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A simple 1D 1 group model to study uniaxial Xenon instabilities 

in a large PWR core and their control. 

B. Mercier, P. Reuss, Wang X.Y.  27/10/17 

 

Abstract 

We study a 1D 1 group model, independently considered in �3� and �4�, to study uniaxial Xenon 

instabilities. 

Such a simple model is useful for educational purpose. It shows the existence and the shape of Xenon 

oscillations which are at the basis of the well known axial offset anomaly.  

With a suitable choice of the migration area ��, we can obtain oscillations with a 28 or 30 hours 

period which correspond to what is expected (see [1]). 

We also show that, with such a model, it is possible to simulate lightly absorbing control rods and 

implement a feedback control to damp the oscillations out. 

We have implemented the Shimazu feedback control law [6]. 

We show that the Shimazu method, which relies on a simple 2 zones lumped parameter model, is an 

efficient one. 

Taking into account the Doppler effect is possible with our model, as has been shown in �3�. 
Our model is a nonlinear one. A linear stability analysis has been carried out in [5] 

 

The 1 group diffusion model 

For an homogeneous reactor core the one group diffusion model can be written as : 

(1)  −��	∆Φ+Φ = �Φ,				� ∈ Ω 

where Φ  is the (thermal) neutron flux in � ���⁄ �⁄ , �� the migration area (in ���), and � 

multiplication factor that would be reached in the case of an infinite core. 

 

The uniaxial case 

Actually the core of a PWR is not homogeneous, it is made of vertical cells with height L and step δ in 

the two horizontal directions : each cell is a parallelepipoid with volume δ	x	δ	x	L that contains a 

cylindrical fuel pin, the height of which is also equal to L. 

The moderation ratio being equal to 2, the section area of the fuel pin may be chosen equal to 
��

� . 

The light water used as moderator will be located in the complementary part with section 2 ��

� . 

The well known self-shieldind phenomenon makes that the neutron flux is smaller in the fuel than in 

the  moderator.  

MC simulations show that the thermal neutron flux is 1.2 times larger in the moderator, but what is 

important for us is the thermal neutron flux in the fuel pins, since it leads to the actual number of 

fissions per fuel ��� per second and then to the core power. 

In the 1D case equation (1) will be remplaced by 

 (2)  −��	Φ�� +Φ = �Φ,				0 <  < 	!	 
and completed by some boundary conditions (BC). In the following we shall choose the Dirichlet BC : 

(3) Φ"0# = 	Φ"!# = 0 

We refer the reader to [3] for the Fourier BC. 

 

Fast neutrons vs thermal neutrons  
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Even though it is somewhat arbitrary, neutrons with energy E > 0,625 eV are said to be fast and 

neutrons with energy E < 0,625 eV are called thermal neutrons. 

In a PWR, the thermal neutron flux is equal to 3.7	10'� n/��� �⁄  in average in the fuel pins (see �2� 
p.382). 

The fast neutron flux is about 7 times higher : it is then approximatively equal to 2.7	10'( n/��� �⁄  in 

average in the fuel. 

On the contrary, there are about 5 times more fissions in the thermal domain than in the fast 

domain. The fuel volume being equal to 11.1 ��on a 1300 MWe PWR, it means that there are about 

1.1	10'� fissions/���/s in the fuel at nominal power 3800 MWth 

 (1.1 = 0.19 fast + 0.91 thermal). 

In a one group model, the migration area is evaluated by taking into account both fast and thermal 

neutrons.  

However, only thermal neutrons can be captured by Xenon 135 and this explains why 2 group 

models have been considered by CEA in the CRONOS software or by EDF in the internal codes 

COCCINELLE and LIBELLULE. 

In the present paper which is dedicated to the one group model, the solution Φ to equation (1) or (2) 

will be assumed to be the thermal neutron flux in the fuel. 

 

We remind the reader that (2) (3) is an eigenvalue problem and then that Φ is defined up to a 

multiplicative factor. 

In our one group model, the fast neutron flux and the thermal neutron flux are assumed to have the 

same spatial dependence. 

Since Φ is assumed to be the thermal neutron flux in the fuel, we shall have to replace the fission 

(thermal) macroscopic cross section )* in the fuel by )** for )**Ф to be equal to the number of (fast 

+ thermal) fissions/���/s. 

From reference �2� (p.382) we see that when )* = 0.246	��-' we should take )** = 0,297	��-'	. 
 

Introduction of Iodine and Xenon 

We have the following evolution equations: 

(4) 
/0
/1 = 2)**Ф− 34 

(5) 
/5
/1 = 2�)**Ф	 + 34 − "6 + 7Ф#8 

where 7 is the microscopic capture cross section for Xenon in the thermal domain (evaluated in 

barns). 

As explained above, Ф is the thermal neutron flux in the fuel. 

In the following, we neglect 2� since 2� ≪ 2. 

In (4) and (5) 8 and 4 are evaluated in :; ���⁄ , )** in ��-' and Φ in � ���⁄ �⁄ . 

Obviously, we have 4 = 4" , ;# , 8 = 8" , ;# and Φ = Φ" , ;# ; 4" , ;# (resp. 8" , ;#) denotes the 

number of Iodine (resp. Xenon) atoms per ��� of fuel at elevation  , and Φ" , ;# the thermal neutron 

flux at elevation   in the fuel. 

To take into account the (large) 8<'�=  capture cross section, equation (2) should be replaced by  

(6) −�� 	 >
�

>?�Φ	 + "1 + @8#Φ = �Φ,				0 <  < 	! 

where the parameter @ should be evaluated in such a way that, at the nominal flux Φ = ΦA , the 

negative reactivity induced by 8<'�=  be B = 0.03, which corresponds to 3000 pcm. 
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Evaluation of parameter C. 

By doing Φ" , ;# = ΦA" # in equations (4) and (5) and making ; → ∞, we find : 

 0 = 2)**ΦA" # − 34" # 

 0 = 34" # − "6 + 7ΦA" ##8" # 

hence  

 8" # = FGHHΦI"?#
JKLΦI"?#  

In view of equation (6), in average, the product @	. 8" # should be equal to B. 

Let ΦM = '
N O ΦA" #P N

Q ,  a rough approximation is to choose @ = B JKLΦR
FGHHΦR

  . 

 

Rescaling  

Following �4� we let 

 Φ" , ;# = Φ∗	T" , ;# 

 8" , ;# = 8∗	�" , ;# 

 4" , ;# = 4∗	U" , ;# 

We also replace ;	by V = λ	;	 where λ is the half-life time for W'�=  B-decay. Then we obtain 

 (7) −�� 	 >
�

>?� T	 + "1 + @8∗	�#T = �T,				0 <  < 	!	 
(8) λ4∗ /X

/Y 	= 2)**Φ∗	T − 34∗	U 

(9) λ8∗ 	/Z/Y = 34∗	U − "6 + 7Φ∗	T#8∗	� 

so that, if we choose 4∗ =	8∗, we get  

(10) λ
/X
/Y 	=

'
5∗
2)**Φ∗	T − 3	U 

(11) 	λ /Z
/Y = 3	U − "6 + 7Φ∗	T#	� 

Now let 

 Φ∗ = 	3/7 

 : = 6 3⁄  

and 8∗ =	 FGHHΦ∗
\ = FGHH

L  

we get 

(12) 
/X
/Y 	= 	T − 	U 

(13) 	/Z/Y = 	U − ": + 	T#	� 

Finally, let @∗ = @	8∗ we get 

 (14) −�� 	 >
�

>?� T	 + "1 + @∗	�#T = �T,				0 <  < 	! 

 

8∗ has the following interpretation : it is the equilibrium value for the concentration of 8<'�=  atoms 

when the neutron flux is infinitely large.  

(12)(13)(14) completed with Dirichlet BC is the system which we shall solve.  

 

Time discretization.  

At time V] we start from the rescaled flux T " , V]# ; we solve (12) and (13) between  V] and V]K' to 

obtain U and � at time V]K'. Then we compute T at time V]K' by solving (14). 

Note that (14) is an eigenvalue problem which defines T up to a multiplicative constant. We then 

scale T in such a way that the core power is equal to the nominal power.  
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Note that we solve (14) we actually compute  �^**  such that  

(15) −�� 	 >
�

>?� T	 + "1 + @∗	�#T = _`
_aHH

T,				0 <  < 	!	 
and we tune the boron concentration in the moderator so that the core is just critical. In other words 

we select � so that (14) holds. 

 

Space-discretization 

We introduce a uniform grid with � cells. Let ∆ = 	! �⁄  . 

We use the finite difference method and introduce 3 sets of discrete values : "Tb"V##bcQ,…,] for the 

neutron flux,  "�b"V##bc',…,]-' for xenon, "Ub"V##bc',…,]-' for iodine. 

We replace (12)(13) (15) by 

(16) 
/Xe
/Y 	= 	Tb −	Ub  

(17) 	/Ze/Y =	Ub − ": +	Tb#	�b 
(18)  −�� fegh-�feKfeih

"∆?#� 	+ "1 + @∗�b#Tb = �Tb,				j = 1,… , � − 1	 
 TQ = T] = 0 

 

Numerical data  

λ = 2.92		10-=	�-'	
6 = 2.12		10-=	�-'  

which gives : ≅ 0.725 

2 = 0.064 

2� = 0 (simplification) 

We have selected 7 = 2. 10m	n:o�, then 

 	Φ∗ = 1.459	10'� 	� ���⁄ �⁄  , 

 8∗ = 9.504	10'=	:;/���  

 @∗ = 0.0386  

 

Solution of the eigenvalue problem by the "shooting technique"  

Continuous case (14) :  

Let � = �" # = 	1 + @∗	�" # 

For given q > 0, we solve the Cauchy problem : find ψs such that  

 −	��ψs
�� + 	�	ψs = 	q	ψs tuvo	 ∈]0, !� 

  ψs"0# = 0 

  ψs
� "0# = 1 

Obviously we shall have ψs"!# = 0 if and only if q is an eigenvalue. Since we are interested only by 

the smallest eigenvalue, we look for the smallest positive root of the equation  

 ψs"!# = 0 

and for this, we use the dichotomy method.  

Discrete case 

Let �b = 	1 + @∗	�b. For given q > 0 we solve 

 (19)  −�� fegh-�feKfeih
"∆?#� 	+ �bTb = qTb ,				j = 1,… , � − 1	 

TQ = 0 et T' = 1 
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By induction we obtain a value T] = T]"q# which is not necessarily equal to zero, but we iterate on 

q  so as to obtain T]"q# = 0. 

Then we scale the eigenvector Tb  so obtained in such a way that its average is equal to some 

specified Twx^. Obviously Twx^ depends on the nominal power which we want to consider. 

 

Introduction of control rods 

The reactivity control of the core is basically performed by tuning the Boron concentration of the 

moderator. 

However to damp the Xenon oscillations which may appear in the core, as has been shown by 

Shimazu [6], it may be useful to introduce some control rods in the upper part of the core at some 

appropriate times and for some time.  

In such a case, we just replace �" # = 	1 + @∗	�" # by 

(20)   �" # = 	1 + @∗	�" # + B.y" −  Q#  

where B is the weight (in pcm) of the control rods,  Q is the elevation of the lower end of the control 

rods and y the Heaviside function. 

We have selected B = 1100	t�� which corresponds approximately to the grey control rods. 

 

Résults with z{ = |}}	~�{ 

Starting from an equilibrium solution �" #, U" #, T" #, with the control rods 25% inserted (that is 

 Q = 300	��) we introduce a perturbation by moving the control rods upwards instantaneously 

from  Q = 300	�� to  Q = 330	��. 

In the following, we plot the Xenon profiles at time V = 0	; 	V = 0.4	; 	V = 0.8 ... up to  time V = 4, 

that is ; = 38	ℎours. 

 

    Twx^ = 2  

 

    Twx^ = 3     
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We observe that our system is stable for Twx^ < 2.5 and unstable for Twx^ > 2.5 . The period is 

approximately equal to 28 hours when Twx^ = 2  and to 30 hours when Twx^ = 3  which agrees with 

Mathonnière's results �1�. 
As we can see below in the limit case Twx^ = 2.5 the oscillations are not amplified with time. 

 

Interpretation : Since 	Φ∗ = 1.459	10'� 	� ���⁄ �⁄   the case Twx^ = 2.5 corresponds then to 

Φwx^ = 3.64	10'� 	� ���⁄ �⁄  which is precisely what we have for a  PWR1300 at full power.  

 

Results with z{ = ��	~�{ 

Our results show that the instability increases. 

Here are the results for Twx^ = 1.5 : 

   
We note that the value Twx^ = 1.5  selected here is relatively low : it corresponds to  

Φwx^ = 2,19	10'� 	� ���⁄ �⁄  . In view of our results, the value �� = 100	��� of the migration area 

seems more likely. 

Now with such a 1D-1group model we do not pretend to get predictive results. However the trends 

given by our (pedagogic) model are correct : the migration area is obviously a sensitive parameter. 

The smaller �� leads to a more unstable situation. This was predictable since the most relevant 

parameter for the instabilities is ! �⁄ . 
 

Remark : the grid size is not a sensitive parameter: the results with a grid of 40 cells are almost the 

same as with a 100 cells grid. This means that a grid of 40 cells is precise enough. 

 

Implementing Shimazu's method for rod control 

In the following we use a uniform grid with 40 cells.  
Since we have ∆ = 10	��	it makes sense to move the control rods by steps of 10 cm or a multiple 

of 10 cm.  
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Like in [6], we introduce the axial offsets 

 ��� = "T1 − T�# "T1 + T�#⁄  

 ���b = "U1 − U�# "U1 + U�#⁄  

 ���Z = "�1 − ��# �"�1 + ��# − 2�1���⁄  

where  
U1 	, U� are the average values for U" # (the scaled Iodine concentration) in the upper half and the 

lower half of the core respectively ; 

 �1 , �� are the same but for the scaled Xenon concentration x"z# and 
 T1 , T� are the same but for the scaled neutron flux  concentrations φ"z# 
Following Shimazu, when ���b-���Z>0 and (���b-���Z)/(	���-���Z) < 	;:�"T�#, we shift the 

control rods downwards for one step (10 cm).  

To improve the results we introduced a new rule: in the case ���b-���Z>0 and 

 (���b-���Z)/(	���-���Z# < ;:�"T�#, if ���b-���Z > 0.2, then we shift the rods 2 steps 

downwards rather than 1 step.  

In the other case ���b-���Z<0 and (���b-���Z)/(	���-���Z) < ;:�(T�), if  ���b-���Z < 0.2, then 

we shift the rods 2 steps upwards rather than 1 step.  

 

On the other hand, when ���b-���Z < 0 and (���b-���Z)/(	���-���Z) < 	;:�"T�#  

we shift the control rods upwards for one step (10 cm).  

Here are some results we obtained with such a control and for the phase T� =0.53158 (see remark 

below): 

 

 
control period V = 0.1 (i-e 57 min)   control period V = 0.05 (i-e 28.5 min) 

 
control period V = 0.01 (i-e 5.7 min) 

 

The results show the efficiency of Shimazu's control law when the control period is sufficiently low.  

 

Note that the control rods can move by 10 cm step, which is significant. 

In the case where the control period V = 0.01, we clearly see when the control rods are moved 

upwards or downwards.  
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Remark : To compute T�, we proceed following Shimazu :.  

 
First, we carry out a computation without control rods to evaluate the maximal oscillation 

amplitudes ���, ��b  and ��Z for ���, ��b and ��Z respectively. 

In our case, we have initially ��b = 0 so that Tb = 0.  

Then we have  

T� = :o��u�����Z − ����/���� + ��Z�� 

��� = ����b + ��Z	�u��T���
� + ���Z	�j��T���

��
'/�

 

T� = 1 2⁄ 	:o�;:��2o�j��T��/"1 − o�#� 
with 

o = ��� ���� + ��Z�⁄ .  

 

Conclusion 

As a 1D 1-group model, our model is quite simple, then useful for educational purpose. 

We show that it is adequate to study the Xenon oscillations, but also the control of such oscillations. 

Our model is  globally non-linear, but the equation for the flux T with given Xenon distribution is 

linear. This is because we do not take the Doppler effect into account.  

In our model the really sensitive parameter is the migration area ��. 

We have tested values of ��	in the range 49 ≤ �� ≤ 100	���, and we find that the lower ��, the 

more unstable the model.  

The oscillations period is approximately equal to 30 hours, in accordance with the experimental 

results.  

We also observe that the higher the average flux the higher the oscillations are, which was expected.  

As it is well known, the control laws for a PWR must take Xenon instabilities into account.  

We have seen that the famous Shimazu control law is also efficient with our model. 
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