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Abstract Hydroxyapatite [Ca10(PO4)6(OH)2], Ca-HA, is
the emblematic mineral phase of bones, and is known for

its complexity and difficult to reproduce chemical synthe-

sis. Among the routes developed for obtaining this calcium
phosphate, the so-called double-decomposition method is

well described and often utilized. However, the Ca-HA

synthesized by this way forms a larger mass of ammonium
nitrate by-product than the desired product itself. Pure Ca-

HA for orthopedic or dental applications usually uses

thermal treatment to eliminate residual nitrogen com-
pounds by releasing them in the atmosphere. Contemporary

sol–gel methods currently in fashion produce even more

degradation products including solvents and precursor
organics. We now report on a green synthesis procedure

which makes pure Ca-HA with minimum by-product. The

synthesis calls for reacting phosphoric acid with calcium
carbonate in water suspension to form a Ca-HA gel of fine

particles. This gel can be filtered and the solids recovered,

dried, and sintered, but can also be used as-is for envi-
ronmental applications such as heavy metal ions or textile

dye removal from polluted waste streams. This green Ca-

HA has been used to trap heavy metals in flue gases and in
municipal waste water treatment plants. This low-cost and

low-environmental impact material can be developed for

medical use because of its absence of impurities, and in
catalytic productions for remediation of many environ-

mental problems. Recent results show Ca-HA can also

serve in reforming biogas compositions into useful pro-
ducts, after deposition of selected metal elements. Some of

these results will be communicated in this paper.

Introduction

Hydroxyapatite [Ca10(PO4)6(OH)2], labeled thereafter Ca-

HA, is well known as a multi-function/multi-utilization
material in different fields including biomaterials and food

industry [1–4]. As the main component of animal bone and

defects, Ca-HA-based materials are largely used for
reconstruction or replacement of human bone defects [2,

5]. Ca-HA is also widely used as nutrient supplements in

drinks, meats, or animal foods [4]. During the last years,
research has been strongly focused on the use of Ca-HA in

the fields of heterogeneous catalysis and toxic metal fixa-

tion. Catalytic use of Ca-HA relates to its intrinsic acid–
basic properties, possible high-specific surface area, ther-

mal stability, and capacity to support different active

phases including metals, metal salts, and oxides etc. [6–
10]. The performance of Ca-HA for the removal of toxic

metal from an aqueous solution has been also widely
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demonstrated at laboratory scale. Ca-HA has strong affinity

for the fixation of different metals including lead, cad-
mium, copper, zinc, strontium, mercury, cobalt, etc. [11–

16]. However, to the best of our knowledge, there is no

application of Ca-HA at industrial scale for the treatment of
wastewaters, despite a large number of laboratory reports

with very promising results. In fact, for the viability of a

given process, in particular for environmental purposes,
costs must be minimized.

Various processes have been developed for the synthesis
of Ca-HA. We now review the principal methods for Ca-

HA synthesis, prior to communicating our synthesis strat-

egy for obtaining Ca-HA from low-cost starting materials.
Double decomposition is the most common method for

the synthesis of Ca-HA. It consists in the decomposition of

both calcium and phosphate sources, for example
Ca(NO3)2 and (NH4)2HPO4 [18] or NH4H2PO4 [7], in an

aqueous solution to form Ca-HA precipitate. Ammonium

hydroxide is usually used for the control of pH. At room
temperature, the reaction time was found to be crucial for

the formation of a pure apatitic phase, as described previ-

ously [19, 20]. Ca-HA of high-specific surface area (up to
about 150 m2 g-1) was obtained [7]. But the product needs

to be filtered and washed several times to eliminate all

counter-ions, i.e., NO3
- and NH4

? [18]. This step is usu-
ally arduous since fine Ca-HA particles are formed by

precipitation. Considering the theoretical equation for the

formation of Ca-HA from Ca(NO3)2 and NH4H2PO4 [8],
(NH4)2HPO4 [18], or (NH4)3PO4 [19], the quantity of by-

products generated by this way is higher than the mass of

Ca-HA (Eqs. 1–3). The difficulty of filtering and washing
steps, the generation of by-products, and the high costs of

the starting materials are the main drawbacks of this

process.

10Ca NO3ð Þ2þ 6NH4H2PO4 þ 14NH4OH
! Ca10 PO4ð Þ6 OHð Þ2þ 20NH4NO3 þ 12H2O ð1Þ

10Ca NO3ð Þ2þ 6 NH4ð Þ2HPO4 þ 8NH4OH
! Ca10 PO4ð Þ6 OHð Þ2þ 20NH4NO3 þ 6H2O ð2Þ

10Ca NO3ð Þ2þ 6 NH4ð Þ3PO4 þ 2NH4OH
! Ca10 PO4ð Þ6 OHð Þ2þ 20NH4NO3 ð3Þ

Sol–gel technique is also commonly used for the syn-

thesis of a large number of solid materials, including Ca-

HA [21–24]. Bezzi et al. [21], Anee et al. [22], and Bakan
et al. [24] detailed the synthesis of Ca-HA by this method

starting from Ca(NO3)2, (NH4)2HPO4, and NH4H2PO4 as

starting reactants. Ammonium donor agents such as urea
and ammonium hydroxide, gelling agents such as ethyle-

nediamminetetraacetic acid (EDTA), and organic solvent

such as ethanol were also used in this method. However,

this approach calls for a multi-step synthesis, as illustrated
in the flow sheet by Bezzi et al. [21], with the generation of

a very large quantity of by-products. For example, the

production of 100 g of Ca-HA required 260 g of
Ca(NO3)2!4H2O, 80 g of (NH4)2HPO4, 360 g of EDTA,

and 90 g of urea [21]. This does not conform to the actual

tendency of green chemistry.
Ca-HA nanoparticles with controlled morphologies

could be obtained by reverse microemulsion technique
using Ca(NO3)2 and H3PO4 as starting materials and dif-

ferent organic solvents and surfactants [25]. These last ones

are water-immiscible and form a reverse micelle with the
aqueous phase. Ca-HA with different morphologies and

specific surface areas could be obtained under the effect of

various parameters such as ratios of inorganic cation to
anion, ratios of water to oil, the nature of surfactant, etc.

However, this procedure is not environmentally friendly

because all organic solvents and surfactants were evapo-
rated and burned for the recovery of Ca-HA powder. Gopi

et al. [26] investigated the Ca-HA nanoparticles in an

aqueous solution using glycine–acrylic acid as templates.
Ca-HA particles of about one hundred nm were formed but

a large amount of templates was required (20 mol of

templates for 5 mol of Ca(NO3)2!4H2O and 3 mol of
(NH4)2HPO4) and which were also found as by-products of

the synthesis process after filtration and washing steps.

Mechanochemical route via solid–solid reaction was
also described for the synthesis of Ca-HA particles [27,

28]. It consists in the milling of a solid mixture of calcium

and phosphate sources. This technique can prevent the use
of a solvent. However, the reaction may be incomplete

despite long reaction times under rigorous conditions

(high-rotation rate, high-weight ratio of milling balls to
solid reactants) [27].

In order to reduce or eliminate the generation of by-

products, a synthesis process using calcium hydroxide and
orthophosphoric acid as starting materials was developed

[7, 29, 30]. In general, calcium hydroxide suspension could

be progressively neutralized by orthophosphoric acid. In
fact, these two reactants contain only H? and OH- as

counter-ions leading to the absence of any by-product other

than water (Eq. 4). So, no further purification step is
required for this process. Ca-HA of food and pharmaceu-

tical grade is actually produced by this way at the industrial

scale [4, 29].

10Ca OHð Þ2þ 6H3PO4 ! Ca10 PO4ð Þ6 OHð Þ2þ 8H2O ð4Þ

According to Eq. (4), the use of Ca(OH)2 and H3PO4

should generate Ca-HA and avoid the generation of by-

products. But the energetic and economic balance of the

process can still be improved. Indeed, Ca(OH)2 is obtained



by calcination followed by hydration of CaCO3. This last

one is abundantly available in nature as the cheapest cal-
cium source. From this point of view, we focused our latest

research on the use of CaCO3 and H3PO4 as starting

reactants for the synthesis of Ca-HA under moderate con-
ditions. The only by-product of the reaction is carbonic gas,

which automatically leaves the reaction mixture. The

expected reaction is written as follows:

10CaCO3 þ 6H3PO4 ! Ca10 PO4ð Þ6 OHð Þ2þ10CO2

þ 8H2O ð5Þ

In this paper, we present the one-step synthesis of Ca-

HA from CaCO3 and H3PO4. The reactivity of the resulting

Ca-HA in different applications is also described, in par-
ticular for the treatment of synthetic and real wastewaters

containing toxic metals and organic pollutants.

Materials and methods

Chemical products

Calcium carbonate powder (98 %, Fisher Scientific) and
orthophosphoric acid (85 wt% in water, Merck) were used

as received. All other chemical products such as lead(II)

nitrate, lead(II) chloride, etc. were also purchased from
commercial suppliers including Fisher Scientific, Merck,

Labosi, and Prolabo.

Synthesis of Ca-HA at atmospheric pressure

This synthesis was carried out in an open glass U-form reactor
(i.d.: 10 cm, length: 30 cm, volume: 2.3 L) with a vertical

stainless-steel stirrer. For a given synthesis, 800 mL of water

and 200 g of CaCO3 (2 mol) were introduced in the reactor
under stirring (400 rpm). When the pH of the suspension was

stable, 80 mL of H3PO4 (1.2 mol) was pumped into the
suspension of CaCO3 at the rate of 2 mL min-1. The reaction

was kept at constant temperature (80 !C) for different reac-

tion times. Aliquots withdrawn from the reaction mixture
were filtered on a 0.45 lm filter paper to separate liquid and

solid phases at different reaction times. The solid was washed

and dried overnight prior to further analyses and character-
izations. The liquid phase was acidified with nitric acid to

avoid any further precipitation from calcium cations and

orthophosphate species present in the liquid phase.

Physico-chemical characterizations

X-ray diffraction (XRD) of powder products was carried out

on a Phillips Panalytical X’pert Pro MPD diffractometer.

Simultaneous thermogravimetry and differential scan-

ning calorimetry (TG-DSC) analysis was carried out in a
TA Instruments SDTQ600 analyzer with a heating rate of

5 !C min-1.

Scanning electron microscopy coupled with energy-
dispersive X-ray spectroscopy (SEM-EDX) measurement

was performed on a Philips XL30 ESEM apparatus.

Infra-red (IR) spectroscopy measurement was carried
out on a Shimadzu FTIR 8400S spectrometer.

The rheological behavior of Ca-HA gel was investigated
using a 135 Rheostress (HAAKE RS 150 rheometer).

Dynamic viscosity was measured in the shear rate range of

0–500 s-1 at 20 !C.
The elemental analysis of phosphorus and calcium in the

liquid phase was carried out with inductively coupled

plasma atomic emission spectroscopy (ICP-AES) on a
HORIBA Jobin–Yvon Ultima 2.

Results

Ca-HA synthesis

The initial suspension of CaCO3 had a basic pH of 8.8 at

80 !C. When the first drops of H3PO4 were added, carbonic
gas was strongly emitted from the reaction mixture. The

pH of the suspension decreased rapidly to about 4. Then, it

increased slowly to about 6.5 after 24 h of reaction at
80 !C. After cooling to room temperature, a stable gel

containing fine particles (SEM analysis section) was

obtained. This gel contained about 70 wt% of water,
determined by weight loss measurement at 105 !C. As

shown in Fig. 1, the dynamic viscosity of the gel decreased

with the increase of shear rate, signifying that this gel
behaved as a thixotropic fluid. The critical value of the

dynamic viscosity (g?) reached 0.14 Pa s when the shear
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rate was at 500 s-1. Above this point, the liquid flowed.

When the shear stress was stopped, the liquid recovered its
structure.

Elemental analysis of the filtrate (liquid phase) by ICP-

AES shows that soluble calcium and phosphate species
were present at very low concentration, which were all

smaller than 1 mmol L-1. This means that all initial cal-

cium and phosphate were transformed and/or remained in
the solid state. The analysis of the solids obtained at 3 and

24 h of reaction shows also that the molar ratio of Ca to P
was close to 1.67, which was the initial value of the

reactant mixture introduced into the reactor.

TG analyses of the solid samples withdrawn at different
reaction times from the reactor are present in Fig. 2. The

first weight loss below 100 !C corresponded to the evap-

oration of surface moisture which was similar for both
solids obtained at 3 and 24 h of reaction. The next weight

loss at 112 !C could be attributed to the dehydration of

monocalcium phosphate monohydrate (MCPM, Ca(H2-

PO4)2!2H2O) [31]. The slight next weight losses in the

temperature range of 175–360 !C may be attributed to the

dehydration/condensation of DCPD (dicalcium phosphate
dehydrate, or brushite, CaHPO4!2H2O) and DCPA (dical-

cium phosphate anhydride, or monetite, CaHPO4) [31].

Residual calcium carbonate was thermally decomposed
around 610 !C, followed by the decarbonation of carbon-

ated apatite (CAP) around 720 !C [31, 32]. In parallel with

these apparent weight losses, a continuous weight loss was
observed with the increase of the temperature up to

1310 !C, which was assigned to the partial transformation

of OH- anions of Ca-HA to molecular water and bivalent
oxygen. This transformation was nearly completed when

the temperature reached 1310 !C and oxyapatite (OAP,

Ca10(PO4)6O) was formed [33]. All these weight losses
were endothermic (DSC results not presented).

From TG curves, the content of residual calcium car-

bonate could be calculated, which was 4.0 and 0.6 wt% for
the solids withdrawn at 3 and 24 h of reaction, respec-

tively. So, the reaction at 80 !C for 24 h allowed con-

verting nearly completely the initial calcium carbonate into
calcium phosphates. This temperature of 80 !C was found

as the critical value, because below 80 !C high-residual

quantities of calcium carbonate remained in solid products
despite a long reaction time of 72 h (results not presented).

In order to identify the crystalline phase of the resulting
solid calcium phosphates, XRD was performed, and Fig. 3

presents XRD patterns of the solids obtained at 3 and 24 h

of reaction.
As expected, only small amounts of calcium carbonate

(2h of 29.400!) remained in the solid product obtained after

3 h of reaction, and trace quantities were found in the solid
product obtained after 24 h of reaction. This confirmed

again the results of TG analyses above for the content of

residual calcium carbonate. All other peaks corresponded
to the pattern of Ca-HA, as the main crystalline calcium

phosphate formed. Some traces of CAP were also detected

as observed by TG analysis.
In summary, the one-step reaction of calcium carbonate

powder with orthophosphoric acid in an aqueous solution

(weight ratio of water to calcium carbonate equal to 4, and
molar ratio of calcium to phosphorus equal to 1.67) at

80 !C for 24 h led to (i) a nearly-complete decomposition

of calcium carbonate; (ii) the formation of Ca-HA as the
main crystalline phase of the solid product; (iii) the for-

mation of a stable gel containing fine Ca-HA particles; and

(iv) the absence of soluble counter-ions in the Ca-HA gel.
The advantages of the present synthesis process compared
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to the literature data are given in Table 1. No residue

generated the use of Ca(OH)2 and H3PO4 as starting

reactants. However, Ca(OH)2 costs more than CaCO3,
since Ca(OH)2 is industrially obtained from CaCO3 by

calcination and hydration steps. We will see in the next

section that the additional benefit in the use of CaCO3

compared to Ca(OH)2, when synthesized Ca-HA is used for

the fixation of toxic metals. Compared to other soluble
calcium and orthophosphate sources, the present process

has as advantages to be in one-step at moderate conditions;

to generate CO2 as the only by-product; and to use the
cheapest initial reactants.

Reactivity of the as-synthesized Ca-HA in the removal
of lead(II) from an aqueous solution

We were successful in the preparation of Ca-HA from
CaCO3 and H3PO4 by a one-step synthesis process. Two

types of products were obtained: (i) Ca-HA gel which was

the as-synthesized product; and (ii) Ca-HA powder which
was obtained from Ca-HA gel after classical filtering and

drying steps. It is interesting now to test their reactivity/

property in some selected applications.
Ca-HA gel and powder (filtered and dried overnight at

105 !C) were first tested in the removal of lead(II) as a

model toxic metal. An aqueous solution containing
6000 mg L-1 of Pb2? ions was prepared from lead nitrate

and distilled water. This concentration was chosen for the

evaluation of sorption capacity of the sorbents. For the

lead(II) removal experiment, 300 mL of the prepared lead
nitrate solution was introduced into a 700 mL glass reactor.

Then 2.4 g of Ca-HA powder or an equivalent quantity of

Ca-HA gel was added into the reactor at the stirring speed
of 350 rpm and at ambient temperature, ca. 25 !C. The

concentrations of lead, calcium, and phosphorus in solution
during the run were determined using the ICP-AES

technique.

Figure 4 shows the abatement of lead(II) when Ca-HA
gel and Ca-HA powder were used in the same experimental

conditions. Ca-HA gel shows faster lead(II) removal

kinetics compared to that of Ca-HA powder. For example,
at 180 min of contact, the removal of lead(II) reached 73

and 36 % for Ca-HA gel and Ca-HA powder, respectively.

The filtration and drying steps may reduce partially the
lability of the active species on the surface of Ca-HA

particles [37, 38]. For both sorbents, lead(II) was nearly

totally removed from the solution, at different contact
times. This means that the sorption capacity (Qe) of these

two sorbents can reach at least 750 mgPb gsorbent
-1 . This Qe is

much higher than those found in the literature for the
sorption of lead(II) by Ca-HA synthesized from soluble

calcium salt such as calcium nitrate, which did not exceed

450 mgPb gsorbent
-1 [11]. This higher performance of Ca-HA

synthesized from CaCO3 as calcium source can be related

Table 1 Summary of different processes for the synthesis of Ca-HA

Calcium
source

Phosphate
source

Surfactant,
template

Synthesis
conditions

Main advantages Main drawbacks Ref

CaCO3 H3PO4 No 80 !C, 24 h One-step synthesis
Low-cost reactants
Moderate
conditions

Only CO2 as by-product This
work

Ca(OH)2 H3PO4 No 80–90 !C,
24 h

One-step synthesis
Without residues
Moderate
conditions

Calcination of CaCO3 into Ca(OH)2 [8]

Ca(NO3)2 NH4H2PO4

(NH4)2HPO4

(NH4)3PO4

No 25–80 !C,
up to
120 h

Good homogeneity
of the reaction
mixture

Great quantity of by-products in both
liquid and gas phases High cost of the
initial reactants

[8, 18,
19]

CaCl2 Na3PO4 No Microwave
assisted
synthesis

Good homogeneity
of the reaction
mixture

Na? and Cl- as by-products High cost of
the initial reactants

[34]

CaCl2 (NH4)2HPO4 Petroleum ether
as oil phase,
KB6ZA as
surfactant

Sol–gel Good homogeneity
of the reaction
mixture

Great quantity of by-products (inorganic
and organic) in both liquid and gas
phases High cost of the initial reactants

[35]

Ca(NO3)2 H3PO4

(NH4)2HPO4

Glycine, acrylic,
C6, C12, C20,
polymers

Sol–gel Good homogeneity
of the reaction
mixture

Great quantity of by-products (inorganic
and organic) in both liquid and gas
phases High cost of the initial reactants

[25,
26]

(Ca(C2H3O2)2 (PO(OC2H5)3 Alcohols Sol–gel Good homogeneity
of the reaction
mixture

Multi-step, great quantity of by-products,
calcinations at 1000 !C High cost of the
initial reactants

[36]



to the insertion of carbonate anions in the apatitic structure,

as shown previously by Miyake et al. [39]. The replace-
ment of a phosphate anion by a carbonate anion leads to a

destabilization of the apatitic structure because of the

change in charge balance. Carbonate anions can be
attacked by the acidity of lead nitrate solution (initial pH of

about 5). This promotes the fixation of lead(II) on Ca-HA

particles. XRD analysis of the solid recovered after lead(II)
removal showed the formation of lead hydroxyapatite

(Pb10(PO4)6(OH)2, JCPDS standard No. 01-087-2477) as

the main lead-containing crystalline phase (results not
presented). SEM observation highlighted also the fixation

of lead on the surface of Ca-HA particles (Fig. 5). Ca-HA

powder dried at 105 !C contained micrometric particles of
various sizes (Fig. 5a). Layers of lead-containing com-

pounds were observed on the surface of the solid recovered

after lead(II) removal experiment (Fig. 5b). No evidence of
lead(II) migration inside the solid particles was observed,

when SEM images were focused on polished sections of

particles, initially immobilized in a resin matrix (Fig. 5c).
The presence of lead occurred only inside porous particles,

with lead coating the inner surfaces of the pores. There was

no evidence for the formation of a mixed calcium and lead
phosphate or solid solution of lead and calcium phosphate.

Reactivity of the as-synthesized Ca-HA in the removal
of lead(II) from a flue gas

Work has been done on the fixation of several toxic metals
in aqueous solutions on Ca-HA powder. However, there is

practically no study on the fixation of metals in gas phase

using Ca-HA-based materials. This part communicates first
results on the fixation of lead(II) from a flue gas onto Ca-

HA powder.

A 5 wt% PbCl2/CaCO3 was prepared from commercial

PbCl2 and CaCO3 powder by impregnation, which was
then used as the source of vaporized lead(II) by heating at

600–850 !C. Detailed kinetic study on the vaporization of

PbCl2-supported CaCO3 was shown previously [40]. The
abatement of vaporized lead(II) was carried out in a hori-

zontal tubular quartz tube which was heated electrically at

600–850 !C (Fig. 6). When the reactor reached the desired
temperature, a weighed quantity of 5 wt% PbCl2/CaCO3

was rapidly pushed inside the reactor, followed by the set-
up of a filter at the outlet of the reactor. The filter was

composed of a quartz tube, filled with Ca-HA powder as

reactive phase. Then, an air flow rate was applied in order
to create a flue gas containing vaporized lead(II) through

the Ca-HA filter. The analysis of Pb content introduced into

the reactor before the reaction and remaining after the
reaction allowed to determine the vaporized lead(II) frac-

tion. This vaporized fraction may be condensed on the

reactor wall, fixed on Ca-HA filter, or trapped in the final
nitric acid solution. Elemental analyses of lead(II) present

in the filter and in nitric acid solution allowed to deduce the

gaseous lead(II) lost elsewhere in condensed form and
complete the mass balance.

Figure 7 presents the reactivity of Ca-HA powder in the

removal of lead(II) from a synthetic flue gas at different
temperatures. When the temperature increased, the vapor-

ized fraction of lead(II) increased. Since the Ca-HA filter

was set at the outlet of the reactor, about one-third of
vaporized lead(II) was condensed. In contact with Ca-HA

filter, most vaporized lead(II) was fixed on the filter and

only traces of lead(II) were found in HNO3 solution. This
demonstrated that Ca-HA powder also shows remarkable

affinity for vaporized lead(II) in the gas phase. Further

studies will be done in order to determinate the sorption
capacity of Ca-HA and to understand the mechanism of

lead fixation in gas phase.

Synthesis of CAP and its bioactivity

Under atmospheric pressure, CO2 formed from the
decomposition of CaCO3 left automatically the reaction

mixture. But a small amount of the initial carbonate was

incorporated in the apatitic structure of the final Ca-HA
particles, as shown by TG (Fig. 2, peak at 720 !C) to form

CAP. There is great interest in the synthesis of this CAP,

since it is well known to be more effective than Ca-HA for
bone and dental tissue reconstitution [41, 42].

A modification of the present synthesis process was

implemented in order to increase the carbonate content in
Ca-HA structure which needs to keep CO2 in contact with

the reaction mixture. The objective was to obtain Ca-HA

containing at least 4 wt% of carbonate in its molecular
structure. This carbonate content is the classical value in
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the mineral fraction of human bone. For this synthesis,

10 g CaCO3 and 45 mL H2O were initially introduced in a
250 mL close stainless-steel reactor. After heating to

80 !C, 6.9 g of H3PO4 was quickly injected into the reactor

by an injection valve and the reaction started by adjustment
of the stirring rate at 800 rpm. The final pressure in the

reactor was found to be about 13 bar, due to the formation

of CO2 and the water vapor pressure at 80 !C in the closed
reactor. After 48 h of reaction, the powder was recovered

by filtration and drying steps. Details of the synthesis

process were reported [32].

Figure 8 compares IR spectra of two solids obtained

under atmospheric pressure and under 13 bar. Peaks of

phosphate groups were found at 1310–900 and
620–500 cm-1. The low-intensity peak at 630 cm-1 was

attributed to hydroxyl groups. As expected, characteristic

peaks of carbonate groups inserted in the apatitic structure
were found at 1545, 1450, 1415, 880, and 870 cm-1 [32].

The intensity of the carbonate bands of the product syn-

thesized at 13 bar was much higher than that of the product

Fig. 5 SEM images of a Ca-HA powder dried at 105 !C, b lead(II)-
loaded Ca-HA powder, recovered after lead(II) removal, c lead(II)-
loaded Ca-HA powder after immobilization in a resin and polishing to
look inside particles

Fig. 6 Scheme of reactor for the fixation of lead(II) in gas phase on
Ca-HA powder
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synthesized at atmospheric pressure. To quantify this dif-
ference, TG analysis was performed on the product syn-

thesized at 13 bar and the result is presented in Fig. 9. Only

a trace amount of remaining unreacted CaCO3, which was

decomposed at about 610 !C, was observed and was con-

firmed by XRD characterization. From the decarbonation
of CAP in the temperature range of 740–1250 !C, the

carbonate content of the product was determined to reach

4.8 wt%. This was higher than the carbonate content of the
product synthesized at 80 !C under atmospheric pressure

for 24 h of reaction (Fig. 2), which was only 2.5 %. So, the

contact of the reaction mixture with pressurized CO2

atmosphere increased the carbonate content in Ca-HA

structure as could be expected.
The bioactivity test was then carried out for CAP syn-

thesized under high-CO2 pressure. Details of this test were

described elsewhere [32]. As shown in Fig. 10, after
incubation in Tris–SBF-27 mM, the surface of CAP was

covered by new calcium phosphate deposits resembling

those described in earlier observations [43]. This coating
related to good bioactivity of synthesized CAP, appropriate

for bone and dental tissue reconstitution.

Conclusions

Ca-HA was successfully synthesized from CaCO3 and

H3PO4 as convenient and low-cost starting materials by a

one-step synthesis process operated at moderate reaction
conditions (80 !C, 24 h, and atmospheric pressure). CaCO3

powder reactant could be completely decomposed and both

initial products could be totally precipitated into Ca-HA.
This synthesis process demonstrated several advantages

compared to other methods starting from soluble calcium

salts. Ca-HA could be obtained in gel or powder forms
which were found to be active in the bioactivity test, and to

be very efficient in the fixation of lead as a toxic model

metal in liquid or gas phases. This opens new approaches in
enlarging the use of Ca-HA for environmental purposes

and for biomaterial development, when Ca-HA can be

easily obtained from economical starting materials using
simple one-step synthesis process.
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