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1. Introduction

Port-based modelling techniques and languages have been extensively used
these last decades to model, simulate and control a wide variety of lumped
parameters physical systems [5] [35] [28][37]. When dealing with distributed
parameters systems, �rst "series"-like expansions models were derived from var-
ious kind of �nite di�erences, modal or �nite elements methods. These already
appear in many textbooks such as [5]. More recently a more intrinsic formu-
lation of port-based models for distributed parameter systems with boundary
energy �ow have been proposed [6]. They are based on the de�nition of the
state variables as the densities of some thermodynamical extensive variables.
Their time derivatives and the distributed conjugated intensive variables form
the pairs of variables which permit to extend the port-Hamiltonian formulation.
Using these variables the port Hamiltonian formulation may be extended to the
in�nite-dimensional systems using a canonical geometric structure called Stokes-
Dirac structure [6]. This modelling approach has been applied successfully to
many hyperbolic systems as varied as transmission lines models [7], beam equa-
tions [8] or shallow water equations [9]. The approach has also been applied to
parabolic model such as for heat and mass transport models in an adsorption
column [25], for fuel cell models [11] or for Ionic Polymer-Metal Composites [32].

In this paper we shall suggest a spatial discretization scheme which preserves
both the geometric structure of the port Hamiltonian model, that is the Dirac
structure, and approximate the behavior of the actual system in terms of conser-
vation of energy and other conserved quantities. This means that in the lossless
case some approximated extensive variables will be conserved (as a �rst integral)
and that in general, the dissipated power will be approximated conveniently. Fi-
nite di�erence schemes are often used by specialists of application domains but
in very speci�c formulations and they seldom lead to general formulation with
such desired geometric and energetic properties. Finite element methods have

Preprint submitted to Elsevier October 27, 2017



already been adapted to lead to such a formulation. First applied to electromag-
netism problems [17], mixed �nite elements formulations have been successfully
applied to various Hamiltonian formulation of distributed parameter systems
such as transmission line [7], di�usion problems [26] and shallow water �uid
dynamics [18].

However in many applications, pseudospectral methods are preferred because
they lead to low order approximate model, with good spectral properties (in the
linear case). When a polynomial basis is chosen for the approximation space, the
derived pseudospectral method may be viewed as a collocation method where
the collocation points are the zeros of the chosen polynomial . In this case, the
reduced model is moreover stated in "natural" variables (the in�nite dimensional
state variables evaluated at the collocation points), making its physical meaning
easy to catch [14]. These collocation (polynomial) methods are the most used
in process engineering either for processes simulation or control. Indeed the
nice properties of collocation methods make them also very e�ective to develop
control laws on the reduced model [19].

In this paper, we suggest a polynomial pseudospectral method which pre-
serves the geometric structure of port Hamiltonian models, the phenomeno-
logical laws and the conservation laws without introducing any uncontrolled
numerical dissipation. Doing so, we expect nice structural dynamical proper-
ties for the obtained reduced model as well as easy implementation of passivity
based or energy shaping control techniques. Mixed �nite elements methods
may be viewed as a particular case of the methodology developed hereafter for
the case of low order polynomial approximations. In this sense, this work is a
generalization of previous ones [7, 26, 18] and it provides a wider and more the-
oretical interpretation of implicit choices made in these earlier works. Among
these choices, those related to the kernel of exact exterior derivation in exterior
di�erential forms spaces, and to the implicit choice of boundary port variables,
as well as their relation with the geometric interconnection structure and its
associated power product, will be given in some detail.

The paper is organized as follows : section 2 is dedicated to recalls on the
Hamiltonian formulation of open distributed parameter systems, on the Stokes-
Dirac structure and illustrates the de�nition on an hyperbolic example. In
section 3 the di�erent polynomial approximation spaces are de�ned and the
relations de�ning the Stokes-Dirac structure are restricted to these spaces. In
section 4, the kernel and image representation of the Dirac structure as well
as the choice of (implicit) boundary port-variables are discussed and related to
previous works on boundary control systems. The discretization of phenomeno-
logical laws which are closure equations for the interconnection structure is
discussed in section 5. The examples of section 2 are reduced with the proposed
scheme and their power balance equations are written down. In section 6 it
is shown on the transmission line example that, while preserving the geomet-
ric interconnection structure and invariant (energy) of the actual PDE model,
the proposed method also share the excellent spectral behavior of the classical
collocation method.
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2. Port-based modelling for distributed parameter systems

In this section we recall brie�y the de�nition of boundary Port Hamiltonian
Systems, as it has been introduced in [6] and presented in more details in [31]
and in [37, Chap. 4].

2.1. Canonical Stokes-Dirac structure

Port Hamiltonian systems, introduced in [36], are extensions of Hamilto-
nian systems which are de�ned with respect to a geometric structure called
Dirac structure [21] which generalizes Poisson or presymplectic structures used
in classical Hamiltonian systems [1] and is also extremely useful for the descrip-
tion of open or controlled physical systems. The reader is refered to the recent
tutorial book [37] for an overview on its use in dynamical systems' modeling
and control.

De�nition 2.1. [Dirac structure] Let F (called space of �ow variables) and
E (called space of e�ort variables) be two real vectors spaces endowed with the
non degenerate bilinear form (power pairing) 〈·, ·〉 : B = F × E → R where is
called the (bond space. De�ne an associated symmetric bilinear form by sym-
metrization on the previous one : � ·, · �: B ×B → R : ((f1, e1), (f2, e2)) 7→
� (f1, e1), (f2, e2)� := 〈e1|f2〉+ 〈e2|f1〉. Then the vector subspace D ⊂ B is a
Dirac structure with respect to the bilinear form � .� if and only if D = D⊥,
where the orthogonality is de�ned with respect to the bilinear form � ·, · �.

The �ow variables f ∈ F and the e�ort variables e ∈ E are said conjugate
variables in the sense that their product may be computed with the pairing
〈·, ·〉. For physical system this pairing has the dimension of power and the
Dirac structure corresponds, for instance, to Kirchho�'s laws applying to the
voltages and currents in an electrical circuit [36], the kinematic and static static
models applying to the forces and velocities of a mechanism [35]. The de�nition
of Dirac structure may also be related to a famous results on the admissible
currents and voltages in electrical circuits as follows: the isotropy condition
Z ⊂ Z ⊥ is equivalent to Tellegen's theorem. Actually it might be useful to
consider a weaker notion than Dirac structure, satisfying only to the isotropy
condition and called Tellegen structure [23, chap. 5].

Proposition 2.2. De�ne the spaces of �ow and e�ort variables, denoted re-
spectively by F , E as F = Λ1×Λ1×R2 3 (fq, fp; f∂) and E = Λ0×Λ0×R2 3
(eq, ep; e∂). The subspace D ⊂ B = F × E

D = {(fp, fq, fb, ep, eq, eb) ∈ F × E|[
fp

fq

]
= ε

[
0 d

d 0

][
ep

eq

]
,[

fb

eb

]
=

[
ε 0

0 −1

][
ep|∂Z

eq|∂Z

]} (1)
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where ε ∈ {−1,+1} and |∂Z denotes restriction to the boundary ∂Z is a
Stokes-Dirac structure with respect to the symmetric pairing:

〈〈(fp1 ,f
q
1 , f∂,1, e

p
1, e

q
1, e∂,1), (fp2 , f

q
2 , f∂,2, e

p
2, e

q
2, e∂,2)〉〉 =∫

Z

(ep1 ∧ f
p
2 + eq1 ∧ f

q
2 + ep2 ∧ f

p
1 + eq2 ∧ f

q
1 ) +

∫
∂Z

(e∂,1 ∧ f∂,2 + e∂,2 ∧ f∂,1)

(2)

This Dirac structure arizes in the formulation of systems of conservation
laws for reversible but also irreversible physical systems. Thereby it arizes in
both hyperbolic and parabolic Partial Di�erential Equations (see [37, Chap. 4])
as is now illustrated with the example of transmission line without and with
dissipation through Ohm's law.

2.2. The lossless transmission line

The lossless transmission line corresponds to the canonical example of a
hyperbolic system of two conservation laws. It corresponds, when eliminating
one of the state variables to a, possibly nonlinear wave equation, in the same
way as the p-system or the vibrating string [34]. It is well-known that the wave
equation admits a Hamiltonian state space realization [33]. For the lossless
transmission line, considering the the charge density q(t, z), the magnetic �ux
density p(t, z), the current I(t, z) and the voltage V (t, z), the dynamical model
of the transmission line is:

∂q(t, z)

∂t
= −∂I(t, z)

∂z
,

∂p(t, z)

∂t
= −∂V (t, z)

∂z
(3)

Recalling that the charge and the magnetic �ux are subject to conserva-
tion laws and hence correspond, in a thermodynamic perspective to extensive
variables, whereas the current and voltage correspond to the conjugated inten-
sive variables [37, Chap. 4], one may consider the following identi�cation with
exterior forms:(
eq (t)

ep (t)

)
=

(
I (t, z)

V (t, z)

)
∈ Λ0×Λ0 and

(
fq (t)

fp (t)

)
=

(
q̇ (t, z) dz

ṗ (t, z) dz

)
∈ Λ1×Λ1

(4)
The dynamical equations (3) may then be written as:[

fp

fq

]
= −

[
0 d

d 0

][
ep

eq

]
(5)

By considering the boundary value of the current and voltage:

e0∂ = eq(0) eL∂ = eq(L)

f0∂ = ep(0) fL∂ = ep(L)
(6)

one recognize the Dirac structure de�ned in proposition 2.2 above.
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The total electromagnetic energy of the transmission line is given by the
Hamiltonian function:

H = Hc +Hp =

∫ L

0

?q(z)

2C(z)
∧ q(z) +

∫ L

0

?p(z)

2L(z)
∧ p(z) (7)

with variational derivatives:

δqH(q, p) = V (t, z) = eq (t) and δpH(q, p) = I (t, z) = ep (t) (8)

According to the de�nition in [6] the system (5) with the identi�cation (8)
and (4) de�ne a port-Hamiltonian system, by: {ṗ, q̇, δpH(q, p), δqH(q, p)} ∈ D
with respect to the Stokes-Dirac structure of the theorem 2.2.

2.3. Transmission line with dissipation

We have presented the port- Hamiltonian formulation of the lossless trans-
mission line above. Now we shall add to this model adissipative phenomenon,
Ohm's law, and show how, acording to [6] one may extend the port-Hamiltonian
formulation in order to encompass the dissipation. Actually Ohm's law induces
a dissipative voltage: VR (t, z) = r (z) I (t, z) where r(z) is the resitance of the
medium de�ned over the space domain [0, L]. According to the previous iden-
ti�cation with k-forms, one may also write that Ohm's law indices a 1-form:
fr (t) = VR (t, z) dz = r (z) ? ep (t) . Hence the the transmission line with
dissipation may be formulated as a dissipative Hamiltonian system:(

fq(z)

fp(z)

)
= −

(
0 d

d 0

)
︸ ︷︷ ︸

conservative

(
eq(z)

ep(z)

)
−

(
0 0

0 r(z)?

)
︸ ︷︷ ︸
dissipative

(
eq(z)

ep(z)

)
(9)

The port boundary variables are de�ned precisely as in the non-dissipative
case as the voltage and currents at the boundary points according to (6) . The
system composed of the Hamiltonian evolution equations (9) and the boundary
port variables (6) is actually de�ned as the dissipative boundary port-Hamiltonian

system [6][29] associated with the operator:

(
0 d

d −r(z)?

)
.

3. A polynomial geometric discretization scheme

In the previous section we have seen how Stokes-Dirac structures may be
used in models of both hyperbolic and parabolic distributed parameters sys-
tems. This interconnection structure both guarantees power conservation (and
resulting energy balance equations) and completely speci�es the way all model
subparts interact together. In this section we shall present a spatial discretiza-
tion scheme which preserves these properties and therefore in a �rst instance
discretize the Stokes-Dirac structure. The scheme is based on the use of polyno-
mial pseudo-spectral methods, adapted in such a way that the restriction of the
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constitutive relations of the Stokes-Dirac structure to the approximation spaces
de�ne a gain a �nite-dimensional Dirac structure [21, 22]. Such an approach has
already been developed using linear mixed �nite elements methods [17, 7, 26]:
our purpose is to generalize these results to pseudo-spectral methods in general,
to develop a systematic way to construct the resulting �nite-dimensional Dirac
structure, to interpret this structure in term of a reduced power product, and to
connect these results to implicit choices of boundary conditions and boundary
control systems. We will use, for the spatial reduction, polynomial approx-
imation bases (with Lagrange interpolation) in such a way that the reduced
variables will be approximations of the distributed ones at chosen "collocation"
points. Usually these points are zeros of orthogonal polynomials in order to to
reduce the oscillations of the solution. A methodology to select them, according
to the conditioning and dynamical stability of the reduced system, is presented
in [20].

3.1. Polynomial approximation and exact di�erentiation

According to their de�nition in the proposition 2.2, the e�ort variables are
approximated in a polynomial basis of 0-forms , with polynomials ϕi(z) , i =
0, .. , N , and the �ow variables are approximated in a polynomial basis of 1-forms
with polynomials ψi(z) , i = 0, .. , N + 1 :

eq(z) =

N∑
i=0

eqiϕi(z) (10)

ep(z) =

N∑
i=0

epiϕi(z) (11)

fq(z) =

N−1∑
i=0

fqi ψi(z)dz (12)

fp(z) =

N−1∑
i=0

fpi ψi(z)dz (13)

The interpolating polynomials ϕi(z) and ψi(z) are Lagrange polynomials, re-
spectively of degree N and N − 1 de�ned as

ϕi(z) =

N∏
j=0,j 6=i

,
z − ζj
ζi − ζj

ψi(z) =

N−1∏
k=0,k 6=i

z − zk
zi − zk

satisfying ϕi(ζj) = δij and ψi(zj) = δij , ζj ∈ ]0, L[, j = 0, ..., N being the in-
terpolating points associated to the basis ϕi(z) , i = 0, .. , N , while zj ∈ ]0, L[,
j = 0, ..., N − 1 are those of the basis ψi(z) , i = 0, .. , N + 1.
Inserting relations (10) - (13) into the di�erential relation of the Stokes-Dirac
structure (1) , and evaluating the approximations at the collocation points zk
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(zeroes of the ψi Lagrange polynomials), one obtains the following matrix rela-
tions:

fqk =

N∑
i=0

Dk,ie
p
i

fpk =

N∑
i=0

Dk,ie
q
i

(14)

where D is a N × (N + 1) matrix obtained by exact di�erentiation

Dk,i = −dϕi

dz
(zk) (15)

The boundary variables are de�ned according to their de�nition in (1) by the
polynomial interpolation of e�orts ep, eq (0-forms) in the two-boundary points
0 and L.

e0∂ = eq(0) =

N∑
i=0

eqiϕi(0)

eL∂ = eq(L) =

N∑
i=0

eqiϕi(L)

f0∂ = ep(0) =

N∑
i=0

epiϕi(0)

fL∂ = ep(L) =

N∑
i=0

epiϕi(L)

(16)

The two relations (14) and (16) de�ne the restriction of the constitutive relations
of the Stokes-Dirac structure to the approximation spaces of 0- and 1-forms:

fq

fp

f0∂

fL∂

e0∂

eL∂


=



0 D

D 0

0 ϕ(0)T

0 ϕ(L)T

ϕ(0)T 0

ϕ(L)T 0




eq

ep

 (17)

where e0∂ , e
L
∂ , f

0
∂ , f

L
∂ ∈ R, and fq, fp ∈ RN while eq, ep ∈ RN+1 . The vectors

ϕ(0) ∈ RN+1 and ϕ(L) ∈ RN+1 are the vectors of polynomials ϕi(z) evaluated
respectively at the boundary points z = 0 and z = L.

3.2. Power product, Stokes Theorem and reduced Dirac structure
The spaces of the discretized e�ort and �ow variables may be endowed with

a power product, the bilinear product obtained by restricting the symmetric

7



pairing (2) to the approximation spaces. Replacing the �ow and e�ort variables
eqi , e

p
i , f

q
i , f

p
i , i = 1, 2 by their approximations in (2), the discretization of the

symmetric pairing gives:

ep1
eq1
e01
eL1
fp1
fq1
f01
fL1



T 

0 0 0 0 M 0 0 0

0 0 0 0 0 M 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 −1
MT 0 0 0 0 0 0 0

0 MT 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 −1 0 0 0 0





ep2
eq2
e02
eL2
fp2
fq2
f02
fL2


(18)

where M is the (N + 1)×N matrix whose elements are

Mi,j =

∫ L

0

ϕi(z)ψj(z)dz (19)

It's important to notice that MT has a non-zero kernel Ker(MT ) ⊂ E due to
the fact that the dimensions of the approximation spaces are di�erent for the
e�ort and the �ow variables. As a consequence, the symmetric pairing (18) is
degenerate. This is an obstruction to the de�nition of a Dirac structure with
respect to this pairing.

4. Discretized Dirac structure on a reduced bond space

In order to de�ne a Dirac structure we shall, in the �rst step, de�ne a reduced
space of e�ort variables:

ẽq = MT eq

ẽp = MT ep
(20)

with ẽq, ẽp ∈ RN . Considering the space of �ow variables
fq

fp

f0∂

fL∂

 = f̃ ∈ F̃ = R2N+2 (21)

and using the reduced e�ort variables to de�ne the space of e�ort variables
ẽq

ẽp

e0∂

eL∂

 = ẽ ∈ Ẽ = R2N+2 (22)
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, the symmetric pairing (18) becomes the non-degenerated canonical pairing:〈〈(
f̃1

ẽ1

)
,

(
f̃2

ẽ2

)〉〉
= f̃1σẽ2 + f̃2σẽ1 (23)

with σ denoting the signature matrix: σ = diag (1, 1, −1, 1) .
Using this non-degenerated pairing (23), we may now, in the second step,

de�ne a Dirac structure on the reduced �ow and e�ort variables. We shall de�ne
this Dirac structure using a matrix representation, called image representation
[2, 4].

De�nition 4.1. Let D ⊂ F × E , with dim F = dim E = n, endowed with a
non-degenerated pairing 〈 , 〉. Any two n × n matrices, denoted here E and F ,
and satisfying

1. EσFT + FσET = 0

2. rank[E : F ] = n

de�ne a Dirac structure D = {(f, e) ∈ F × E |f = ETλ, e = FTλ, λ ∈ Rn}
with respect to the bilinear symmetrization of the pairing 〈 , 〉. This description
is called an image representation of the Dirac structure D and the matrices E
and F are called structure matrices of the image representation [2, 4].

We will in the sequel, �nd the two structure matrices E and F for the reduced
Dirac structure Dr on the �ow and reduced e�ort variables. Therefore using the
de�nition of the degenerated pairing (18), one obtains:

epT1 Mfp2 + eqT1 Mfq2 + fpT1 MT ep2 + fqT1 MT eq2 + e0∂1f
0
∂2 − eL∂1fL∂2 + f0∂1e

0
∂2 − fL∂1eL∂2 = 0

(24)

Replacing the �ux and e�ort variables in (24) by their expressions in the con-
stitutive relations (17), one gets:

eq1(MD +DTMT + T 0 − TL)ep2 + ep1(MD +DTMT + T 0 − TL)eq2 = 0 (25)

where T 0 is the (N + 1)× (N + 1) matrix with elements T 0
ij = ϕi(0)ϕj(0), and

TL the (N + 1) × (N + 1) matrix with elements TL
ij = ϕi(L)ϕj(L). Since (25)

holds for any (eq1, e
p
2) and for any (ep1, e

q
2), we deduce

MD +DTMT + T 0 − TL = 0 (26)

This result which may be seen as the "�nite-dimensional" Stokes theorem, will
be very useful for the sequel.

Remark 4.2. If TL − T 0 = 0 in (26), which is the case for isolated system
without any energy exchange across its boundaries, we get MD + DTMT = 0.
The matrix MD is thus skew-symmetric and we can recognize a well-known a
Poisson structure for conservative systems.
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According to (17) we can write
fq

fp

f0∂

fL∂

 =


0 D

D 0

0 ϕ(0)T

0 ϕ(L)T


︸ ︷︷ ︸

ET

(
eq

ep

)
(27)

where fq and fp are in RN while eq and ep are RN+1. These projected e�orts
allow to complete the image representation of the reduced Dirac structure Dr.
According to (20) and (17), one has:

ẽq

ẽp

e0∂

eL∂

 =


MT 0

0 MT

ϕ(0)T 0

ϕ(L)T 0


︸ ︷︷ ︸

FT

(
eq

ep

)
(28)

Proposition 4.3. The sub-space

Dr =
{(
ETλ, FTλ

) ∣∣λ ∈ R2N+2
}

is a Dirac structure in F × E = R2N+2 × R2n+2.

Proof 4.4. (i) EσFT + FσET = 0

EσFT + FσET =

(
0 DT 0 0

DT 0 ϕ(0) ϕ(L)

)
×


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1




MT 0

0 MT

ϕ(0)T 0

ϕ(L)T 0



+

(
M 0 ϕ(0) ϕ(L)

0 M 0 0

)
×


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1




0 D

D 0

0 ϕ(0)T

0 ϕ(L)T


(29)

After elementary calculation (29) gives(
0 DTMT +MD + T 0 − TL

DTMT +MD + T 0 − TL 0

)
(30)

According to (26) we get EσFT + FσET = 0
(ii) [E : F ] is full rank (2n+ 2)
We should show that (DT

1 , D
T
2 , ..., D

T
n , ϕ(0)) is an independent set. where DT

i =
ϕ(zi) the N column vectors of (N + 1) × N DT matrix, the zi, i = 1, 2, ..., N
are the N interpolating points of ψ polynomial base.
We prove it by contradiction. Let assume that the set under consideration is

10



dependent. This supposes one can deduce ϕ(0), and thus a polynomial set of
degree N , and that only with N zi points. Actually,

ϕ(z) = α0ϕ(0) +

∫ z

0

N∑
i=1

αiϕ
′
i(z)dz

But it is known that one cannot generate polynomial of degree N with only N in-
terpolating points, which contradicts our assumption, so (ϕ′(z1), ϕ′(z2), ..., ϕ(0))
is an independent and maximal set in Rn+1 therefore it is a base. Thus,(

DT ϕ(0) 0 0

0 0 DT ϕ(0)

)
(31)

is an independent and maximal set in R2n+2 and thus, concatenate matrix [E :
F ] is full rank, 2n+ 2.

However for simulation purposes, one prefer an explicit relation (a map)
de�ning the Dirac structure, to the implicit de�nition of its image represen-
tation. And actually, by partial inversion, one compute the following relation
between e�ort and �ux variables which is de�ned by the skew-symmetric and
full rank matrix J such that:

fq

−fL∂
fp

e0∂

 =


0

(
D

−ϕ(L)

)(
MT

ϕ(0)

)−1

(
D

ϕ(0)

)(
MT

ϕ(L)

)−1

0


︸ ︷︷ ︸

J


ẽq

eL∂
ẽp

f0∂

 (32)

This representation is called the input output representation, see [23]. We can
check easily that the matrix J is skew-symmetric. Actually, calculating the
anti-diagonal element's sum(

D

−ϕ(L)

)(
MT

ϕ(0)

)−1

+

( D

ϕ(0)

)(
MT

ϕ(L)

)−1
T

=
(
Mϕ(L)T

)−1 (
MD +DTMT + T 0 − TL

)(MT

ϕ(0)

)−1

= 0

(33)

according to (26).

Remark 4.5. Actually the input output representation (32) is a particular of
choice of inputs and outputs. It may be generalized by choosing as input and
output variables any linear combinations of the boundary port variables de�ned
in (27) and (28): (

u

y

)
=

(
W

W̃

) (
f∂

e∂

)
(34)

The de�nition of the matrices W and W̃ is not further dicussed here but may
be related to the de�nition of boundary control systems associated with the port
Hamiltonian systems de�ned on Stokes Dirac structures in [24].
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5. Discretization of the constitutive relations

In previous sections we have presented a discretization approach preserving
the Dirac structure. In this section we shall complete the discretization of the
Hamiltonian evolution equations by discretizing the closure equations de�ning
the Hamiltonian function or the dissipation relation. We shall apply a reduction
scheme to the discretization of conservative and dissipative closure equations in
such a way thattheir �nite-dimensional approximation have the same properties
with respect to energy storage or energy disspation. The basic idea is thus to
approximate the stored energy or the dissipated power in the previously cho-
sen approximation spaces. In this way one generates the spatial discretization
of the boundary port Hamiltonian systems, yielding a �nite-dimensional port
Hamiltonian system [27, chap. 6]. We shall in this section illustrate the dis-
cretization of the closure relations on the two examples presented here above:
the transmission line and the adsorption-di�usion models.

5.1. Discretization of the lossless transmission line

Consider again the boundary port Hamiltonian formulation of the trans-
mission line which is de�ned with respect to the Stokes-Dirac structure and
generated by the Hamiltonian functional (7). Hence the closure relation is
given by the expression of the Hamiltonian (7) or its variational derivative.
The variational derivative appears when considering the time derivative (the
instanteneous power) in the transmission line:

dH

dt
=

∫ L

0

?q(z, t)

C(z)
q̇(z, t) +

?p(z, t)

L(z)
ṗ(z, t) (35)

which may be identi�ed with [6]:

dH

dt
=

∫
Z

δqH ∧ q̇ + δpH ∧ ṗ =

∫
Z

eq ∧ fq + ep ∧ fp (36)

The Hamiltonian H(p, q) depends on the conserved quantitities, the magnetic
�ux 1-form p and the electrical charge 1-form q. They are approximated using
the ψ polynomial base as in section 3

q̄(z, t) =

N−1∑
i=0

qi(t)ψi(z)dz

p̄(z, t) =

N−1∑
i=0

pi(t)ψi(z)dz

(37)

Inserting (37) into (35) the approximate power can be written:

dH

dt
= q̄T (t)C ˙̄q(t) + p̄T (t)L ˙̄p(t) (38)
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where

Cij =

∫ L

0

ψi(z)ψj(z)

C(z)
dz

and

Lij =

∫ L

0

ψi(z)ψj(z)

L(z)
dz

In addition we know that the discrete Hamiltonian function takes the form:

dH̄

dt
=

N−1∑
i=0

∂H̄

∂qi

dqi
dt

+
∂H̄

∂pi

dpi
dt

(39)

Identifying (39) with (38) we get the approximate e�orts are expressed by:

eqi (t) =

N∑
j=0

Cijqj(t)

epi (t) =

N∑
j=0

Lijpj(t)

(40)

The discretized boundary port Hamiltonian is then de�ned as the �nite-dimensional
port Hamiltonian system generated by the Hamiltonian:

H (q̄, p̄) =
1

2
q̄TCq̄ +

1

2
p̄TLp̄

with respect to the Dirac structure given in the input-output representation
(32).

5.2. Discretization of the transmission line with dissipation
Here, we are interested in the discretization of the dissipative part. In order

to do that, we calculate the dissipative power:∫ L

0

fp(z) ∧ ep(z) =

∫ L

0

ep(z) ? r(z)ep(z) (41)

Since the e�ort variable ep(z) is approximated in polynomial base ϕi(z) with
i = 0, ..., N∫ L

0

fp(z) ∧ ep(z) =

∫ L

0

N∑
i=0

N∑
j=0

epiϕi(z) ? r(z)e
p
jϕj(z) = epTRep

=

(
ẽp

f0∂

)T (
MT

ϕ(0)

)−T
R

(
MT

ϕ(0)

)−1(
ẽp

f0∂

) (42)

where R is a (N + 1)× (N + 1) positive de�nite matrix given:

R =

∫ L

0

N∑
i=0

N∑
j=0

ϕi(z) ? r(z)ϕj(z) (43)
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Thus, the �nite port-Hamiltonian model of a dissipative line transmission is
written according to (32)


fq

−fL∂
fp

e0∂

 =




0

(
D

−ϕ(L)

)(
MT

ϕ(0)

)−1

(
D

ϕ(0)

)(
MT

ϕ(L)

)−1

0


︸ ︷︷ ︸

J

−


0 0

0

(
MT

ϕ(0)

)−T

R

(
MT

ϕ(0)

)−1






ẽq

eL∂
ẽp

f0∂


(44)

One can write the power balance for dissipative line transmission since the
matrix J est skew'symmetric(

ẽp

f0∂

)T (
MT

ϕ(0)

)−T
R

(
MT

ϕ(0)

)−1(
ẽp

f0∂

)
= epTRep > 0 (45)

6. Numerical examples: comparison with classical collocation

In previous sections, we have developed a new discretization approach based
on the collocation method, and adapted it to open dynamical systems by includ-
ing the boundary variables in the �nite Dirac structure. This insures in partic-
ular the stability of the power balance property in the reduction of the in�nite
dimensional system, contrarily to many existing classical numerical methods.
In this section, we consider the line transmission model with constant physical
parameters (capacitance, inductance and resistance), in order to allow exact
computation of the eigenvalues of the system, and use them as a reference to
compare the accuracy of our geometric scheme with to existing classical meth-
ods.

6.1. Lossless Transmission Line

In this section, we will analyze the numerical properties of the proposed geo-
metric reduction algorithm and compare them with those of classical collocation
methods when applied to either closed systems (with �xed boundary conditions)
or to boundary control systems. More precisely we will consider the spectral
properties of an ideal transmission line and its reduced models. The eigenvalues
of the model resulting from our "geometric" collocation method are obtained
by diagonalizing the matrix J × Q from the input-output representation (32).
When substituting the e�orts from (40) and considering Dirichlet conditions
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q(0) = 0 and p(L) = 0, one obtains
fq

−fL∂
fp

e0∂

 =


0

(
D

−ϕ(L)

)(
MT

ϕ(0)

)−1
(

D

ϕ(0)

)(
MT

ϕ(L)

)−1
0



C 0 0 0

0 0 0 0

0 0 L 0

0 0 0 0


︸ ︷︷ ︸

J×Q


q

eL∂

p

f0∂


(46)

6.1.1. Classical collocation with �xed boundaries
The classical collocation considered �rst includes the choice of the (�xed)

boundary conditions in the de�nition of the polynomial approximation bases.
Therefore, it is not adapted to open dynamical systems. However, it allows to
avoid boundary e�ects [14] and does not introduce any additional numerical
dissipation. In that sense it could be considered as a reference scheme and
comparison with our method, in the closed system case with �xed boundary
conditions, is meaningful. Consider the following eigenvalue problem(

0 d

d 0

)(
q(z)

p(z)

)
= λ

(
q(z)

p(z)

)
(47)

where

q(z) =

N∑
i=1

qiψi(z)z, p(z) =

N∑
i=1

piψi(z)(z − L) (48)

satisfying thus the Dirichlet constraints q(0) = 0, p(L) = 0. The approximating
basis ψ used here is the same as the one shown in our geometric method, except
that they are modulated to take into account the boundary constraints.

The table 1 below gives the exact eigenvalues of the ideal line transmis-
sion model and those obtained by performing the reduction by our geometric
approach and by the classical collocation method with �xed boundaries with 8
interior collocation points in both cases. The �rst 8 pairs of eigenvalues are con-
sidered. The collocation points are the zeros of the 8th. Tchebychev polynomial
in order to minimize the uniform norm of the interpolation error [20].

The spectrum of the geometric method is more accurate than the classical
method's one. For instance, the �rst eigenvalue obtained with the geometric
method is exact within the machine precision, and 105 order of magnitude more
accurate than the one from the classical method. In both cases the eigenvalues
pairs are close to the imaginary axe (real parts of the approximated eigenvalues
are zeros within the machine precision). This is automatically the case for
the geometric method, whatever the chosen collocation points are, since the
Dirac structure is preserved and thus no numerical dissipation can occur. In
the "classical" method, this is only true for zeros of orthogonal polynomials as
collocation points. Otherwise, a numerical dissipation does occur.
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Theroretical values Geometric method Classical method

± 0.32063745754047i 0.00000000000000 ± 0.32063745754047i 0.00000000000000 ± 0.32063745744583i

± 0.96191237262140i 0.00000000000000 ± 0.96191238151097i 0.00000000000000 ± 0.96191420177938i

± 1.60318728770233i 0.00000000000000 ± 1.60321563740732i 0.00000000000000 ± 1.60338416589471i

± 2.24446220278326i 0.00000000000000 ± 2.24771134219675i 0.00000000000000 ± 2.25154046253161i

± 2.88573711786419i 0.00000000000000 ± 2.94830702957369i 0.00000000000000 ± 3.00613251338085i

± 3.52701203294513i 0.00000000000000 ± 3.98374558826630i 0.00000000000000 ± 4.38041246765385i

± 4.16828694802606i 0.00000000000000 ± 6.38606332778657i 0.00000000000000 ± 8.49771153485658i

± 4.80956186310699i 0.00000000000000 ±18.76179259703309i 0.00000000000000 ± 31.96188912930034i

Table 1: The spectrum of an ideal transmission line model: theoretical values (1st column),
values computed using the proposed geometric collocation method (2nd column) and obtained
by the classical collocation scheme (3rd column). The transmission line parameters values are
an inductance L = 2, a capacitance C = 3 and a resistance R = 0

6.1.2. classical collocation with free boundaries
The usual way of discretizing open dynamical systems using classical collo-

cation scheme is to introduce additional relations between the reduced vari-
ables which are given by the boundary conditions. In our case, using the
same approximating basis ψ as previously, these equations could be of the form
q(0, t) =

∑N
i=1 ψi(0)qi = u1(t) and p(L, t) =

∑N
i=1 ψi(L)pi = u2(t) where ar-

bitrary inputs values are given for q(0, t) and p(L, t). This would lead to the
corresponding eigenvalue problem:

(
0 d

d 0

)(
q(z)

p(z)

)
= λ

(
q(z)

p(z)

)
(49)

q(0) =

N∑
i=1

ψi(0)qi = 0 (50)

p(L) =

N∑
i=1

ψi(L)pi = 0 (51)

The table 2 below gives the spectrum for such an "open" ideal line transmis-
sion line. The same collocation points as previously are used. The eigenvalues
obtained with the classical collocation method are now much less accurate than
those obtained with the geometric method. In addition, a signi�cative numeri-
cal dissipation appears for the 3 last eigenvalues. Finally an unstable mode in
the reduced model obtained by the classical collocation method shows that the
classical method leads to stability problems where the geometric scheme allows
to choose the collocation points freely according to accuracy and conditioning
considerations only.
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Theoretical values Geometric method Classical collocation

± 0.32063745754047i 0.00000000000000 ± 0.32063745754047i 0.00000000000000 ± 0.28966097209118i

± 0.96191237262140i 0.00000000000000 ± 0.96191238151097i 0.00000000000000 ± 0.95732943443983i

± 1.60318728770233i 0.00000000000000 ± 1.60321563740732i 0.00000000000000 ± 1.62271610834325i

± 2.24446220278326i 0.00000000000000 ± 2.24771134219675i 0.00000000000000 ± 2.34315842499615i

± 2.88573711786419i 0.00000000000000 ± 2.94830702957369i 0.00000000000000 ± 2.96231787828937i

± 3.52701203294513i 0.00000000000000 ± 3.98374558826630i 1.08122738779532 ± 3.73134482798125i

± 4.16828694802606i 0.00000000000000 ± 6.38606332778657i -1.08122738779532 ± 3.73134482798126i

± 4.80956186310699i 0.00000000000000 ±18.76179259703309i -3.23331090942184 ± 0.00000000000000

Table 2: The spectrum of an ideal transmission line model with free boundaries: theoretical
values (1st column), values computed using the proposed geometric collocation method (2nd

column) and obtained by the classical collocation scheme (3rd column). The parameters values
are the same as in table 1.

6.2. Transmission line with dissipation

Let now analyze the line transmission example with physical dissipation, and
compare its spectrum obtained using the developed geometric method with both
classical method with "�xed boundaries" and the one with "free boundaries",
still considering Tchebychev collocation points.
The eigenvalues calculated with the geometric collocation method can be ob-
tained considering (44), when replacing the e�ort variables ẽq and ẽp by their
expression depending respectively on the stat variables q and p. Thus, the
eigenvalue problem may come down to diagonalizing the following matrix:


fq

−fL∂
fp

e0∂

 =




0

 D

−ϕ(L)

MT

ϕ(0)

−1

 D

ϕ(0)

MT

ϕ(L)

−1

0


︸ ︷︷ ︸

J

−


0 0

0

MT

ϕ(0)

−T

R

MT

ϕ(0)

−1


︸ ︷︷ ︸

R




C 0 0 0

0 0 0 0

0 0 L 0

0 0 0 0


︸ ︷︷ ︸

Q


q

eL∂

p

f0∂



(52)

where the boundary Dirichlet conditions are conditions are considered (q(0) = 0,
p(L) = 0).

6.2.1. Classical collocation with �xed boundaries
The eigenvalue problem considered here is the one in (47) when the dissipa-

tion is taken into account. In this case, the problem can be written simply:(
0 d

d −r

)(
q(z)

p(z)

)
= λ

(
q(z)

p(z)

)
(53)
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where r is the dissipation of the line transmission. In this instance, it is a
constant parameter as well as for the capacitance and the inductance.
The stat variables are still approximated on the same polynomial base as in the
lossless case:

q(z) =

N∑
i=1

qiψi(z)z, p(z) =

N∑
i=1

piψi(z)(z − L) (54)

in such way that the Dirichlet condition are satis�ed (q(0) = 0, p(L) = 0).
The table 3 below shows a comparison between the exact eigenvalues of the dis-
sipative line transmission, with those obtained using our geometric method and
the classical one considered here, either using Tchebychev collocation points.
As we can see, the classical method conserves the real part of the eigenvalues,
when our geometric method introduces an additional numerical dissipation. But
this dissipation goes toward stability. In fact, the conservation of the real part
with the classical method is due to the fact that the matrix of dissipation result-
ing from the discretization is diagonal, when the one resulting from our method,
noticed R is full.
However, one can notice that the accuracy of the imaginary part of the eigenval-
ues obtained with our method, is still better within the classical one. Of course,
this accuracy decreases as well as for the real part, since we move away from
the real axe. Obviously, this collocation method with �xed boundaries o�ers
conserves better the real part of the spectrum, but it is so obvious that such
method is not adapted to open dynamical systems.

Theoretical values Geometric method Classical collocation

-0.25 ± 0.20076946774351i -0.25000000000000 ± 0.20076946774351i -0.25000000000000 ± 0.20076946759238i

-0.25 ± 0.92885704637588i -0.25000000223150 ± 0.92885705500815i -0.25000000000000 ± 0.92885894062816i

-0.25 ± 1.58357490490673i -0.25000393136670 ± 1.58360306757729i -0.25000000000000 ± 1.58377422110662i

-0.25 ± 2.23049559060822i -0.25027657287508 ± 2.23374307917011i -0.25000000000000 ± 2.23761803139344i

-0.25 ± 2.87488760013659i -0.25340619431893 ± 2.93754399174322i -0.25000000000000 ± 2.99571906026006i

-0.25 ± 3.51814068515455i -0.26792900064430 ± 3.97546301847245i -0.25000000000000 ± 4.37327261747736i

-0.25 ± 4.16078310911352i -0.32855775887639 ± 6.37948731547473i -0.25000000000000 ± 8.49403327810967i

-0.25 ± 4.80305999494626i -1.09100301027535 ± 18.72003621870064i -0.25000000000000 ± 31.96091138740705i

Table 3: Spectrum of a dissipative transmission line model: in (1st column) the theoretical
values. In the 2nd column the corresponding eigenvalues calculated using geometric collocation
method.In the 3rd column the eigenvalues obtained by classical collocation. The transmission
line parameters values are an inductance L = 2, a capacitance C = 3 and a resistance r = 1

6.2.2. Classical collocation with free boundaries
Look at now the classical collocation with free boundaries, much more adapted

to open dynamical systems. The eigenvalue problem considered here is the one
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as in the lossless case, when a physical dissipation is added. This leads to the
following system: 

(
0 d

d −r

)(
q(z)

p(z)

)
= λ

(
q(z)

p(z)

)
(55)

q(0) =

N∑
i=1

ψi(0)qi = 0 (56)

p(L) =

N∑
i=1

ψi(L)pi = 0 (57)

where r is the dissipation. The table 4 below compares the eigenvalues obtained
using our geometric method with those obtained with the classical collocation
with free boundaries. One can notice that the real part as well as the imaginary
part of the eigenvalues resulting from the geometric method are much more
accurate than those obtained with the classical one. In addition, the two last
couples of eigenvalues obtained with the classical method are instable while the
original system is passive.

Theoretical values Geometric method Classical collocation

-0.25± 0.20076946774351i -0.25000000000000 ± 0.20076946774351i -0.24930216251772 ± 0.14747653502614i

-0.25± 0.92885704637588i -0.25000000223150 ± 0.92885705500815i -0.25129919304432 ± 0.92378036197850i

-0.25± 1.58357490490673i -0.25000393136670 ± 1.58360306757729i -0.24566489648452 ± 1.60387844859800i

-0.25± 2.23049559060822i -0.25027657287508 ± 2.23374307917011i -0.24951676276364 ± 2.32979926140971i

-0.25± 2.87488760013659i -0.25340619431893 ± 2.93754399174322i -0.29829313524034± 2.94739244163835i

-0.25± 3.51814068515455i -0.26792900064430 ± 3.97546301847245i -1.26039743395064 ± 3.72996412500374i

-0.25± 4.16078310911352i -0.32855775887639 ± 6.37948731547473i 0.90547685940890 ± 3.72080660109945i

-0.25± 4.80305999494626i -1.09100301027535 ± 18.72003621870064i 3.33926057044720 ± 0.000000000000000

Table 4: Spectrum of a dissipative transmission line model: in (1st column) the theoretical
values. In the 2nd column the corresponding eigenvalues calculated using geometric collocation
method.In the 3rd column the eigenvalues obtained by classical collocation.

6.3. Numerical study of rate convergence

The table 5 compares the eigenvalues of the lossless transmission line model
obtained using 8 interior collocation points and those callculated with 16 collo-
cation points, within the geometric collocation method developed in the present
paper. As a �rst comment, one can notice that the �rst pairs of eigenvalues
converge much more fast than the last ones. In view of the results exposed
within this table, on can notice that the accuracy of the spectrum obtained
using the geometric method increase highly as the number of the collocation
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points increases. Actually, when doubling the number of the collocation points
from 8 to 16, we capture the �rs three couples of eigenvalues within machine
precision, whereas one can only capture the �rst couple when we use 8 colloca-
tion points considering the same precision. In addition, when we increase from
8 to 16 collocation points, the accuracy of 4th pair of eigenvalues for instance,
increase with 108 order of magnitude, and the same holds true for the 5th pair.
In the light of all these observations, one can infer that the convergence of this
geometric method is at least exponential.

Theroretical values 8 collocation points 16 collocation points

± 0.32063745754047i 0.00000000000000 ± 0.32063745754047i 0.00000000000000 ± 0.32063745744583i

± 0.96191237262140i 0.00000000000000 ± 0.96191238151097i 0.00000000000000 ± 0.96191237262140i

± 1.60318728770233i 0.00000000000000 ± 1.60321563740732i 0.00000000000000 ± 1.60318728770233i

± 2.24446220278326i 0.00000000000000 ± 2.24771134219675i 0.00000000000000 ± 2.24446220278361ii

± 2.88573711786419i 0.00000000000000 ± 2.94830702957369i 0.00000000000000 ± 2.88573711861816i

± 3.52701203294513i 0.00000000000000 ± 3.98374558826630i 0.00000000000000 ± 3.52701228702717i

± 4.16828694802606i 0.00000000000000 ± 6.38606332778657i 0.00000000000000 ± 4.16831018776371i

± 4.80956186310699i 0.00000000000000 ±18.76179259703309i 0.00000000000000 ± 4.81033320045241i

Table 5: The spectrum of an ideal transmission line model: theoretical values (1st column),
values computed using the proposed geometric collocation method with 8 Tchebychev col-
location points (2nd column) and the �rst 8 eigenvalues obtained with the same geometric
collocation method using 16 Tchebychev collocation points (3rd column). The transmission
line parameters values are an inductance L = 2, a capacitance C = 3 and a resistance R = 0

7. CONCLUSIONS AND FUTURE WORKS

In this paper we discussed the geometric discretization of port-based dis-
tributed parameters models. We have chosen the transmission line model as
paradigmatic example. We have chosen di�erent approximation spaces accord-
ing to the degrees of the approximated di�erential forms. Doing this both the
exterior derivative and the boundary operator may be discretized exactly. We
have shown that the Dirac structure is preserved from the in�nite to the �nite
dimension using a discrete version of the Stokes theorem. This Dirac structure
is completed with the discretization of the constitutive relations describing the
energy of the system. The resulting reduced model has the structure of a �nite-
dimensional port hamiltonian system. As a consequence of the conservation
of the geometric structure after discretization, we have seen that the spectral
properties of the discrete system are better preserved and more accurate than
with classical collocation methods, from the numerical precision point of view
as well as the stability one. In view of the many advantages that this method
does o�er, we are currently extending these results to the two dimensional case,
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still within the port-Hamiltonian formalism. We are also interested in inves-
tigating the controllability and observability of the system resulting from the
discretization, since the scheme developed in this paper seems to preserve the
stability of the in�nite system.
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