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Modeling and simulation have an important role in engineering and design de-
partments and raise multiple problems, particularly in dynamics in the case of large
assemblies with connections. These connections play a major role in the dimension-
ing process because they are subject to highly nonlinear local phenomena (contact
and friction) which are even more important in fast transient dynamic problems and
require very fine meshes in order to be represented correctly [1]. Therefore, the choice
of an efficient computational method is of vital importance to simulate such problems
within reasonable calculation time.
The aim of the present work is to build a specialized method to answer the prob-

lems previously describe due to the fact that the non-linearities are localised in the
connections. The applications concern elastic structural assemblies in dynamics with
local nonlinearities, such as unilateral contact with friction. Our approach is based
on a decomposition of the assembly into substructures and interfaces. An iterative
scheme based on the multiscale LArge Time INcrement (LATIN) method [2] is used
to solve the sub-structured problem. The multiscale LATIN method is a mixed method
which deals with both velocities and forces at the interfaces simultaneously. Within
each substructure, the problem is solved using the finite element method. This strat-
egy has already been applied successfully to a variety of static problems. Here, the
present work concerns the extension of the multiscale approach to dynamic problems.
The multiscale approach consists in solving a homogenized macroscopic problem in
order to accelerate the convergence of the iterative scheme.
First, we introduce the multiscale approach in the LATIN strategy for the dynamic

case, focusing particularly on the construction of the ”macroscopic” problem in space,
which has a less conventional meaning in this case than in statics. We present some
results about the convergence property of the multiscale LATIN method in dynamics.
This iterative computational strategy is also suitable for parallel computing on PCs
cluster. It allows to compute problems with high degrees of freedom. We present the
property of this parallel algorithm and illustrate its efficiency through 3D examples.
Finally we present 3D applications with high numbers of contact interface.
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Abstract

The aim of the present work is to develop an efficient strategy for the simulation of
dynamic problems with multiple contacts. The approach is based on the multiscale
LATIN method with domain decomposition. This iterative computational strategy is
suitable for parallel computing on PCs cluster. It allows to compute problems with a
large number of degrees of freedom. This strategy has already been applied success-
fully to a variety of static problems; here, it is extended to dynamics.

Keywords: multiscale computational method, transient dynamics, domain decompo-
sition, LATIN method, contact, friction, assembly.

1 Introduction
Modeling and simulation have an important role in engineering and design depart-
ments and raise multiple problems, particularly in dynamics in the case of large as-
semblies with connections. These connections play a major role in the dimensioning
process because they are subject to highly nonlinear local phenomena (contact and
friction) which are even more important in fast transient dynamic problems and re-
quire very fine meshes in order to be represented correctly [1]. Therefore, the choice
of an efficient computational method is of vital importance to simulate such problems
within reasonable calculation time.
Among the methods usually used to deal with these problems in dynamics, one can
quote the FETI method (often qualified dual Schur method) applied to transient re-
sponse simulations [2]. The dual substructuring method can be also associated with
multispace-multiscale methods: for example, in [3].
The aim of the present work is to build a specialized method to answer the problems
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previously describe due to the fact that the non-linearities are localised in the connec-
tions. The applications concern elastic structural assemblies in dynamics with local
nonlinearities, such as unilateral contact with friction. Our approach is based on a
decomposition of the assembly into substructures and interfaces. An iterative scheme
based on the multiscale LArge Time INcrement (LATIN) method [4, 5] is used to
solve the sub-structured problem. The multiscale LATIN method is a mixed method
which deals with both velocities and forces at the interfaces simultaneously. Within
each substructure, the problem is solved using the finite element method. This strat-
egy has already been applied successfully to a variety of static problems. Here, the
present work concerns the extension of the multiscale approach to dynamic problems.
The multiscale approach consists in solving a homogenized macroscopic problem in
order to accelerate the convergence of the iterative scheme.
First, we introduce the multiscale approach in the LATIN strategy for the dynamic
case, focusing particularly on the construction of the ”macroscopic” problem in space,
which has a less conventional meaning in this case than in statics. This iterative com-
putational strategy is also suitable for parallel computing on PCs cluster. It allows
to compute problems with a large number of degrees of freedom. This strategy was
programmed in C++ in the framework of the finite element platform developed at the
LMT Cachan. Librairies such as MPI and METIS are used for the parallelization
of the strategy. We present the property of this parallel algorithm and illustrate its
efficiency through a 3D example of a bolted joint.

2 The multiscale LATIN method

First we present the multiscale domain decomposition method we propose to carry
out transient dynamic problem. This method is based on three ingredients: spatial
decomposition of the domain, separation of the scales and a resolution algorithm.
The main features of these three ingredients are developed below. The details of the
method itself can be found in [4].

2.1 Decomposition into substructures and interfaces

An assembly is a set of substructures which communicate with one another through
interfaces, see Figure 1(a). Each interface represents a connection. The substructures
and interfaces have their own variables and equations (admissibility, equilibrium and
behavior). Two connected substructures are denoted ΩE and ΩE′ and the associated
interface is designated by ΓEE′.
Each interface is a mechanical entity with its own variables and its specific behavior,
which depends on the type of connection. Many different types of connections, e.g.
frictional contact, can be modeled with this approach. The interface variables consist
of two force fields FE, FE′ and two dual velocity fieldsWE ,WE′ , see Figure 1(b). By
convention, FE and FE′ represent the action of the interface on the substructures, and
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(a) Reference problem (b) Exchange between interface 
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Figure 1: Decomposition of the reference problem into substructures and interfaces

WE and WE′ are the velocities of the substructures viewed from the interface. Thus,
the interface concept can be easily extended to the boundary, where the displacements
or the velocities or the forces are prescribed.

2.2 Multiscale extension

In order to ensure the theoretical scalability of the method, our approach introduces
a spatial description of the unknowns on two scales, called the macroscale and the
microscale. In this multiscale strategy, the interfaces play a major role of scale sep-
aration: the definitions of the microscopic and macroscopic fields are related to the
interface quantities of the substructured problem and are expressed prior to any dis-
cretization.

Let us consider an interface ΓEE′ whose unknowns (WE, FE) are divided into two
parts: WE = W m

E + W M
E and FE = F m

E + F M
E , where W M and W m denote respec-

tively the macro parts and the micro complements of the velocity field. The separation
of the two scales is obtained by means of the projection operator ΠΓEE′

, defined for
each interface. Over ΓEE′ , we writeW M and F M in the formXM =

∑
(X, eM

i )eM
i =

ΠΓEE′
X .

e  (M)
4e  (M)

3
M

M

e  (M)
2

e  (M)
1

MM

Figure 2: The affine basis functions {eM
i } of an interface ΓEE′

The choice of the macroscopic projector influences the efficiency of the algorithm.
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The selection of the optimum projector was studied in [7]. The basis functions {eM
i }

for a 2D problem are represented in Figure 2. The macroscopic kinematics which
results from this choice consists of two translations, one rotation and one strain.

2.3 The substructured problem

! The problem within a substructure: We assume a linear behavior of the material
under small perturbations. The external loadings are time dependent. The displace-
ment field at any point M of ΩE and at any time t of [0, T ] is uE(M, t), and the
associated space is U [0,T ]. εE is the strain field and the current state of the structure is
characterized by the stress field σE , whose associated space is S [0,T ]. The mechanical
problem to be solved within each substructure ΩE is:

Find the evolutions of the displacement field uE(M, t) and stress field σE(M, t) such
that:

• Kinematic admissibility: ∀t ∈ [O, T ], uE ∈ U [0,T ]

– Initial condition: ∀M ∈ ΩE

uE(t = 0) = U0
E

duE

dt
(t = 0) = V 0

E

– Boundary condition: ∀t ∈ [O, T ], ∀M ∈ ΓEE′

duE

dt

∣∣∣
ΓEE′

= WE u
E
∣∣
∂Ω1

= Ud F
E
∣∣
∂Ω2

= Fd

• Equilibrium: ∀t ∈ [0, T ], ∀u̇∗ ∈ U
[0,T ]
0 , σE ∈ S [0,T ]

∫

ΩE

(
ρ
d2uE

dt2
+ fd

)
u̇∗dΩ +

∫

ΩE

Tr (σEε(u̇∗)) dΩ =
∑

E′

∫

ΓEE′

FEE′u̇∗dΓ

• Elastic behavior: ∀t ∈ [0, T ], ∀M ∈ ΩE

σE = KEε(uE)

whereKE is the Hooke’s operator.

! The problem at the interfaces: The mechanical problem to be solved at each in-
terface ΓEE′ is:

Find the evolutions of the force fieldsFE(M, t), FE′(M, t) and velocity fieldsWE(M, t),
WE′(M, t) such that:

• Behavior: ∀t ∈ [O, T ], ∀M ∈ ΓEE′

(FE , FE′) = AΓEE′
(WE , WE′)

where the behavior is expressed as an evolution law AΓEE′
. This law can be

nonlinear, e.g. for frictional contact.
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2.4 Resolution strategy: the LATIN method

The LATIN (LArge Time INcrement) method [6] is a general, mechanics-based com-
putational strategy for the resolution of time-dependent nonlinear problems which op-
erates over the entire time-space domain. It has been applied successfully to a variety
of problems [7, 8, 9, 10].
In our particular case of linear elastic substructures, the solution uE(M, t), σE(M, t)
can be calculated from the boundary values WE(M, t), FE(M, t). Thus, a solution s
is represented only by the force and velocity fields on both sides of an interface. The
solution of Problem sref is expressed as a set of time-dependent fields within each
substructure and at the corresponding interfaces:

sref =
∑

E

sE sE =
{
FE(M, t), WE(M, t)

}

! Separation of the difficulties: The LATIN approach is based on the idea of dealing
with each difficulty separately in order not to have to solve a global problem and
a nonlinear problem at the same time. The equations are divided into global linear
equations and local nonlinear equations, so that sref = Ad ∩ Γ is the intersection of
two subspaces:

• Ad, the space of the solutions of the linear equations associated with the sub-
structures ΩE: kinematic admissibility, equilibrium, elastic behavior and admis-
sibility of macroquantities;

• Γ, the space of the solutions of the local equations related to the interfaces ΓEE′

and expressing their behavior.

! A two-step iterative strategy: The LATIN method consists in seeking fields of Γ
and Ad alternatively in two search directions E+ and E−, as shown in Figure 3. Each
iteration involves two stages, called the local stage and the linear stage:
Local stage: given sn ∈ Ad, find ŝ such that:

ŝn+1/2 ∈ Γ (interfaces)
ŝn+1/2 − sn ∈ E+ (search directions)

Linear stage: given ŝ ∈ Γ, find sn+1 such that:

sn+1 ∈ Ad (substructures)
sn+1 − ŝn+1/2 ∈ E− (search directions)

In our particular case of linear elastic substructures, the search directions are defined
as follows:

ŝn+1/2 − sn ∈ E+ ⇐⇒ F̂E − FE = k0(ŴE − WE)

sn+1 − ŝn+1/2 ∈ E− ⇐⇒ FE − F̂E = −k0(WE − ŴE)
(1)
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Figure 3: An iteration of the LATIN method

where k0 is a scalar parameter of the method. As long as k0 is positive, the solution
of the problem does not depend on the value of this parameter, which affects only the
convergence rate of the algorithm. In the dynamic cases which we are studying here,
the optimum value of k0 for a 1D problem is given by [10]:

k0 =
√

ρE

where E is the Young’s modulus and ρ the density. k0 can be interpreted as a local
impedance of the material.

An error indicator η is used to control the convergence of the algorithm. This indicator
is a measure of the distance between the two solutions sn+1 and ŝn+1/2:

η =

∑
E ∥sn+1 − ŝn+1/2∥2

∑
E ∥sn+1∥2 +

∑
E ∥ŝn+1/2∥2

where: ∥sn+1∥2
E =

∫ T
0

∫
∂ΩE

F T
E k

−1
0 FE + WEk0WEdSdt

2.5 The local stage: ŝn+1/2
This stage consists in building ŝn+1/2 ∈ Γ knowing sn ∈ Ad. Then, (ŝn+1/2 − sn)
must follow the search direction E+. Let us consider the case of a perfect interface
ΓE′E . The unknowns are (ŴE , ŴE′, F̂E , F̂E′) and must verify the behavior equation:

F̂E + F̂E′ = 0 ŴE = ŴE′ (2)

The solution of Equations 1 and 2 is:

ŴE = Ŵ E′ =
1

2
(WE + W E′) −

1

2k0
(F E + F E′)

F̂E = −F̂ E′ =
1

2
(F E − F E′) −

k0

2
(W E − W E′)
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The local stage consists in solving local problems at this interface. The case of more
complex interfaces (contact, friction,...) was developed in [7].

2.6 The linear stage: sn+1
This stage consists in building sn+1 ∈ Ad knowing ŝn+1/2 ∈ Γ:

• Macro admissibility: in order to ensure the admissibility conditions of the macro
variables, we introduce Lagrange multipliers W̃ M

E at the interfaces.

• Search direction: the unknowns (WE , FE) must follow the search direction.
Equation 1 must be modified by introducing the Lagrange multipliers defined at
the interfaces. The new search direction E− is defined as follows:

(FE − F̂E) + k0(WE − ŴE − W̃ M
E ) = 0 (3)

• Equations associated with the substructures: the unknowns (WE , FE) must ver-
ify the dynamic equilibrium and elastic behavior equations.

These equations lead to the resolution of an independent problem, called the ”micro”
problem, in each substructure:
Find uE(M, t), ∀t ∈ [0, T ], ∀u̇∗ ∈ U

[0,T ]
0 , σE ∈ S [0,T ]

∫

ΩE

(
ρ
d2uE

dt2
+ fd

)
u̇∗dΩ +

∫

∂ΩE

k0
duE

dt
u̇∗dS +

∫

ΩE

KEε(uE)ε(u̇∗)dΩ =

∑

E′

∫

ΓEE′

(
F̂E + k0ŴE + k0W̃

M
E

)
u̇∗dΓ (4)

! Discretization: In each substructure, using a classical finite element discretization
uE(M) = {N}T{U} and εE(M) = [B]{U}, Equation 4 leads to the resolution of an
evolution problem: Find U(M, t), ∀t ∈ [O, T ] such that:

[ME ]Ü(t) + [cE]U̇(t) + [KE ]U(t) = F̂ + k0(Ŵ + W̃ M) (5)

where [ME ] and [KE ] are the classical finite element mass and stiffness matrices.
Matrix [cE ] is less classical and due only to the LATIN method. These matrices are
defined by:

ME =
∫
ΩE

ρ{N}T{N}dΩ
cE =

∫
∂ΩE

k0{N}T{N}dS

KE =
∫
ΩE

[B]KE[B]dΩ
(6)

In order to solve the evolution problem (Equation 5), the finite element discretization
must be associated with a time integration scheme which can be explicit or implicit.
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Here we present the method for an explicit time integration scheme, the classical cen-
tral difference scheme:

U̇t+∆t = U̇t +
∆t

2
(Üt + Üt+∆t)

Ut+∆t = Ut + ∆tU̇t +
∆t2

2
Üt

(7)

Then, the linear system which needs to be solved at each time step has the following
form:

( 2

∆t
[ME ] + [cE ]

)
U̇t+∆t = F̂t+∆t + k0(Ŵt+∆t + W̃ M

t+∆t) − [KE ]Ut

+
( 2

∆t
[ME ] − ∆t[KE ]

)
U̇t +

(
[ME ] −

∆t2

2
[KE]

)
Üt (8)

We use a lumped mass matrix [ME ], and [cE ] is also a diagonal matrix. System (8)
cannot be solved because there are two unknowns, U̇t+∆t and W̃ M

t+∆t. Therefore, we
divide the field U̇ into two fields, U̇1 and U̇2, such that U̇ = U̇1 + U̇2 and fields U̇1

and U̇2 are solutions of two microproblems:
( 2

∆t
[ME ] + [cE ]

)
U̇1

t+∆t = F̂t+∆t + k0Ŵt+∆t + f(Üt, U̇t, Ut) (9)
( 2

∆t
[ME ] + [cE ]

)
U̇2

t+∆t = k0W̃
M
t+∆t (10)

Equation 9 can be easily solved after a local stage. Equation 10, however, cannot be
solved without the knowledge of W̃ M . This linear system (10) can be easily inverted
because of the very small number of degrees of freedom of W̃ M (four DOFs per
interface for a 2D problem). Thus, we can write:

W 2,M = L−1
E W̃ M (11)

whereW 2,M = ΠΓEE′
U̇2

∣∣∣
ΓEE′

and LE represents a homogeneous behavior operator for Substructure ΩE . These op-
erators are calculated only once for all the substructures at the beginning of the algo-
rithm. W 2,M is the macro part of the restriction of U̇2 to the interfaces.

! The macro problem: The admissibility of the macroquantities at all the interfaces
and the homogeneous behavior of all the substructures (Equation 11) lead to the defi-
nition of the ”macro” problem.
In order to explain the construction of the macro problem, let us consider a perfect
interface. The admissibility of the macroquantities at such an interface corresponds to
the continuity of the velocities and to the equilibrium of the macroscopic forces. For
an interface ΓEE′, one has:

W M
E = W M

E′ and F M
E + F M

E′ = 0 (12)
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The decomposition of Field U̇ into U̇1 + U̇2 using the search direction (3) and the
projectorΠΓEE′

involves some other relations forW 1,M andW 2,M (the macro parts of
the restrictions of fields U̇1 and U̇2 to the interfaces):

W M = W 1,M + W 2,M

F 1,M − F̂ M + k0(W
1,M − Ŵ M) = 0 (13)

F 2,M + k0(W
2,M − W̃ M) = 0

With such admissibility conditions, we need to introduce two Lagrange multipliers for
each interface, as shown in Figure 4.

WE'WE

Γ
EE'

~
~ Ω

E'

Ω
E

Figure 4: Lagrange multipliers W̃ M
E and W̃ M

E′ for a perfect interface

The contribution of the perfect interface ΓEE′ to the macro problem (Equation 14)
is expressed through Equations 11, 12 and 13. The quantity W̃

M

E is a vector which
contains all the Lagrange multipliers of Substructure ΩE .

[
LE −LE′

k0(1 − LE) k0(1 − LE′)

][
W̃

M

E

W̃
M

E′

]

=

[
−W 1,M

E + W 1,M
E′

−F 1,M
E − F 1,M

E′

]
(14)

This problem couples all the macro variables of the entire structure and enables us to
define the Lagrange multiplier W̃ M

E for all the substructures. W 1,M
E is the macro part

of the solution of the first microproblem (Equation 9); F 1,M
E is calculated using the

search direction (Equation 13).

3 The algorithm and its parallelization

The LATIN method associated with the mixed domain decomposition method is in-
herently parallelizable [11]. In our case, this strategy was programmed in C++ in the
framework of the finite element platform developed by H. Leclerc [12]. Libraries such
as MPI (Message Passing Interface) which carry out transfers of information among
machines were used in order to be able to use PCs cluster types of architectures.
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! Description of the parallel algorithm: The parallelization of the strategy consists
first in distributing the substructures and interfaces among the different processors.
The allocation of the substructures to the different processors is carried out through
the METIS libraries [13], which enable us to minimize the number of data which must
circulate among the processors and not cause an excessive decline in speedup. Next,
the different operators specific to the substructures are constructed on each processor.
During the iterative resolution phase, there is two kind of problem to solve. First the
microproblems which concerns all the substructures are solved on their own proces-
sors. As far as the macroproblem is concerned, its parallelization has not been devel-
oped yet, and it is solved on a single processor. Finally, the local stage is completely
parallelized because the interfaces are distributed among the different processors.

The LATIN method consists in processing linear and local stages alternatively. Algo-
rithm 1 shows the key steps of an iteration of the multiscale method.

Algorithm 1: The micro/macro LATIN method (velocity approach)

- Linear stage

• Loop over the substructures (on each processor):
First microproblem: Determination of (U̇1

E , W 1
E) given (ŴE, F̂E)

(Equation 9). Calculation ofW 1,M
E = ΠγEE′

W 1
E , then of F

1,M
E ,

using the search direction and the admissibility conditions of the
macroquantities.

• Macroproblem (on a single processor):
Determination of W̃ M

E givenW 1,M
E and F 1,M

E (Equation 14)
• Loop over the substructures (on each processor):
Second microproblem: Determination of (U̇2

E , W 2
E) given W̃ M

E

(Equation 10)

Calculation of U̇E = U̇1
E + U̇2

E

- Local stage

• Loop over the interfaces (on each processor):
Determination of (ŴE, F̂E) given (WE, FE) (Equations 3 and 3)

Iteration until convergence

! Property of the parallel algorithm: In order to reduce the total size of the prob-
lem, one can use more substructures than processors. Moreover the management of
several substructures per processor leads to a well-balanced load on the different pro-
cessors. In this case the parallel algorithm has a good speedup because the cost of
the communication between the different processor is low. However if the number
of substructure is too large, the computation of the macroproblem which is solve on
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a single processor became significant in comparison to the microproblem. Then the
macroproblem involves a decline of the speedup.

4 Application

4.1 3D linear academic problem - speedup

In order to test the method described previously, let us consider the simple 3D example
of the propagation of a compression wave in a parallelepiped (Figure 5). The bar is
1 m long and 0.25 m wide, with Young’s modulus 200 GPa, mass density 7,800 kg/m3

and Poisson’s ratio 0.3. The loading consists in a prescribed velocity going from 0 m/s
initially to a maximum value of 1 m/s over a period T of 60 µs.

V

t
T

V

x

Parallelepiped

Vmax

Figure 5: The numerical example

For the purpose of this test, the parallelepiped can be decomposed into several sub-
structures. We used 79 time steps of 5 µs each for a total duration of 395 µs. Figure 6
shows the speedup of the parallel algorithm obtained. For this application, we used a
150,000-DOF mesh decomposed into 144 substructures of 1,000 DOFs each.

1

5

8

10

15

1 5 15

ideal speedup

speedup

S
p
ee

d
u
p

Number of processors

10

Figure 6: Speedup of the academic example
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With a small number of processors, the speedup is very good because the calculation
of the macroproblem and the data exchanges among the processors are negligible
compared to the calculation of the two microproblems. This is no longer true when the
number of processors increases. The decline As the number of processors increases
the macroproblem becomes more and more significant compared to the microproblem.
Moreover the repartition of the substructures can not be optimum for each number of
used processors that’s why the behavior of the parallel algorithm can not be fully
linear.

4.2 Application to a 3D assembly

This example concerns the propagation of a compression wave in a 3D assembly.
This assembly is a joint between two sandwich composites which is made with two
metal parts and three bolts (Figure 7). For this example, the core and the composite
material of the sandwich composite are assumed to be homogeneous elastic isotropic
media. Interface between the sandwich composites and the metal parts are assumed
to be perfect, frictional contact is considered for the interfaces between the bolts and
the metal parts on the one hand and between the two metal parts on the other hand.
The friction coefficient is equal to 0.1. For this example, there is initially a static
loading and prestresses in the bolts. Then, a static computation is necessary before
the dynamic analysis. This static solution corresponds to the initial conditions of the
dynamics analysis. For the dynamic computation, the loading consists of a prescribed
velocity as shown in Figure 7 (Vmax = 1.5 m/s).

V

t

Prescribed velocity

Decomposition of assembly

Contact interface

Figure 7: Modeling of the joint

We used a 1,500,000-DOFs mesh for the whole assembly. In order to deal with this
problem with our approach, we decomposed the different parts of the assembly into
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several substructures. Figure 7 shows a part of this decomposition into substructures.
We choose to use substructures with similar number of DOFs, this choice leads to a
well-balanced load on the different processors in order to have a good speedup of the
parallel algorithm. We used 194 substructures of about 7,500 DOFs each. An implicit
scheme is used for the time integration with 159 time steps of 2 µs each for a total
duration of 320 µs.

0.        0.1        0.2             0.3

Figure 8: Displacement at time step 40 (mm)

We used a PCs cluster of 35 processors to carry out 100 iterations per time step. These
calculations took 7 hours. Figure 8 shows the displacement fields obtained at time step
40. One can observe partial separations between the metal parts and the composite
plate near the bolts. Those separations are due to the prestresses in the bolts.

0.        0.5         1.       1.5

Figure 9: Velocity at time step 20 (m/s)

Figure 9 shows the velocity fields obtained at time step 20, the wave is still in the
sandwich composite. Here, one can observe the different wave speed in the composite
plate and the core of the sandwich composite. This snapshot shows the importance of
using fine mesh to represent correctly the propagation of the wave in particular at the
interface between the plate and the core of the sandwich composite.

5 Conclusion

We have presented a ”parallel-oriented” algorithm for the resolution of three-dimensional
problems in dynamics based on a decomposition of the structure and on an iterative
resolution. As was already proven in statics, the multiscale LATIN method which we
study in this work is highly parallelizable. On parallel computers, this approach allows
an important reduction of the numerical costs compared to the sequential approach.
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This strategy allows also a reduction of the size of the problmes compared to a direct
approach. The only stage of the strategy developped here which is not parallelized yet
is the macroproblem. When the number of substructures is large, the macroproblem
causes an excessive decline in speedup of the parallel strategy, moreover this prob-
lem may be important in comparison of the microproblem. Some solution have been
already developed to solve this problem with a parallel strategy for statics and quasi-
statics case [14].

The strategy presented here is also well-adapted to carry out parametric studies in
dynamics [15]. However parametric studies on problems with large number of degrees
of freedoms was not possible with a sequential strategy. The next step will consist in
using this new parallel implementation of the strategy to lead parametric studies for
more complex problems like those we present in this work.
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