoning using Ontology Web languages.  Section 4 
shows our approach to automated discovery of learning behaviours from the analysis of event logs and Actions. The 
prototype implementation and preliminary outcomes are discussed in Section 5. Finally, Section 6 concludes the paper 
and points out directions for future research. 

2. Related Work 

       In recent years, several researches have been focused on applying process mining technologies to different aspects 
of business processes. Most of the developed systems use process mining techniques only for representation of 
business concepts, knowledge or data [5]. In our approach, we utilize process mining techniques to represent learning 
processes. Our focus is to further enhance this area of research by not only adapting the process mining tools but also 
present a way to relate semantic-based reasoning for adaptation within the learning process. Given a set of actions 
from event log of a learning process, our proposed approach automatically constructs process models capable of 
describing and enhancing observed behaviours.  

Fahland and Van der Aalst [6] note that it is difficult to learn useful models from event logs following the 
characteristics of real-life events. However, process mining has been proved as one of the existing technologies that 
typically aim to extract non-trivial and useful information from event logs [3, 5]. Although, past study in these area 
argue that heuristic mining, genetic mining, and fuzzy mining [7] provide case-hardened process discovery techniques 
capable of constructing intuitive simple models to explain the most likely or common behaviours.  

Process discovery, which lately has been seen as the most important and most visible intellectual challenge related to 
process mining aims to automatically construct a process model e.g., a Petri net or a BPMN model [5] and describes 
causal dependencies between activities [6]. In principle one could use process discovery to obtain a model that 
describes reality. The second type of process mining is conformance checking where, an existing process model is 
compared with an event log of the same process to check if in reality it conforms to the resulting model [8, 9]. 
Conformance check could imply that the model does not describe the executed process as observed in reality or is 
being executed in a different order. It could also mean that activities in the model are skipped in the log or that the log 
contains events not described by the model. Given this drawback, the last type of process mining; model enhancement 
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comes into play. Van der Aalst et al [10] used the idea of an enhanced existing model to maintain compliance and to 
quantify deviations using information about the actual process recorded in some event logs from a business process.  

Nooijen et al [11] recently introduced an automatic technique (arti-fact life cycle model) for discovering structured 
processes from a data source, by re-using a number of existing techniques to fill in crucial missing gaps in each notion 
of data object in Data-centric systems. In order to fill in these gaps, event types specification is utilized to construct 
database queries which extracts attributes from all event logs, groups them into cases, orders them by time stamps, 
and then writes the result into a classical logs in separate database columns. Many approaches have been tested to 
extract event logs from ERP (Enterprise Resource Planning) systems such as SAP [13] and PeopleSoft [14]. 
Consequently, as ERP systems in general provide multiple case identifiers, the majority of these approaches failed. 
The authors in [12] argue that success could only be reported when database tables are carefully selected by hand or 
a better view of data is semantically annotated.  

Another research direction is focused on discovering common structures that can be found in a variety of processes 
describing the Workflow Activity Patterns (WAPS). Various definitions of workflow have been proposed in literature 
[15, 16]. Thom et al [16] describes WAPS as structures involving the interaction between the user and the control-
flow constructs used to model the semantics of the activities being performed. Workflow systems assume that a 
process can be divided into small, unitary actions, called Activities [15]. To perform a given process, one must perform 
the set (or perhaps a subset) of the activities that comprise it. Hence, an Activity is an Action that is a semantic unit at 
some level, which can be thought of as a function that modifies the state of the process in terms of the semantics of 
the patterns and can be discovered automatically by means of semantic reasoning.  

During the last decade workflow management concepts and technology have been applied in many enterprise 
information systems [17] such as Staffware, IBM, MQSeries, and COSA, which offer generic modelling and 
enactment capabilities for structured processes. Many other software systems have adopted workflow technology, for 
example ERP (Enterprise Resource Planning) systems such as SAP, PeopleSoft, Baan and Oracle, CRM (Customer 
Relationship Management) software. However, despite its advantages, many problems are still being encountered 
when applying workflow technology. One of the problems is that these systems require a workflow design [18]. This 
implies that a designer has to construct a detailed model accurately describing the routing of work, which most often 
requires deep knowledge of the workflow language and management involved. 

Huang & Shiu [19] noted that searching for suitable learning paths and content for achieving a learning goal is time 
consuming and troublesome especially on dynamic learning platforms. To tackle these problems, the authors proposes 
a User-Centric Adaptive Learning System (UALS) that uses sequential pattern mining to construct adaptive learning 
paths based on users’ collective intelligence and recorded events and then employs Item Response Theory (IRT) with 
collaborative voting approach to estimate learners’ abilities for recommending adaptive materials.  

Our research differs from these previous works in several aspects. First, we provide an automated learning process by 
means of semantic reasoning. We focus on personalising learning based on user’s behaviour as opposed to most 
existing systems that provide guidance based on views of designers or experts. Second, we also support adaptive 
learning using process-mining techniques. Third, this work is not only intended to ensure learner’s ability to learn or 
meet their learning needs but is expected to be useful in providing learning path and guidance based on individual 
differences. This is achieved by collecting user’s initial capabilities and preferences on interaction  using semantic 
rules and process mining technique to model and detect behavioural changes as well as determine which adaptations 
or further assistive measures are best suited or may be required through time. 
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3. Semantic Rule-Based Approach to Learning 

Semantic Rule-based approach is expected to collect routines and monitor changes in user’s behaviour during the 
learning process [19, 20], to determine which adaptations technique may be required progressively through time. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
            
   Fig. 1 Architectural Diagram of Process Workflow 

 
In Fig 1. the semantic approach as illustrated, describes and takes into account users profile (prior knowledge of 
learners background), learning behaviour and actions when using the system.  

3.1 Process Model 
 

      In this section, we utilise a rule mining approach to classify instances based on predictor variable to explain the 
dependent variables in terms of independent ones. Variants are a great way to compliment the way we look at 
processes. Captured data is simplified based on the variants by showing the processes in a more detailed way. Given 
the set of events within a learning process, Fig. 2 below represents a set of learning activities we processed using 
Disco Process Management System by Fluxicon [21]. 

 
 
 
 
 
 
 

 
 
 
 
 
 

   Fig. 2 Process in Execution: Learners log of activities processed using Disco 
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    In Fig. 2, we imported the set of data into Disco to show in details how the processes have been performed. This 
approach describes our process mapping. The result is a mining approach that provides reliable and trustworthy results 
for data sets of arbitrary complexity and can be reasoned and understood efficiently by domain experts with no prior 
experience in process mining. The Disco miner is based on the proven framework of the Fuzzy Miner [7], but we 
developed in this paper a completely new set of process metrics and modelling strategies using a semantic rule-based 
approach. These additional metrics are very useful for process analysis because they hold relevant context information 
such as Domain-specific characteristics. We focus on the Attribute filter [21, 22] which describes as well as exclude 
certain activities, resources or process categories based on data attributes allowing us to quickly and interactively 
explore processes into multiple directions and to answer concrete questions about our process. In the next section, we 
describe and implement the concept of ontological reasoning of learning activities and actions capable of deducing 
inference to propose process model based on designed rule base that serves as a conceptual model for building our 
proposed semantic approach to automated learning.  

3.2 Semantic Modelling and Reasoning  
 
      Ontology is the Science that can be used to model different kinds and structure of objects, events, processes and 
behaviours as they happen in reality, such as learning process as described in this paper. In this section, we describe 
our process model using the Web Ontology Language (OWL). Below is an OWL version 2 model for our learning 
process, which we implemented in Protégé 4.3 and reasoned upon using Pellet 2. Protégé OWL editor [23] supports 
Description Logic (DL) Queries and SWRL rules [26]. 

 
 
 

 
        

    Fig. 3 Proposed learning Model in Protégé Editor      Fig 4. DL Query and the result of the query.  
 
In Fig. 3, we used the protégé Editor to construct an ontology that expresses the functionality of our proposed model 
in terms of individual learning patterns. The Cases and Actions within the learning process were defined as sub-class 
of the main class DomainEntity. The class expression is based on the OWL syntax fundamentally focused on collecting 
all information about a particular class, property, or individual into a single construct, called a frame. The DL Query 
provides the platform for searching the classified ontology. In our model, DL Queries and SWRL rules were used to 
reason about OWL individuals, primarily in terms of OWL classes, Object Properties and Data Properties to infer the 
learning activities of any named individual. In Fig. 4, executing the query refer explicitly to OWL individual 
Ben_Steward_27. The result of the DL Query produces the instance value of Ben_Steward_27 Actions within the 
Learning Model.  The result of the logic expression and reasoning of Actions for Ben_Steward_27 is what we use to 
show our process model description and for automated discovery of learning patterns as implemented in subsequent 
sections.  
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4.  Automated Discovery of Learning Patterns/Behaviour 

     Process Mining is one of the existing techniques that allows for traces not present in an existing process model to 
be discovered by using algorithms [5, 18] as well as rules to generalise and allow for behaviours unrelated to the ones 
in the log to be observed. The α-algorithm is one of the many algorithms used in process mining, aimed at 
reconstructing causality from sets of events sequence. It was first put forward by van der Aalst, Weijters and Măruşter 
[18]. Several extensions of it have since been presented, as we utilized below.  

If the set of learning activities, as implemented in our OWL file (Fig. 3), are notated as follows; where A = Enrolment, 
B = Lesson, C = Assessment and D = Feedback. These Activities as they happen sequentially in reality take a 

workflow log as input and result in a workflow net being constructed. Workflow Logs is a 
definitive relationship management algorithm: where; W is a finite set of Events. T is a finite set of transitions such 
that W /T ¼; Hence,  is a set of directed pattern, called the flow relation. 

 
                    Fig 5. Control Flow of process model corresponding to the workflow log 

In Fig. 5, it is easy to check that all the traces above are possible in the model. The initial marking (A) is enabled 
because of the token at the start of the learning activities. The control-flow for its execution (X  Y) results in the 
marking that learner (X) performs an activity that is casually followed by activity (Y) [46], hence, the stronger the 
relation between X & Y. Now this enables the execution of the remaining actions to the final event (D) in the path.  

From our model in protégé, user profile (Ben_Steward_27) learning behaviour can be described by the sequence of 
his Actions in each case as follows; 

  Table 1. Sequence of Actions in a Learning Process 

LearnerProfile: (Ben) 
Action(1)     =     {Login} 
Action(2)     =     {Registration} 
Action(3)     =     {Search, Content_View} 
Action(4)     =     {Typing, Editing} 
Action(5)     =     {Save, Upload} 
Action(6)     =     {Start_Lesson} 

 

Hence, the α-algorithm [18] for Ben learning behaviour discovered from the frequent sequence of the learning 
profile as described in Table 1. will be as follows: 

(Action[1-6]) = {Login, Registration, Search, Content_View, Typing, Editing, Save, Upload, Start_Lesson} 
 
These identified Actions can be modelled using the Association Rule in data mining [24, 25]. However, our approach 
aims at discovering similar rules but then without focusing on a particular variable to discover user interaction patterns 
and then respond by making decisions based on adaptive rules centred on the captured user profiles. The goal is to 
discover and create rules of the form; 

X  Y (IF X THEN Y) where X = Learning pattern (Antecedent) and Y= Learning pattern extension (Consequent) 
 
                   This rule is similar to the SWRL Syntax;     atom ^ atom .... → atom ^ atom 
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                   e.g. Learner(?X), hasAction(?X, ?Registration) -> Enrolment_Process(?X)  
 
The approach makes it possible to efficiently generate learning patterns based on the sequence or control-flow of the 
learning behaviours. Driven by these variables from the Action logs, it is possible that the following learning path can 
be suggested to improve the semantics of learning patterns. Rules like “Learners that have similar instances as 
Student_Ben are most likely to come across Case(Ben)” can be derived.  

Student(?X), isPartOf (?X, ?Course), hasActionSimilar (?Actions, “Ben”) -> hasSimilarLearningPathTo(?X, “Ben”) 
 
Similarly, the Association rule states that when X occurs, then Y occurs with certain probability by using the frequent 
item-set (I) to generate rules [24]. This implies that for each process of non-empty Action (A) from our learning model 
in Fig. 3, X  Y is an association rule of the form; Y = (X – A) where, Confidence (X  Y) ≥ minimum Confidence 

Support (X  Y) = support (X ᴗ Y) = support (A). Hence, Confidence (X  Y) = support (X ᴗ Y) / support (A)  
 
Consequently, if X = Case(Ben) and Y = Ben(Action[1-6]) and Suppose that X and Y are represented according to 
utilization factor of frequency ranging from 0.01 to 0.09, where X has a support of 0.04 and Y has a support of 0.03 
from the represented variables; then the expression of certainty X  Y is 0.03 / 0.04 = 0.75.  

This means the prediction variable that 75% of Learners that has instances of X as in Case(Ben) may later come across 
Y as in Ben (Action[1-6]).  

Hence, the Rule expression; Learner(?X), hasSimilarLearningPathTo(?X, “Ben”) -> hasCase(?X, “Ben”). 

 
5.  Discussion 
 
The development of semantic mining tools entails three building blocks Annotated Event Logs, Ontologies and 
Semantic Reasoning that aim at discovering, conformance and extension of processes. Any pattern or learning 
behaviour can be discovered as a consequence or condition of a rule. Ontology can be layered on top of these existing 
information asset to provide more enhancements to real processes in the same manner as process mining. This 
characteristic is the ability to match same idea as well as use the coherence and structure itself to inform and answer 
questions of relationships. Hence, by specifying one concept (say Learning_process) one knows that we are also 
referring to another concept (Learners or Students) say Learners learn through engaging in a Learning_process.  

The semantic approach described in this paper has been used to develop semantic process mining plug-ins. In this 
paper, we utilised an OWL version 2 model for our learning process, which we implemented using Protégé 4 and 
Pellet 2 [23] and Disco process management system by fluxicon [21] to process our data. In addition, the expressivity 
of our OWL was extended by adding SWRL rules to the implemented ontology based on the concrete syntax of the 
SWRL proposal [26]. This work has been able to utilise the frameworks as described in this paper to propose a 
semantic rule-based approach supported by process mining technique for personalised adaptive learning. 
 
6.  Conclusion and Future Work 
 
      In this paper, process mining is used to discover, monitor and improve the set of recurrent behaviours that can be 
found within learning processes. The technique is utilised in order to address the problem of determining the presence 
of different learning patterns in process models. A semantic process model such as the one described in this paper 
(User-Oriented Knowledge-Base System) will be of great impact and significance in this area to drive learning by 
using process mining techniques to discover rules through semantic reasoning and adopting web languages such as 
OWL and SWRL. The outcome is of great importance in bridging the gap between the levels of learning for different 
users by providing them with the same learning opportunity, through a system that adaptively support the 
personalisation of contents based on data regarding the users learning behaviour or Actions. 
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Future work will focus on first applying the approach described in this paper to a case study of users with a particular 
learning difficulty. Then, we intend to tap on the increase in recording of information related to study behaviour of 
individuals in many organisations that are involved in the educational sector. For this, we plan to use our technique to 
analyse study behaviour using a database containing detailed information about learning styles of students, as some 
of these educational processes are very unstructured The goal is to cover the whole spectrum of the approach presented 
in this paper to provide more authenticity and better support for automated learning systems. 
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