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Abstract

We study a 1D 1 group model, independently considered in ሾ3ሿ and ሾ4ሿ, to study uniaxial Xenon instabilities. Such a simple model is useful for educational purpose. It shows the existence and the shape of Xenon oscillations which are at the basis of the well known axial offset anomaly. With a suitable choice of the migration area ܯ ଶ , we can obtain oscillations with a 28 or 30 hours period which correspond to what is expected (see [1]). We also show that, with such a model, it is possible to simulate lightly absorbing control rods and implement a feedback control to damp the oscillations out. We have implemented the Shimazu feedback control law [START_REF] Shimazu | Verification of a continuous guidance procedure of xenon oscillation control[END_REF]. We show that the Shimazu method, which relies on a simple 2 zones lumped parameter model, is an efficient one. Taking into account the Doppler effect is possible with our model, as has been shown in ሾ3ሿ. Our model is a nonlinear one. A linear stability analysis has been carried out in [START_REF] Pounders | A generalization of λ-mode Xenon stability analysis[END_REF] The 1 group diffusion model For an homogeneous reactor core the one group diffusion model can be written as :

(1)

ܯ- ଶ ∆Φ + Φ = ݇ ஶ Φ, ݔ ∈ Ω
where Φ is the (thermal) neutron flux in ݊ ܿ݉ ଶ ⁄ ݏ ⁄ , ܯ ଶ the migration area (in ܿ݉ ଶ ), and ݇ ஶ multiplication factor that would be reached in the case of an infinite core.

The uniaxial case

Actually the core of a PWR is not homogeneous, it is made of vertical cells with height L and step δ in the two horizontal directions : each cell is a parallelepipoid with volume δ x δ x L that contains a cylindrical fuel pin, the height of which is also equal to L.

The moderation ratio being equal to 2, the section area of the fuel pin may be chosen equal to

ఋ మ ଷ .
The light water used as moderator will be located in the complementary part with section 2 ఋ మ ଷ . The well known self-shieldind phenomenon makes that the neutron flux is smaller in the fuel than in the moderator. MC simulations show that the thermal neutron flux is 1.2 times larger in the moderator, but what is important for us is the thermal neutron flux in the fuel pins, since it leads to the actual number of fissions per fuel ܿ݉ ଷ per second and then to the core power. In the 1D case equation (1) will be remplaced by (2)

ܯ- ଶ Φ ᇱᇱ + Φ = ݇ ஶ Φ, 0 < ݖ < ܮ
and completed by some boundary conditions (BC). In the following we shall choose the Dirichlet BC :

(3)

Φሺ0ሻ = Φሺܮሻ = 0
We refer the reader to [3] for the Fourier BC.

Fast neutrons vs thermal neutrons

Even though it is somewhat arbitrary, neutrons with energy E > 0,625 eV are said to be fast and neutrons with energy E < 0,625 eV are called thermal neutrons. In a PWR, the thermal neutron flux is equal to 3. In the present paper which is dedicated to the one group model, the solution Φ to equation ( 1) or ( 2)

will be assumed to be the thermal neutron flux in the fuel.

We remind the reader that (2) (3) is an eigenvalue problem and then that Φ is defined up to a multiplicative factor.

In our one group model, the fast neutron flux and the thermal neutron flux are assumed to have the same spatial dependence.

Since Φ is assumed to be the thermal neutron flux in the fuel, we shall have to replace the fission (thermal) macroscopic cross section ߑ in the fuel by ߑ for ߑ Ф to be equal to the number of (fast + thermal) fissions/ܿ݉ ଷ /s. From reference ሾ2ሿ (p.382) we see that when ߑ = 0.246 ܿ݉ ିଵ we should take ߑ = 0,297 ܿ݉ ିଵ .

Introduction of Iodine and Xenon

We have the following evolution equations:

(4)

ௗ ௗ௧ = ߛߑ Ф -ߣܻ (5) 
ௗ ௗ௧ = ߛ ᇱ ߑ Ф + ߣܻ -ሺߤ + ߪФሻܺ
where ߪ is the microscopic capture cross section for Xenon in the thermal domain (evaluated in barns).

As explained above, Ф is the thermal neutron flux in the fuel.

In the following, we neglect ߛ ᇱ since ߛ ᇱ ≪ ߛ.

In ( 4) and ( 5)

ܺ and ܻ are evaluated in ݐܽ ܿ݉ ଷ ⁄ , ߑ in ܿ݉ ିଵ and Φ in ݊ ܿ݉ ଶ ⁄ ݏ ⁄ .
Obviously, we have ܻ = ܻሺ,ݖ ݐሻ , ܺ = ܺሺ,ݖ ݐሻ and Φ = Φሺ,ݖ ݐሻ ; ܻሺ,ݖ ݐሻ (resp. ܺሺ,ݖ ݐሻ) denotes the number of Iodine (resp. Xenon) atoms per ܿ݉ ଷ of fuel at elevation ,ݖ and Φሺ,ݖ ݐሻ the thermal neutron flux at elevation ݖ in the fuel.

To take into account the (large) ܺ݁ ଵଷହ capture cross section, equation ( 2) should be replaced by ( 6)

ܯ- ଶ డ మ డ௭ మ Φ + ሺ1 + ߙܺሻΦ = ݇ ஶ Φ, 0 < ݖ < ܮ
where the parameter ߙ should be evaluated in such a way that, at the nominal flux Φ = Φ ே , the negative reactivity induced by ܺ݁ ଵଷହ be ߚ = 0.03, which corresponds to 3000 pcm.

Evaluation of parameter ࢻ.

By doing Φሺ,ݖ ݐሻ = Φ ே ሺݖሻ in equations ( 4) and ( 5) and making ݐ → ∞, we find :

0 = ߛߑ Φ ே ሺݖሻ -ߣܻሺݖሻ 0 = ߣܻሺݖሻ -ሺߤ + ߪΦ ே ሺݖሻሻܺሺݖሻ hence ܺሺݖሻ = ఊఀ Φ ಿ ሺ௭ሻ ఓାఙΦ ಿ ሺ௭ሻ
In view of equation ( 6), in average, the product ߙ . ܺሺݖሻ should be equal to ߚ.

Let Φ ெ = ଵ  Φ ே ሺݖሻ݀ݖ , a rough approximation is to choose ߙ = ߚ ఓାఙΦ ಾ ఊఀ Φ ಾ
.

Rescaling

Following ሾ4ሿ we let

Φሺ,ݖ ݐሻ = Φ * ߮ሺ,ݖ ݐሻ ܺሺ,ݖ ݐሻ = ܺ * ,ݖ‪ሺݔ ݐሻ ܻሺ,ݖ ݐሻ = ܻ * ,ݖ‪ሺݕ ݐሻ
We also replace ݐ by ߬ = λ ݐ where λ is the half-life time for ܫ ଵଷହ ߚ-decay. Then we obtain

(7) ܯ- ଶ డ మ డ௭ మ ߮ + ሺ1 + ߙܺ * ݔሻ߮ = ݇ ஶ ߮, 0 < ݖ < ܮ (8) λܻ * ௗ௬ ௗఛ = ߛߑ Φ * ߮ -ߣܻ * ݕ (9) λܺ * ௗ௫ ௗఛ = ߣܻ * ݕ -ሺߤ + ߪΦ * ߮ሻܺ * ݔ so that, if we choose ܻ * = ܺ * , we get (10) λ ௗ௬ ௗఛ = ଵ * ߛߑ Φ * ߮ -ߣ ݕ (11) λ ௗ௫ ௗఛ = ߣ ݕ -ሺߤ + ߪΦ * ߮ሻ ݔ Now let Φ * = ߣ/ߪ ܽ = ߤ ߣ ⁄ and ܺ * = ఊఀ Φ * ఒ = ఊఀ ఙ we get (12) ௗ௬ ௗఛ = ߮ -ݕ (13) ௗ௫ ௗఛ = ݕ -ሺܽ + ߮ሻ ݔ Finally, let ߙ * = ߙ ܺ * we get (14) ܯ- ଶ డ మ డ௭ మ ߮ + ሺ1 + ߙ * ݔሻ߮ = ݇ ஶ ߮, 0 < ݖ < ܮ
ܺ * has the following interpretation : it is the equilibrium value for the concentration of ܺ݁ ଵଷହ atoms when the neutron flux is infinitely large. (12)(13)(14) completed with Dirichlet BC is the system which we shall solve.

Time discretization.

At time ߬ we start from the rescaled flux ߮ ሺ,ݖ ߬ ሻ ; we solve ( 12) and ( 13) between ߬ and ߬ ାଵ to obtain ݕ and ݔ at time ߬ ାଵ . Then we compute ߮ at time ߬ ାଵ by solving (14). Note that ( 14) is an eigenvalue problem which defines ߮ up to a multiplicative constant. We then scale ߮ in such a way that the core power is equal to the nominal power.

Note that we solve (14) we actually compute ݇ such that

(15) ܯ- ଶ డ మ డ௭ మ ߮ + ሺ1 + ߙ * ݔሻ߮ = ಮ ߮, 0 < ݖ < ܮ
and we tune the boron concentration in the moderator so that the core is just critical. In other words we select ݇ ஶ so that ( 14) holds.

Space-discretization

We introduce a uniform grid with ݊ cells. Let ݖ∆ = ܮ ݊ ⁄ .

We use the finite difference method and introduce 3 sets of discrete values : ሺ߮ ሺ߬ሻሻ ୀ,…, for the neutron flux, ሺݔ ሺ߬ሻሻ ୀଵ,…,ିଵ for xenon, ሺݕ ሺ߬ሻሻ ୀଵ,…,ିଵ for iodine. We replace (12)(13) ( 15) by ( 16)

ௗ௬ ௗఛ = ߮ -ݕ (17) ௗ௫ ௗఛ = ݕ -ሺܽ + ߮ ሻ ݔ (18) ܯ- ଶ ఝ శభ ିଶఝ ାఝ షభ ሺ∆௭ሻ మ + ሺ1 + ߙ * ݔ ሻ߮ = ݇ ஶ ߮ , ݅ = 1, … , ݊ -1 ߮ = ߮ = 0
Numerical data λ = 2.92 10 ିହ ݏ ିଵ ߤ = 2.12 10 ିହ ݏ ିଵ which gives ܽ ≅ 0.725 ߛ = 0.064 ߛ ᇱ = 0 (simplification)

We have selected ߪ = 2. 10 ,݊ݎܾܽ then Φ * = 1.459 10 ଵଷ ݊ ܿ݉ ଶ ⁄ ݏ ⁄ , ܺ * = 9.504 10 ଵହ ݉ܿ/ݐܽ ଷ ߙ * = 0.0386

Solution of the eigenvalue problem by the "shooting technique" Continuous case (14) :

Let ܿ = ܿሺݖሻ = 1 + ߙ * ݔሺݖሻ For given ߩ > 0, we solve the Cauchy problem : find ψ ఘ such that

-ܯ ଶ ψ ఘ ᇱᇱ + ܿ ψ ఘ = ߩ ψ ఘ ݎݑ ݖ ∈]0, ܮሾ ψ ఘ ሺ0ሻ = 0 ψ ఘ ᇱ ሺ0ሻ = 1
Obviously we shall have ψ ఘ ሺܮሻ = 0 if and only if ߩ is an eigenvalue. Since we are interested only by the smallest eigenvalue, we look for the smallest positive root of the equation ψ ఘ ሺܮሻ = 0

and for this, we use the dichotomy method.

Discrete case

Let ܿ = 1 + ߙ * ݔ . For given ߩ > 0 we solve

(19) ܯ- ଶ ఝ శభ ିଶఝ ାఝ షభ ሺ∆௭ሻ మ + ܿ ߮ = ߩ߮ , ݅ = 1, … , ݊ -1 ߮ = 0 et ߮ ଵ = 1
By induction we obtain a value ߮ = ߮ ሺߩሻ which is not necessarily equal to zero, but we iterate on ߩ so as to obtain ߮ ሺߩሻ = 0.

Then we scale the eigenvector ߮ so obtained in such a way that its average is equal to some specified ߮ ௩ . Obviously ߮ ௩ depends on the nominal power which we want to consider.

Introduction of control rods

The reactivity control of the core is basically performed by tuning the Boron concentration of the moderator.

However to damp the Xenon oscillations which may appear in the core, as has been shown by Shimazu [6], it may be useful to introduce some control rods in the upper part of the core at some appropriate times and for some time.

In such a case, we just replace ܿሺݖሻ = 1 + ߙ * ݔሺݖሻ by ( 20)

ܿሺݖሻ = 1 + ߙ * ݔሺݖሻ + ߚ. ݖ‪ሺܪ -ݖ ሻ
where ߚ is the weight (in pcm) of the control rods, ݖ is the elevation of the lower end of the control rods and ܪ the Heaviside function.

We have selected ߚ = 1100 ݉ܿ which corresponds approximately to the grey control rods.

Résults with =

Starting from an equilibrium solution ݔሺݖሻ, ݕሺݖሻ, ߮ሺݖሻ, with the control rods 25% inserted (that is ݖ = 300 ܿ݉) we introduce a perturbation by moving the control rods upwards instantaneously from ݖ = 300 ܿ݉ to ݖ = 330 ܿ݉.

In the following, we plot the Xenon profiles at time ߬ = 0 ; ߬ = 0.4 ; ߬ = 0. We observe that our system is stable for ߮ ௩ < 2.5 and unstable for ߮ ௩ > 2.5 . The period is approximately equal to 28 hours when ߮ ௩ = 2 and to 30 hours when ߮ ௩ = 3 which agrees with Mathonnière's results ሾ1ሿ.

As we can see below in the limit case ߮ ௩ = 2.5 the oscillations are not amplified with time.

Interpretation : Since Φ * = 1.459 10 ଵଷ ݊ ܿ݉ ଶ ⁄ ݏ ⁄ the case ߮ ௩ = 2.5 corresponds then to Φ ௩ = 3.64 10 ଵଷ ݊ ܿ݉ ଶ ⁄ ݏ ⁄ which is
precisely what we have for a PWR1300 at full power.

Results with = ૢ

Our results show that the instability increases.

Here are the results for ߮ ௩ = 1.5 :

We note that the value ߮ ௩ = 1.5 selected here is relatively low : it corresponds to

Φ ௩ = 2,19 10 ଵଷ ݊ ܿ݉ ଶ ⁄ ݏ ⁄ .
In view of our results, the value ܯ ଶ = 100 ܿ݉ ଶ of the migration area seems more likely. Now with such a 1D-1group model we do not pretend to get predictive results. However the trends given by our (pedagogic) model are correct : the migration area is obviously a sensitive parameter. The smaller ܯ ଶ leads to a more unstable situation. This was predictable since the most relevant parameter for the instabilities is ܮ ܯ ⁄ .

Remark : the grid size is not a sensitive parameter: the results with a grid of 40 cells are almost the same as with a 100 cells grid. This means that a grid of 40 cells is precise enough.

Implementing Shimazu's method for rod control

In the following we use a uniform grid with 40 cells. Since we have ݖ∆ = 10 ܿ݉ it makes sense to move the control rods by steps of 10 cm or a multiple of 10 cm. Like in [START_REF] Shimazu | Verification of a continuous guidance procedure of xenon oscillation control[END_REF], we introduce the axial offsets

ܱܣ = ሺ߮ ௧ -߮ ሻ ሺ߮ ௧ + ߮ ሻ ⁄ ܱܣ = ሺݕ ௧ -ݕ ሻ ሺݕ ௧ + ݕ ሻ ⁄ ܱܣ ௫ = ሺݔ ௧ -ݔ ሻ ൫ሺݔ ௧ + ݔ ሻ -ݔ2 ௧ ݔ ൯ ⁄
where ݕ ௧ , ݕ are the average values for ݕሺݖሻ (the scaled Iodine concentration) in the upper half and the lower half of the core respectively ; ݔ ௧ , ݔ are the same but for the scaled Xenon concentration xሺzሻ and ߮ ௧ , ߮ are the same but for the scaled neutron flux concentrations φሺzሻ Following Shimazu, when ܱܣ ܱܣ- ௫ >0 and ܱܣ( ܱܣ- ௫ )/( ܱܣ ܱܣ- ௫ ) < ݊ܽݐሺ߮ ோ ሻ, we shift the control rods downwards for one step (10 cm).

To improve the results we introduced a new rule: in the case ܱܣ ܱܣ- ௫ >0 and

ܱܣ( ܱܣ- ௫ )/( ܱܣ ܱܣ- ௫ ሻ < ݊ܽݐሺ߮ ோ ሻ, if ܱܣ ܱܣ- ௫ > 0.
2, then we shift the rods 2 steps downwards rather than 1 step.

In the other case ܱܣ ܱܣ- ௫ <0 and ܱܣ( ܱܣ- ௫ )/( ܱܣ ܱܣ- ௫ ) < ߮(݊ܽݐ ோ ), if ܱܣ ܱܣ- ௫ < 0.2, then we shift the rods 2 steps upwards rather than 1 step.

On the other hand, when ܱܣ ܱܣ- ௫ < 0 and ܱܣ( ܱܣ- ௫ )/( ܱܣ ܱܣ- ௫ ) < ݊ܽݐሺ߮ ோ ሻ we shift the control rods upwards for one step (10 cm).

Here are some results we obtained with such a control and for the phase ߮ ோ =0.53158 (see remark below):

control period ߬ = 0.1 (i-e 57 min) control period ߬ = 0.05 (i-e 28.5 min) control period ߬ = 0.01 (i-e 5.7 min)

The results show the efficiency of Shimazu's control law when the control period is sufficiently low.

Note that the control rods can move by 10 cm step, which is significant.

In the case where the control period ߬ = 0.01, we clearly see when the control rods are moved upwards or downwards. Remark : To compute ߮ ோ , we proceed following Shimazu :. First, we carry out a computation without control rods to evaluate the maximal oscillation amplitudes ܯܣ , ܯܣ and ܯܣ ௫ for ܱܣ , ܱܣ and ܱܣ ௫ respectively.

In our case, we have initially ܱܣ = 0 so that ߮ = 0.

Then we have ߮ = ܱܣ‪ൣ൫ݏܿܿݎܽ ௫ -ܱܣ ൯/൫ܯܣ + ܯܣ ௫ ൯൧

ܯܣ = ቄൣܯܣ + ܯܣ ௫ ߮‪൫ݏܿ ൯൧ ଶ + ܯܣ‪ൣ ௫ ݊݅ݏ൫߮ ൯൧ ଶ ቅ ଵ/ଶ ߮ ோ = 1 2 ⁄ ߮‪݅݊൫ݏݎ2‪ܽ݊ൣݐܿݎܽ ൯/ሺ1 -ݎ ଶ ሻ൧
with ݎ = ܯܣ ܯܣ‪൫ + ܯܣ ௫ ൯ ⁄ .

Conclusion

As a 1D 1-group model, our model is quite simple, then useful for educational purpose. We show that it is adequate to study the Xenon oscillations, but also the control of such oscillations.

Our model is globally non-linear, but the equation for the flux ߮ with given Xenon distribution is linear. This is because we do not take the Doppler effect into account.

In our model the really sensitive parameter is the migration area ܯ ଶ .

We have tested values of ܯ ଶ in the range 49 ≤ ܯ ଶ ≤ 100 ܿ݉ ଶ , and we find that the lower ܯ ଶ , the more unstable the model. The oscillations period is approximately equal to 30 hours, in accordance with the experimental results. We also observe that the higher the average flux the higher the oscillations are, which was expected.

As it is well known, the control laws for a PWR must take Xenon instabilities into account.

We have seen that the famous Shimazu control law is also efficient with our model.

  8 ... up to time ߬ = 4, that is ݐ = 38 ℎours.

  7 10 ଵଷ n/ܿ݉ ଶ ݏ ⁄ in average in the fuel pins (see ሾ2ሿ

	p.382).
	The fast neutron flux is about 7 times higher : it is then approximatively equal to 2.7 10 ଵସ n/ܿ݉ ଶ ݏ ⁄ in
	average in the fuel.
	On the contrary, there are about 5 times more fissions in the thermal domain than in the fast
	domain. The fuel volume being equal to 11.1 ݉ ଷ on a 1300 MWe PWR, it means that there are about 1.1 10 ଵଷ fissions/ܿ݉ ଷ /s in the fuel at nominal power 3800 MWth
	(1.1 = 0.19 fast + 0.91 thermal).
	In a one group model, the migration area is evaluated by taking into account both fast and thermal
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	However, only thermal neutrons can be captured by Xenon 135 and this explains why 2 group
	models have been considered by CEA in the CRONOS software or by EDF in the internal codes
	COCCINELLE and LIBELLULE.