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Abstract

A reduction method is presented for systems of conservation laws with
boundary energy flow. It is stated as a generalized pseudo-spectral method
which performs exact differentiation by using simultaneously several ap-
proximation spaces generated by polynomials bases and suitable choices
of port-variables. The symplecticity of this spatial reduction method is
proved when used for the reduction of both closed and open systems of
conservation laws, for any choice of collocation points (i.e. for any poly-
nomial bases). The symplecticity of some more usual collocation schemes
is discussed and finally their accuracy on approximation of the spectrum,
on the example of the ideal transmission line, is discussed in comparison
with the suggested reduction scheme.

1 Introduction
Hamiltonian operators are classically used to represent the dynamics of many
closed systems of conservation laws. More recently port-Hamiltonian extensions
have been introduced to model distributed parameter systems with boundary
energy flow [47, 30]. Classical Hamiltonian examples such as electromagnetic
fields obeying Maxwell equations or ideal fluid described by the Navier-Stokes
equations may be considered using this port-Hamiltonian approach when sys-
tems with energy flows are considered.

This modelling approach has proven to be fruitful for the modelling, simula-
tion and control of many hyperbolic systems such as transmission lines models
[19], beam equations [27] or shallow water equations [22]. Quite surprisingly
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it may also be applied to some parabolic examples such as transport phenom-
ena in multi-scale adsorption columns [1], fuel cells [18] or Ionic Polymer-Metal
Composites [34].

In the spatial reduction of distributed parameters systems, pseudo-spectral
methods are often chosen because they lead to low order approximate model,
with good spectral properties (in the linear case). When a polynomial basis is
chosen for the approximation space, the derived pseudo-spectral method may
be viewed as a collocation method where the collocation points are the zeros
of the chosen polynomial . In this case, the reduced model is moreover stated
in “natural” variables (the infinite dimensional state variables evaluated at the
collocation points), making its physical meaning easy to catch [17]. Accurate
spectral properties and low order models are key features for control engineers.
These are the reasons why pseudo-spectral methods (and more specifically collo-
cation methods) have become popular among them (see for instance [16, 3, 38]).

Obviously in these engineering applications only open systems are consid-
ered since they are both measured and actuated. Besides accuracy properties,
either for long range simulation or for stabilizing control issues, it is of prime
importance for the reduced model to remain in the same port-Hamiltonian form
(i.e. with the same geometric structure and the same physical invariants). This
is what we will call here spatial symplecticity of the reduction scheme.

In this paper, we suggest a polynomial pseudo-spectral method which pre-
serves the geometric structure of port Hamiltonian models, the phenomenologi-
cal laws and the conservation laws without introducing any undesired numerical
dissipation. Doing so, we expect useful structural dynamical properties of the
obtained reduced model for numerical simulation and control. Mixed finite ele-
ments methods [7, 19, 2, 23] may be viewed as a particular case of the method-
ology developed hereafter for the case of low order polynomial approximations.
Besides this generalization, this paper provides a theoretical interpretation of
implicit choices made in these earlier works.

The paper is organized as follows. In the section 2 we present some existing
results on the Hamiltonian formulation of open distributed parameter systems.
Definition, examples and representation results of Hamiltonian systems defined
with respect to Dirac structures are recalled. Then the extension of Hamilto-
nian operators to Stokes-Dirac structure for the infinite dimensional case are
briefly recalled. Finally, two hyperbolic 1D examples are presented: the ideal
transmission line and the (nonlinear) shallow water model. In the section 3, we
present a new geometric collocation scheme. First we define the different approx-
imation subspaces according to the geometric nature of the approximated vari-
ables (differential forms of various degrees). Then, defining appropriate reduced
boundary variables we define a reduced Dirac structure by performing exact
differentiation. In the section 4 it is recalled how the closure equations defining
the Hamiltonian may be projected onto the discretization basis and the result-
ing spatially discretized port Hamiltonian system is defined. This procedure is
illustrated on the two examples of the ideal transmission line and the shallow
water equations. While the previous sections have presented a polynomial spa-
tial discretization scheme which, by construction, preserves the symplecticity of
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Hamiltonian systems defined on Stokes-Dirac structures, in the section 5, we
discuss the spatial symplecticity of another “classical” collocation schemes: it is
shown that when chosen collocation points are zeroes of Gauss-Legendre poly-
nomials, the discretization of closed Hamiltonian systems (in the sense that the
boundary conditions are such that there is no energy flow through the bound-
aries) is symplectic. This will allow fair comparisons between the geometric
collocation scheme proposed in this paper and another symplectic collocation
scheme (although the latter scheme does not preserve the geometric structure
for open systems). Comparisons concerning the spectrum approximation for an
ideal transmission line are then proposed.

2 Extension of Hamiltonian operators and Dirac
structures

The Dirac structure is a geometric structure introduced originally to gauge
Poisson brackets for system with constraints [11, 10]. Dirac structures general-
ize as well Poisson brackets as presymplectic forms defined on some differential
manifoldM in terms of vector subbundles of the product bundle TM× T ∗M.
Dirac structures are the graph of skew-symmetric tensors encompassing the ten-
sor fields associated with the Poisson brackets and presymplectic forms. Dirac
structures appear also for evolution equations expressed as Hamiltonian systems
defined with respect to Hamiltonian operators [14] and have been used for the
analysis of their integrability [15].

In the context of this paper we shall consider a class of Dirac structures which
extend Poisson brackets and Hamiltonian systems in the sense that they are de-
fined on larger subbundles than TM×T ∗M for finite-dimensional Hamiltonian
systems [46] or correspond to extensions of Hamiltonian operators for infinite-
dimensional Hamiltonian systems [47, 25]. These latter extensions correspond
to the definition of Hamiltonian systems for which the Hamiltonian function
obeys a balance equation with a source term defining either the exchange of
energy through the boundary of the system or some dissipative phenomenon in
the spatial domain [47].

In this section we shall briefly recall the definitions of Dirac structures and
Hamiltonian systems defined with respect to Dirac structures, and detail the
particular case of the Hamiltonian formulation of a system of two conservation
laws following [47].
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2.1 Dirac structures on real vector spaces
Let F and E be two real vector spaces and assume that they are endowed with
a non degenerated bilinear form1 denoted by:

〈.| .〉 : F × E → R
(f, e) 7→ 〈e| f〉 (1)

The bilinear product leads to the definition of a symmetric bilinear form on
the product space2 B = F × E as follows:

� ·, · �: B ×B → R
((f1, e1) , (f,2 e2)) 7→ � (f1, e1), (f2, e2)� := 〈e1| f2〉+ 〈e2| f1〉

(2)

Definition 1. [10] [Dirac structure] A Dirac structure is a linear subspace
D ⊂ B such that D = D⊥, with ⊥ denoting the orthogonal complement with
respect to the bilinear form �,�.

If a linear subspace D ⊂ B satisfy only the isotropy condition D ⊂ D⊥,
what means that it is not maximal, one say that it is a Tellegen structure [20,
chap. 5].

Dirac structures are a geometric perspective to skew-symmetric tensors, ac-
tually corresponding to their graph, which generalize the tensors associated with
Poisson brackets or pre-symplectic forms as may be seen from the next example.

Example 2. Consider a finite-dimensional vector space V and its dual vector
space V ∗ and define F = V and E = V ∗. Choose the canonical duality product
as the non degenerated bilinear form (1) . Then it is easy to check that the
graph of any skew-symmetric linear map ω : V → V ∗ (such that 〈ω (v1) | v2〉+
〈ω (v2) | (v1)〉 = 0, ∀ (v1, v2) ∈ V × V ) endowing the vector space V with a
presympletic structure, defines a Dirac structure in V × V ∗ . In an analoguous
way the graph of of any skew-symmetric linear map J : V ∗ → V (such that
〈w1| J (w2)〉 + 〈w2| J (w1)〉 = 0, ∀ (w1, w2) ∈ V ∗ × V ∗) endowing the vector
space V with a Poisson structure, defines a Dirac structure in V × V ∗ .

It should be noted that we have defined Dirac structure in vector spaces
which is sufficient for this paper. A more general definition is given on differen-
tiable manifold in [10, 12].

In the case of infinite-dimensional vector spaces different approaches have
been developed. The first one considers Hilbert spaces and uses their inner
product as non degenerated bilinear form (1) [39, 25, 20, chap.5]. The second

1These spaces and the bilinear product are actually more general than in the original defi-
nition [10, 15] where the two spaces are algebraic duals and the bilinear product is simply the
duality product. An example of more general definition arises for instance when considering
Hilbert spaces associated with operators and their duals [20, 25]. A special terminology is
often adopted, stemming from network theory, namely the vector space F is called space of
flow variables and the space E is called space of effort variables. The bilinear form (1) is also
called power product as for physical systems it often has the dimension of power.

2This symmetric product has been called + pairing in [10]. The product space B is often
called bond space.
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one, which we shall follows here, is based on the use of exterior forms as base
vector spaces and the non degenerated bilinear form is based on their wedge
product [47, 28, 26]; it will be presented in more details in the section 2.3.

Example 3. [39] Choose as vector spaces a Hilbert space: F = E = H .
And define the non degenerated bilinear form (1) to be the inner product of the
Hilbert space. Then it may be checked that the the graph of any densily defined
skew-symmetric operator A (satifying Dom (A) = Dom (A∗), dense in H and
satisfying 〈Ah1|h2〉+ 〈h1|A∗ h2〉 = 0, ∀ (h1, h2) ∈H ) is a Dirac structure .

Dirac structures admit more concrete definitions, based on some linear maps
called representation of a Dirac structure [12, 20]. We shall use in the sequel
only such representations for the finite-dimensional reduction of the system of
conservation laws and therefore present in the sequel only the matrix representa-
tion of finite-dimensional Dirac structures. Assume now that the spaces F and
E are finite-dimensional and for the sake of simplicity choose F = E = Rn with
n ∈ N∗ 3. Define the non degenerated bilinear product (1) being the canonical
Euclidean product in Rn composed with a signature4 matrix σ:

〈e| f〉 = eTσ f where f ∈ F = Rn, e ∈ E = Rn (3)

A Dirac structure in F × E = Rn × Rn admits several matrix representations
[10, 46, 12, 20, chap. 5] from which we shall present three.

Proposition 4. [Image representation of a Dirac structure] A linear subspace
D ⊂ F × E = Rn ×Rn endowed with the symmetic product (2) associated with
the bilinear product (3) is a Dirac structure if and only if there exist two n× n
real matrices, denoted here E and F , and satisfying

1. skew-symmetry: EσFT + FσET = 0

2. rank[E : F ] = n

such that:

D = {(f, e) ∈ F × E |f = ETλ, e = FTλ, λ ∈ Rn} (4)

This description is called an image representation of the Dirac structure D .
It is then immediate to deduce the dual representation called kernel repre-

sentation [12].

Proposition 5. [Kernel representation of a Dirac structure] A Dirac structure
D ⊂ F ×E = Rn×Rn endowed with the symmetric product (2) associated with
the bilinear product (3) and admitting the image representation of the proposi-
tion 4 admits also the kernel representation:

D = {(f, e) ∈ F × E | (F σ) f + (E σ) e = 0} (5)
3A geometric definition of these representations may be found in [10] and [12]
4Signature matrices are diagonal matrices often used in network theory to represent the

chosen sign convention in the power product (3)
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Finally one may also represent a Dirac structure as the graph of some skew-
symmetric tensor, the so-called input-output representation, as follows [12, 20].

Proposition 6. [Input-output representation] Consider a Dirac structure D ⊂
F × E = Rn × Rn endowed with the symmetric product (2) associated with the
bilinear product (3). There exist a decomposition of the space of flow variables:
F = F1 ⊕F2 3 (f1, f2) = f and the space of effort variables: E = E1 ⊕ E2 3
(e1, e2) = e and an n×n skew-symmetric matrix J such that the Dirac structure
admits also the input-output representation:

D = {(f, e) ∈ F × E |
(
f1
e2

)
= J

(
e1
f2

)
} (6)

2.2 Hamiltonian systems defined with respect to finite-
dimensional Dirac structures

In this section we shall recall briefly the definition of Hamiltonian systems de-
fined with respect to some Dirac structure in the finite dimensional case and
introduce the definition of port Hamiltonian systems in the particular case when
the state space is a real vector space F for which, at any point x ∈ F , the tan-
gent space may be identified with F and the cotangent space identified with
the dual F ∗ 5.

Definition 7. [10] [Implicit Hamiltonian system] Consider a real vector space,
denoted by F , of dimension n and its dual vector space F ∗. Consider a Dirac
structure D ⊂ F ×F ∗ . An implicit Hamiltonian system with respect to the
Dirac structure D and generated by the Hamiltonian function H ∈ C∞ (F , R),
is defined by the implicit differential equation:

(
dx
dt ,

∂H
∂x

)
∈ D .

A consequence of the isotropy of the Dirac structure is the conservation of
the Hamiltonian:

dH

dt
=
〈
∂H

∂x
| dx
dt

〉
= 0 (7)

which expresses the conservation of the energy for physical systems where the
Hamiltonian is the total energy of the system.

Implicit Hamiltonian system encompass constrained Hamiltonian systems6
as is illustrated on the following example but retain also all the symmetries of
standard Hamiltonian systems [10, 5, 4, 44].

Example 8. Consider the simple LC circuit of the figure 1 composed of two ca-
pacitors and an inductor in parallel. Choose as state variables x = (q1, φ, q2) ∈
R3 = F where qi denotes the charge of the capacitors i ∈ {1, 2} and φ the total
magnetic flux in the inductor. The time variation dx

dt (t) of the state variables at
time t, may be identified with the following circuit variables: (iC1 , vL, iC2)T ∈

5The reader is referred to [10] for the definition of implicit Hamiltonian systems on differ-
entiable manifolds endowed with a Dirac bundle structure and also to [31, 12, 49].

6Such constrained Hamiltonian systems may be reduced to explicit pseudo-Hamiltonian
systems on some submanifold as has been shown for instance in [45, 5].
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Figure 1: Closed LC circuit

R3 = F . The total electro-magnetic energy may be expressed as a function:
H (x) and its gradient ∂H

∂x (x) may be identified as: (vC1 , iL, vC2)T ∈ R3 = E
where vCI

denote the voltages of the capacitor Ci and iL the current in the
inductor. Considering the bilinear form on F × E to be simply the euclidean
product in R3 (i.e. the signature matrix σ is the identity), one may check that
Kirchhoff’s laws may be expressed7 as: 1 0 1

0 1 0
0 0 0


︸ ︷︷ ︸

F

 iC1

vL
iC2

+

 0 1 0
−1 0 0
1 0 −1


︸ ︷︷ ︸

E

 vC1

iL
vC2

 = 0 (8)

which define, according to proposition 4, a Dirac structure in F × E . The
dynamical system representing this LC circuit may thus be defined as an implicit
Hamiltonian system according to the definition 7. The rank degeneracy of the
matrix F corresponds to the mesh law applied to the circuit containing the two
capacitors: vC1 − vC2 = 0 and may be interpreted as a constraint on the state
variables: ∂H

∂q1
(x)− ∂H

∂q2
(x) = 0.

In this paper we shall consider an extension of these implicit Hamiltonian
systems which is called port Hamiltonian system [46] and is defined with respect
to Dirac structure in a product space encompassing not only the tangent and
co-tangent spaces of the state space but also external variables representing the
interaction of the system with its environment through its boundaries. In the
sequel we shall define port Hamiltonian system on vector spaces but they may
be defined on differentiable manifolds [46, 12] and more precise definitions have
been given when the state space is a Lie group [31].

Definition 9. [46] [Port Hamiltonian system] Consider a real vector space, de-
noted by F i = E i, of dimension n and its dual vector space F i∗ endowed with
the canonical duality product denoted by 〈.| .〉i. And define two other finite-
dimensional vector spaces, called port spaces, denoted by F e and E e and en-
dowed with a non generated bilinear form denoted by 〈.| .〉e. Define the product
vector spaces F = F i×F e 3

(
f i, fe

)
and E = E i×E e 3

(
ei, ee

)
endowed with

the bilinear form defined by:
〈(
f i, fe

)
|
(
ei, ee

)〉
=
〈
ei| f i

〉
i
+〈ee| fe〉e. Consider

a Dirac structure D ⊂ F × E . A port Hamiltonian system with respect to the
7These matrices may be constructed systematically and the reader is referred to [32, 43, 48]
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Figure 2: Open LC circuit

Dirac structure D and generated by the Hamiltonian function, H ∈ C∞
(
F i, R

)
is defined by the implicit differential equation:

((
dx
dt , f

e
)
,
(
∂H
∂x , e

e
))
∈ D .

In general port Hamiltonian systems do not satisfy the Cauchy conditions
as long as the system is not completed with some relations on the external port
variables (fe, ee) . Nevertheless this formulation may be very usefull in order to
define a composition of Hamiltonian systems and handle complex Hamiltonian
systems composed of a set of interacting subsystems [31, 8]. It has also been used
in control theory in order to generate Lyapunov function and so-called control
Lyapunov functions to find stabilizing controllers [29, 37, 36]. The isotropy
property of the Dirac structure translates now in a balance equation of the
Hamiltonian (often the total energy of the system):

0 =
〈
∂H

∂x
| dx
dt

〉
+ 〈ee| fe〉e =

dH

dt
+ 〈ee| fe〉e (9)

Example 10. Consider the simple LC circuit, represented in the figure 2, with
two open ports, indexed by k ∈ {1, 2}, and the pairs of currents and voltages
(ik, vk). Concerning the internal variables, the state variables may be chosen as:
x = (q, φ) ∈ R2 = F i where q denote the charge of the capacitor and φ the total
magnetic flux in the inductor. The time variation dx

dt (t) of the state variables
at time t, may be identified with the following circuit variables: (iC , vL)T ∈
R2 = F i . The total electro-magnetic energy may be expressed as a function:
H (x) and its gradient ∂H∂x (x) may be identified as: (vC , iL, )

T ∈ R2 = E i where
vC denote the charge of the capacitor and iL the current in the inductor. The
two open ports define the external vector spaces, the space of external currents
F e = R2 3 (i1, i2) and the space of external voltages E e = R2 3 (v1, v2)
endowed with the euclidean product as bilinear form. Considering the bilinear
form on F × E to be simply the euclidean product in R4 (i.e. the signature
matrix σ is the identity), one may check that Kirchhoff’s laws may be expressed
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as:
1 0 −1 0
0 0 0 1
0 −1 0 0
0 0 0 0


︸ ︷︷ ︸

F


iC
vL
i1
i2

+


0 −1 0 0
0 −1 0 0
−1 0 0 1

1 0 −1 0


︸ ︷︷ ︸

E


vC
iL
v1
v2

 = 0 (10)

and define a Dirac structure in F × E (check the conditions of proposition 4).
The dynamical system of the open LC circuit may hence be defined as a port
Hamiltonian system accordingly to the definition 9. It is easy to show that if
one assigns some time function to the external variables i1 and v2, then the
first and third lines of (10) lead to a well-posed set of differential equations with
second member. The other two lines allows to compute the conjugated external
variables v1 and i2 as observation variables allowing to write the energy balance
equation (9). Another way of completing the port Hamiltonian system would
be to assign again some time function to i1 but define some dissipative relation
on the port 2, such as v2 = R i2 where R is the resistance of some charge added
at the port 2.

2.3 Stokes-Dirac structures extending Hamiltonian oper-
ators

In this section we shall briefly recall the extension of Hamiltonian systems,
derived from a system of two conservation laws, defined with respect to Dirac
structures extending the Hamiltonian operator associated with the Hamiltonian
system [47]. In this paper we consider the case of a 1-dimensional spatial domain
Z = [0, L] being a finite interval on the real line but the definition has actually
been introduced for spatial domains of any dimension [47]. We shall, however,
keep the notation of exterior differential forms [41, 9] (also called k-forms) in
order to make explicit the discretization procedure suggested below.

2.3.1 Stokes-Dirac structure for Hamiltonian systems of two conser-
vation laws

Let us first recall some definitions and notations used in the sequel. We shall
define the conserved quantities as 1-forms on the interval Z = [0, L], whose space
will be denoted Ω1(Z). Ones a coordinate, denoted by z and corresponding to
some measure, is chosen on the interval Z, a 1-form α ∈ Ω1(Z) , is written
with an abuse of notation: α = α (z) dz where α (.) denotes a smooth function.
Hence the state space of a system of two conservation laws is the product space
Ω1(Z)× Ω1(Z). The space of 0-forms, that is smooth functions on the interval
Z, is denoted by Ω0(Z).

We shall denote the exterior product of k-forms by ∧ and the exterior deriva-
tion by d.8 Furthermore we shall use the Hodge star associated with the measure

8Actually in the case of a 1-dimensional domain these operations become quite trivial. The
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dz of the real interval Z and denote it by ?. In the coordinates z, the Hodge
star product of the 1-form α (z) dz is simply the 0-form: α (x).

Between 0-forms Ω0(Z) 3 β and 1-forms Ω1(Z) 3 α, one may define a
bilinear form:

< β|α >:=
∫
Z

β ∧ α (∈ R) (11)

which is simply expressed in coordinates by: < β|α >:=
∫
Z
β (z) α (z) dz. The

bilinear form (11) is non-degenerate in the sense that if < β|α >= 0 for all α
(respectively for all β), then β = 0 (respectively α = 0).

The pairing defined above may also be used in order to define the variational
derivative of functional on 1-forms in terms of 0-forms according to the general
definition suggested in [47]. Consider an energy density 1-form H : Ω1(Z)×Z →
Ω1(Z) and denote by H :=

∫
Z
H ∈ R the associated functional. Then for any

1-form ω ∈ Ω1(Z) and any variation ∆ω ∈ Ω1(Z) with compact support strictly
included in Z and any ε ∈ R, it may be proven that[47] :

H(ω + ε∆ω) =
∫
Z

H (ω + ε∆ω) =
∫
Z

H (ω) + ε

∫
Z

[
δH

δω
∧∆ω

]
+ O

(
ε2
)

for a uniquely defined 0-form which will be denoted δH
δω ∈ Ω0(Z) and which is

called the variational derivative of H with respect to α ∈ Ω1(Z).
Finally we shall also consider real functions defined on the boundary of the

spatial domain ∂Z = {0, L} as 0-forms defined on ∂Z, endowed with the non-
degenerated bilinear form:

〈γ1, γ2〉∂ = γ1 (L) γ2 (L)− γ1 (0) γ2 (0) γi ∈ Ω0(∂Z), i = 1, 2

We shall now consider systems of two conservation laws in canonical interaction
and then represent them using Dirac structures in the open case (i.e. with
boundary energy flows).

Definition 11. Consider the two conserved quantities as being two 1-forms:
q ∈ Ω1(Z) and p ∈ Ω1(Z). Consider also the system of conservation laws, with
flux variables βq and βp for each conserved quantity, defined by the Hamilto-
nian density function H : Ω1(Z) × Ω1(Z) × Z → Ω1(Z) resulting in the total
Hamiltonian H :=

∫
Z
H (q, p) ∈ R. The system of two canonically interacting

conservation laws is then defined by:

∂

∂t

(
q
p

)
+ d

(
βq
βp

)
= 0 and

(
βq
βp

)
= ε

(
0 1
1 0

)( δH
δq
δH
δp

)
(12)

where ε ∈ {−1,+1} depends on the fluxes sign convention on the physical
domain.
wedge product of 0-forms, i.e. functions, is simply their product and the wedge product of
a 0-form with a 1-form is again simply the product of the 1-form by the 0-form. The only
non-trivial derivation acts on 0-forms and is written in the coordinates z: dβ(z) = ∂β

∂z
(z) dz.
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This system of two conservation laws may be also written as follows:

∂

∂t

(
q
p

)
= ε

(
0 d
d 0

) ( δH
δq
δH
δp

)
(13)

that is as an infinite-dimensional Hamiltonian system defined with respect to
the matrix differential operator :

J = ε

(
0 d
d 0

)
(14)

and generated by the Hamiltonian function H [35].9
In order to generate a Hamiltonian systems, the matrix differential operator

J defined in (14) should satisfy the properties of a Hamiltonian operator, that is
it should be skew-symmetric and satisfy the Jacobi identities. A short calculus
shows that the skew-symmetry holds only for functions with domain strictly
included in the spatial domain Z. This assumption is satisfied for Dirichlet
or Neumann boundary conditions but one might be interested in more general
(dynamic) boundary conditions where some energy is exchanged through the
boundary of the spatial domain.

Therefore the matrix differential operator J is extended to a Dirac structure,
called Stokes-Dirac structure [47, 28, 26] as follows.

Proposition 12. [47] Consider the product spaces of k-forms:

F = Ω1(Z)× Ω1(Z)× Ω0(∂Z) 3 (fp, fq, fb) (15)

E = Ω0(Z)× Ω0(Z)× Ω0(∂Z) 3 (ep, eq, eb) (16)

Consider the linear subspace D of the bond space B = F × E:

D = {(fp, fq, fb, ep, eq, eb) ∈ F × E|[
fp
fq

]
= ε

[
0 d
d 0

] [
ep
eq

]
,[

fb
eb

]
=
[
ε 0
0 −1

] [
ep|∂Z
eq|∂Z

]} (17)

where ε ∈ {−1,+1} and |∂Z denotes restriction to the boundary ∂Z. Then D is
a Dirac structure with respect to the non degenerated bilinear form between F
and E:

〈(ep, eq, eb) | (fp, fq, fb)〉 =
∫
Z

[ep ∧ fp + eq ∧ fq] + 〈eb, fb〉∂ (18)

9In the coordinates z, the Hamiltonian system (14) may be written using functions as:

∂

∂t

(
q (z)
p (z)

)
= ε

(
0 ∂

∂z
∂
∂z

0

) ( δH
δq

(z)
δH
δp

(z)

)
In this case the functional spaces may be defined as Hilbert spaces: some more general cases
have been studied in [25].
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This theorem is proved by using the properties of the exterior derivation;
actually it corresponds, for general dimensions of the spatial domain, to Stokes’
theorem [47, 28, 26]. For the sake of clarity we shall just explicit the condition
of isotropy: D ⊂ D⊥. Computing the symmetric bilinear product and using
integration by parts gives:∫ L

0

ep1(z)deq2(z) + eq1(z)dep2(z) + ep2(z)deq1(z) + eq2(z)dep1(z)

− e0∂1f
0
∂2 + eL∂1f

L
∂2 − f0

∂1e
0
∂2 + fL∂1e

L
∂2 =

−
∫ L

0

d(ep1(z)eq2(z)) + d(eq1(z)ep2(z))− e0∂1f
0
∂2 + eL∂1f

L
∂2 − f0

∂1e
0
∂2 + fL∂1e

L
∂2 = 0

(19)

For the proof of the condition of co-isotropy : D⊥ ⊂ D , the reader is referred
to [47] and in the 1-dimensional case to [26].
Remark 13. We haved derived the Dirac structure extending the canonical
Hamiltonian operator10 defined in (14). It should be noted that one may con-
struct, in a similar way, the Stokes-Dirac structures extending the Hamiltonian
operator associated with higher order Hamiltonian operators [25] or for spatial
dimension higher than 1. In this latter case, the restriction of a function to
the two boundary points which is used in the definition of the port boundary
variables, becomes the trace operator.

As a consequence of proposition 12 one may define a Hamiltonian system
with respect to this Stokes-Dirac structure as follows.

Definition 14. The boundary port-Hamiltonian system of two conservation
laws with state space Ω1(Z) × Ω1(Z) 3 (q, p) and boundary port variables
spaces Ω0(∂Z) × Ω0(∂Z) 3 (fb, eb), is the Hamiltonian system defined with
respect to the Stokes-Dirac structure D given in proposition 12 and generated
by the Hamiltonian functional H (q, p), as follows:(((

−∂p
∂t
,−∂q

∂t

)
, fb

)
,

((
δH

δp
,
δH

δq

)
, eb

))
∈ D

The choice of boundary conditions has obviously to be added to the definition
of a boundary port-Hamiltonian system in order to define a Cauchy problem.
In fact a boundary port Hamiltonian system defines a class of well-posed sys-
tems. For any solution, the isotropy condition of the Dirac structure implies the
balance equation on the Hamiltonian:

dH

dt
= 〈eb, fb〉∂ (20)

Remark 15. One may also define port variables with support in the spatial
domain by considering higher dimensional Hamiltonian operators and the asso-
ciated Dirac structure [47, 27].

10One may find a very stimulating discussion about the notion of canonical Hamiltonian
operator in [33].
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2.3.2 Examples of boundary port Hamiltonian systems

In this section we present two examples of boundary port Hamiltonian systems.
They are, firstly, the (linear) ideal transmission line and, secondly, the (nonlin-
ear) shallow water equations with non-separated Hamiltonian.

Example 16 (Ideal transmission line). Consider an ideal lossless transmission
line defined on the interval Z = [0, L]. The state variables are the charge density
1-form q = q(t, z)dz ∈ Ω1([0, L]), and the flux density 1-form p = p(t, z)dz ∈
Ω1([0, L]) where t ≥ 0 denotes the time variable. The total energy stored at
time t in the transmission line is given as

H(q, p) =
∫ L

0

1
2

(
1

C(z)
? q ∧ q +

1
L(z)

? p ∧ p
)
dz (21)

=
∫ L

0

1
2

(
q2(t, z)
C(z)

+
p2(t, z)
L(z)

)
dz

where C(z), L(z) are respectively the distributed lineic capacitance and induc-
tance of the line. Its variational derivatives with respect to the state variables
are:

δH
δq = 1

C(z) ? q = V (t, z) (voltage)

δH
δp = 1

L(z) ? p = I(t, z) (current)
(22)

The dynamics of the transmission line equation may be expressed as the Hamil-
tonian system:

∂

∂t

(
q
p

)
=
(

0 d
d 0

)( δH
δq
δH
δp

)
(23)

augmented, according to (2.3), with the boundary variables

f0
b (t) = V (t, 0), f1

b (t) = V (t, L)

e0b(t) = −I(t, 0), e1b(t) = −I(t, L)
(24)

which are simply the voltage and the currents at both boundary points of the
spatial domain. The resulting energy-balance is

dH

dt
= 〈eb, fb〉∂ = − (I(t, L)V (t, L)− I(t, 0)V (t, 0)) (25)

Example 17 (The shallow water equation). We consider the case of a 1D
shallow water flow of length, L, defined on the spatial domain, Z = [0, L],
with a non uniform reach such as the one represented on figure 3. Such flows
are usually modelled using the shallow water equations, also known as Saint-
Venant equations [21, 13]. For simplicity we consider frictionless and horizontal
flows. Developments for the general case with frictions and slope may be found
in [22]. Quite natural energy state variables are the lineic mass and momentum
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Figure 3: Schematic longitudinal view (left) and wetted cross section (right)
of a shallow water flow in a non-uniform canal or river reach. z ∈ [0, L] is
the longitudinal spatial coordinate, h(t, z) the water level, v(t, z) the water
horizontal velocity, P (t, z) the wetted perimeter and S(t, z) the wetted cross
section area. The cross section of the reach is defined using the function A(z, h)
which relates the water level, h(t, z), and the wetted cross section area, S(t, z).

densities, respectively q(t, z) = ρS(t, z)dz ∈ Ω1([0, L]) and p(t, z) = ρv(t, z)dz ∈
Ω1([0, L]), where ρ is the water mass density. Indeed, the total energy stored
in the reach may be quite easily computed as the sum of kinetic and potential
energies:

H(q, p) = Hpot(q) +Hcin(q, p) (26)

=
∫ L

0

ρ

(
g

(
hA(z, h)−

∫ h

0

A(z, ξ)dξ

)
+
S(t, z)v2(t, z)

2

)
dz

where g denotes the gravity acceleration. The variational derivatives of this total
energy with respect to the states variables are the two potentials (functions)

δqH =
v2

2
+ gh (27)

δpH = Sv

which are respectively the hydrodynamic pressure, pdyn(t, z), and the water flow,
Q(t, z). Considering the boundary port-Hamiltonian system of two conservation
laws from definition 14, the canonical dynamics reads:{

∂S
∂t = − ∂

∂z (Sv)
∂v
∂t = − ∂

∂z

(
v2

2 + gh
) (28)

and the boundary port variables are[
e∂
f∂

]
=
[
−δqH|∂[0,L]

δpH|∂[0,L]

]
=
[
−pdyn|∂[0,L]

Q|∂[0,L]

]
(29)

Equations (28) are exactly the classical shallow water equations. The boundary
port-variables are the hydrodynamic pressures and the water flows at both ends
of the reach. The energy balance reads here

dH

dt
=
∫
∂[0,L]

e∂ ∧ f∂ = pdyn(0, t)Q(0, t)− pdyn(L, t)Q(L, t) (30)
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3 A geometric discretization scheme using poly-
nomial bases

In this section we shall suggest a pseudo-spectral discretization method which is
adapted to the geometric nature of the variables (0- or 1-forms) and furthermore
discretizes the Stokes-Dirac structure into a finite-dimensional Dirac structure.
We will use, for the spatial discretization, polynomial approximation bases (with
Lagrange interpolation) in such a way that the reduced variables will be approx-
imations of the distributed ones at chosen "collocation" points. Usually these
points are chosen as zeros of orthogonal polynomials in order to reduce the os-
cillations of the solution. Firstly we show how the choice of the bases for the
effort and flow variables allows the exact discretization of the exterior derivative
and the restriction of the effort variables to the boundary points. Secondly we
analyze the product between the approximation spaces for the effort and flow
variables and show that it is degenerated. Hence it may not be used to defined
a reduced Dirac structure. Thirdly we use the kernel of this product in order to
project the effort variables and define in such a way the desired reduced Dirac
structure.

3.1 Polynomial approximation and discretization of the
Stokes-Dirac structure

Following the work of Bossavit [6, 7], we shall account for the geometric nature
of the effort and flow variables in order to define the spaces of approximations.
In [19] the mixed-finite element method has been adapted in order to reduce
the Stokes-Dirac structure to finite-dimensional Dirac structure. In this paper
we shall consider polynomial approximation bases.

According to their definition in the proposition 12, the effort variables are
approximated in a basis of polynomial 0-forms and the flux variables are approx-
imated in a basis of polynomial 1-forms one. Furthermore we wish to discretize
exactly the exterior derivation which applies to the effort variables in the def-
inition of the Dirac structure in the proposition 12. Hence the polynomials
approximating the 0-forms should be of degree greater by 1 than the degree
of the polynomials approximating the 1-forms. Hence we suggest to define the
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approximations as follows :

eq(z) =
N∑
i=0

eqiϕi(z) , eqi ∈ R (31)

ep(z) =
N∑
i=0

epiϕi(z) , epi ∈ R (32)

fq(z) =
N−1∑
k=0

fqkψk(z)dz , fqi ∈ R (33)

fp(z) =
N−1∑
k=0

fpkψk(z)dz , fpi ∈ R (34)

where ϕi(z) and ψk(z) are interpolating Lagrange polynomials, respectively of
degree N and N − 1 defined as

ϕi(z) =
N∏

j=0,j 6=i

z − ζj
ζi − ζj

; ψk(z) =
N−1∏

l=0,l 6=k

z − zl
zk − zl

(35)

satisfying ϕi(ζj) = δij and ψk(zl) = δkl, ζj ∈ ]0, L[, j = 0, ..., N being the
interpolating points associated to the ϕj base, while zl ∈ ]0, L[ are those of the
ψk base, l ∈ {0, ..., N − 1}.

Let us further denote by Ω0
r (Z) the space of 0-forms generated by the func-

tions ϕi(z) and by Ω1
r (Z) the space of 1-forms generated by the 1-forms ψk(z)dz.

Let us define the vector spaces of the coordinates of the approximating forms
as the space of flow variables: Fr = R2N+2 3 (fp, fq, f0

∂ , f
L
∂ ) and the space of

effort variables: Er = R2N+4 3 (ep, eq, e0∂ , e
L
∂ ) 11.

Inserting relations (31) - (34) into the definition of the canonical Hamiltonian
operator (14), and evaluating the approximations at the collocation points zl,
one compute the restriction of the exterior derivation and the Hamiltonian op-
erator to the approximation spaces. This leads to the following matrix relations
on the coefficients of the approximations:

fqk =
N∑
i=0

Dk,ie
p
i

fpk =
N∑
i=0

Dk,ie
q
i

(36)

where D is a N × (N + 1) matrix obtained by evaluating the derivation of the
polynomial 0-forms at the collocation points used for the interpolation polyno-

11We use (fp, fq) and (ep, eq) to denote the coordinate vectors of respectively the flows and
efforts approximation forms. Due to the interpolation property of the Lagrange polynomials
(35), these vector coordinates are respectively (fpk , f

q
k ) = (fp(zk), f

q(zk)) and (epi , e
q
i ) =

(ep(zi), e
q(zi)).
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mials of the 1-forms:
Dk,i =

dϕi
dz

(zk)

The boundary port variables are defined accordingly to (17) as the polynomial
interpolation of the effort variables ep, eq (0-forms) at the two-boundary points
z = 0 and z = L:

e0∂ = eq(0) =
N∑
i=0

eqiϕi(0)

eL∂ = eq(L) =
N∑
i=0

eqiϕi(L)

f0
∂ = ep(0) =

N∑
i=0

epiϕi(0)

fL∂ = ep(L) =
N∑
i=0

epiϕi(L)

(37)

Equations (36) and (37) giving the projections of the Stokes-Dirac structure (17)
in the chosen approximation spaces may be summarized in the matrix form:

fq

fp

f0
∂

fL∂
e0∂
eL∂

 =


0 D
D 0
0 ϕ(0)T

0 ϕ(L)T

ϕ(0)T 0
ϕ(L)T 0


eq

ep

 (38)

which expresses the boundary effort variables
(
e0∂ , e

L
∂

)
∈ R2, and the flow vari-

ables
(
fp, fq, f0

∂ , f
L
∂

)
∈ Fr = R2N+2 in terms of the effort variables (eq, ep) ∈

RN+1 × RN+1. The vectors ϕ(0) ∈ RN+1 and ϕ(L) ∈ RN+1 denote the vectors
of the polynomials ϕi(z) evaluated respectively at the boundary points z = 0
and z = L.

3.2 Restricted bilinear product and Stokes’ theorem
Consider now the bilinear product (18) and evaluate the associated symmetrized
bilinear product, according to (2), using the polynomial approximations of the
effort and flow variables (31), (32), (33) and (34). This leads to the following
symmetric bilinear form on the product space of reduced effort and flow variables
Fr × Er: 

ep1
eq1
e01
eL1
fp1
fq1
f0
1
fL1



T 

0 0 0 0 M 0 0 0
0 0 0 0 0 M 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 1
MT 0 0 0 0 0 0 0
0 MT 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 1 0 0 0 0





ep2
eq2
e02
eL2
fp2
fq2
f0
2
fL2


(39)
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where M is the (N + 1)×N matrix whose elements are

Mi,k =
∫ L

0

ϕi(z)ψk(z)dz (40)

As a consequence of the choice of the approximation spaces with different di-
mension for the reduced effort and flow variables, the matrix MT has a non
trivial kernel Ker(MT ) ⊂ Er . Hence the symmetric pairing (39) is degenerated
and one cannot use it for the definition of a Dirac structure according to the
definition 1.

However the relations (38) still define a vector subspace of the bond space
Fr × Er where relations corresponding to Stokes’ theorem are satisfied. This
may be expressed in terms of the isotropy of this vector subspace with respect
to the degenerated product (39).12

Proposition 18. The subspace

Dr =
{

(fp, fq, f0
∂ , f

L
∂ , e

p, eq, e0∂ , e
L
∂ ) ∈ Fr × Er / satisfying (38)

}
satisfies the isotropy condition: Dr ⊂ D⊥r with respect to the symmetric power
product (39).

Proof. We shall consider the expression (19) of the isotropy condition of the
Stokes-Dirac structure and substitute therein the expressions of discrete (re-
duced) effort and flux variables in (31) (32), (33) and (34) and the reduced
bilinear product defined in (40). One obtains:

0 =
∫ L

0

ep1(z)deq2(z) + eq1(z)dep2(z) + ep2(z)deq1(z) + eq2(z)dep1(z)

− e0∂1f
0
∂2 + eL∂1f

L
∂2 − f0

∂1e
0
∂2 + fL∂1e

L
∂2

= epT1 M fp2 + eqT1 M fq2 + fpT1 MTep2 + fqT1 MTeq2
− e0∂1f

0
∂2 + eL∂1f

L
∂2 − f0

∂1e
0
∂2 + fL∂1e

L
∂2

(41)

which proves the isotropy of Dr.

It is useful to note that the isotropy condition (41) results in a relation
between the matrices appearing in the discretization of the Stokes-Dirac struc-
ture (see relations (36) and (37)) and in the discretization of bilinear product
(39). Indeed, using these discretized relations, the bilinear product in (41) may
be expressed in terms of bilinear product in the effort variables (eq1, e

p
1) and

(eq2, e
p
2)(which are the coordinates of the space of 0-forms):

eq1(MD +DTMT − T 0 + TL)ep2 + ep1(MD +DTMT − T 0 + TL)eq2 = 0 (42)

12In [20, chap.5] a similar isotropic subspace is called Tellegen structure, however it is there
defined with respect to a non-degenerated symmetric bilinear product.
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where T 0 is the (N + 1)× (N + 1) matrix with elements T 0
ij = ϕi(0)ϕj(0), and

TL the (N + 1) × (N + 1) matrix with elements TLij = ϕi(L)ϕj(L). Since (42)
holds for any (eq1, e

p
2) ∈ R2N+2 and for any (ep1, e

q
2) ∈ R2N+2, we deduce:

MD +DTMT − T 0 + TL = 0 (43)

This last relation may be regarded as a discrete Stokes theorem resulting from
the translation in the chosen finite approximation spaces of Stokes’ theorem
for the integration of differential forms. It relates thus logically the discrete
derivation operator D, the discrete bilinear product M and the discrete trace
operator TL − T 0.
Remark 19. Consider the case when TL − T 0 = 0 in (43), which occurs for
systems where the effort variables are 0 at the boundaries as well as their ap-
proximations, yielding to ϕi(0) = 0, i = 1, .. , N + 1. This corresponds to the
case where there is no exchange of energy through the boundaries. One gets
thenMD+DTMT = 0. In this case the matrixMD is skew-symmetric and de-
fines a Poisson tensor. The condition (43) may thus be viewed as the extension
of a skew-symmetry property characterizing Dirac structures.

3.3 Dirac structure on a reduced coordinate space
The fact that the discretized relations (38) satisfy the isotropy condition but
do not define a Dirac structure is related to the fact that the dimension of the
spaces of effort and flow variables are different and that the power product (39)
is degenerated and admits the kernel:

ker(� ·, · �) = 0Fr
× 0Fr

× ker(MT )× ker(MT )

Hence in the sequel we shall define a space of effort variables which is the quotient
of the Tellegen structure by the kernel of MT . Therefore we shall define the
following effort variables ẽq, ẽp ∈ RN defined as

ẽq = MTeq

ẽp = MTep
(44)

which are indeed, since the matrix M has rank N , coordinate vectors for the
quotient space Er� ker(MT ). The degenerated bilinear product (39) reduces
then simply, modulo (44), to the non-degenerated symmetric bilinear product
(2) induced by the Euclidean product in R2N+2.

Let us now observe that the discretized relations (38) and the definition (44)
may be written in terms of the image representation (see the proposition 4):

fq

fp

f0
∂

fL∂

 =


0 D
D 0
0 ϕ(0)T

0 ϕ(L)T


︸ ︷︷ ︸

ET

(
eq

ep

)
and


ẽq

ẽp

e0∂
eL∂

 =


MT 0

0 MT

ϕ(0)T 0
ϕ(L)T 0


︸ ︷︷ ︸

FT

(
eq

ep

)
(45)

which defines a Dirac structure as stated in the following proposition.
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Proposition 20. Define the flow variables, f̃T :=
(
fq, fp, f0

∂ , f
L
∂

)
and the effort

variables, ẽT :=
(
ẽq, ẽp, e0∂ , e

L
∂

)
, in the bond space, F̃ × Ẽ = R2N+2 × R2N+2,

endowed with the bilinear Euclidean product. Define the structure matrices,

F =
(
M 0 ϕ(0) ϕ(L)
0 M 0 0

)
and E =

(
0 DT 0 0
DT 0 ϕ(0) ϕ(L)

)
(46)

Then the vector subspace of F̃ × Ẽ defined by:

Dr =
{
f̃ ∈ F̃ , ẽ ∈ Ẽ

∣∣∣f̃ = ETλ , ẽ = FTλ , λ ∈ R2N+2
}

is a Dirac structure.

Proof. We shall check the two conditions on the structure matrices given in the
proposition 4.

(i) skew-symmetry: EσFT + FσET = 0
Let us compute:

EσFT + FσET =

(
0 DT 0 0
DT 0 ϕ(0) ϕ(L)

)
×


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1




MT 0
0 MT

ϕ(0)T 0
ϕ(L)T 0



+

(
M 0 ϕ(0) ϕ(L)
0 M 0 0

)
×


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1




0 D
D 0
0 ϕ(0)T

0 ϕ(L)T


(47)

where 1 denotes an identity matrix of appropriate dimension. After some ele-
mentary calculations (47) gives:

EσFT + FσET =
(

0 DTMT +MD − T 0 + TL

DTMT +MD − T 0 + TL 0

)
(48)

which, according to (43) , implies: EσFT + FσET = 0
(ii) rank condition: [E : F ] is full rank (2N + 2)

Actually we shall show that the matrix E defined in (46) has rank (2N + 2).
Using the structure of the matrix E, it is sufficient to show that

{DT
1 , D

T
2 , ..., D

T
N , ϕ(0)}

is an independent set where DT
l = dϕ

dz (zl) are the N column vectors of the
transpose discrete derivation matrix DT (the (N + 1) × N matrix defined in
(36)). The zl, l = 1, 2, ..., N are the N interpolating points chosen for the
polynomial basis {ψk}.
By contradiction, let us assume that the set under consideration is dependent.
In this case one can write ϕ(0) as a linear combination of the dϕ

dz (zl). The
polynomials ϕ′(z) are of order (N−1) and consequently are uniquely determined
by their values dϕ

dz (zl) at the interpolation points zl, i = 1, 2, ..., N . Hence these
N interpolating conditions would be sufficient to characterize uniquely the Nth.
order polynomials

ϕ(z) = ϕ(0) +
∫ z

0

ϕ′(ζ)dζ
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This clearly contradicts the classical uniqueness result on polynomial interpola-
tion.
Consequently (ϕ′(z1), ϕ′(z2), ..., ϕ(0)) is an independent (and maximal) set in
Rn+1. Thus, (

DT ϕ(0) 0 0
0 0 DT ϕ(0)

)
(49)

is an independent and maximal set in R2n+2 and thus the concatenated matrix
[E : F ] is full rank 2n+ 2.

According to the proposition 6, there exist also a input-output representation
of the Dirac structure Dr defined in the proposition 20. This input-output
represntation is definied in the following proposition.

Proposition 21. These input-output representation of the Dirac structure Dr
defined in the proposition 20 is defined by:

fq

fL∂
fp

−e0∂

 =

 0

(
D
ϕ(L)

)(
MT

ϕ(0)

)−1

(
D

−ϕ(0)

)(
MT

ϕ(L)

)−1

0


︸ ︷︷ ︸

J


ẽq

eL∂
ẽp

f0
∂

 (50)

The matrix J results from simple matrix operations. We can check directly
that it is skew-symmetric. Computing the anti-diagonal element’s sum(

D
ϕ(L)

)(
MT

ϕ(0)

)−1

+

((
D
−ϕ(0)

)(
MT

ϕ(L)

)−1
)T

=

(
Mϕ(L)T

)−1 (
MD +DTMT − T 0 + TL

)(MT

ϕ(0)

)−1

= 0 (51)

using the discrete Stokes’ theorem (43).
Remark 22. Actually the input output representation (50) is associated to a
particular choice of inputs and outputs. It may be generalized by choosing as
input, u, and output, y, variables any linear combinations of the boundary port
variables e∂ := eq |∂Z and f∂ := ep |∂Z :(

u
y

)
=
(
W

W̃

) (
f∂
e∂

)
(52)

The definition of the matrices W and W̃ is not further discussed here but may
be related to the definition of boundary control systems associated with the port
Hamiltonian systems [25].

4 Reduced Hamiltonian system
In the previous section we have presented the reduction of the Stokes-Dirac
structure on a polynomial approximation space as a finite-dimensional Dirac
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structure. In this section, we will derive the corresponding approximation of the
boundary Port Hamiltonian system by restricting the Hamiltonian functional to
the approximation spaces in the cases of our two running examples: the lossless
transmission line and the shallow water equations.

4.1 The lossless transmission line
Recall that the Hamiltonian functional is defined by:

H = Hq +Hp =
∫ L

0

?q(z, t)
2C(z)

q(z, t) +
?p(z, t)
2L(z)

p(z, t) (53)

and consider its time variation:

dH

dt
=
∫ L

0

?q(z, t)
C(z)

q̇(z, t) +
?p(z, t)
L(z)

ṗ(z, t) (54)

which may be identified with the general expression in terms of the variational
derivative of the Hamiltonian:

dH

dt
=
∫
Z

δqH ∧ q̇ + δpH ∧ ṗ =
∫
Z

eq ∧ fq + ep ∧ fp (55)

The Hamiltonian H(p, q) depends on the 1-forms p and q. They are approxi-
mated using the ψ polynomial base as in section 3

q(z, t) =
N−1∑
k=0

qk(t)ψk(z)dz

p(z, t) =
N−1∑
k=0

pk(t)ψk(z)dz

(56)

Inserting (56) into (54) the time variation of the Hamiltonian, restricted to the
approximation space is:

dH̄

dt
= qT (t)Cq̇(t) + pT (t)Lṗ(t) (57)

where q and p are respectively the vectors with coordinates qk and pk for k ∈
{1, . . . , N − 1} and

Cij =
∫ L

0

ψi(z)ψj(z)
C(z)

dz

and

Lij =
∫ L

0

ψi(z)ψj(z)
L(z)

dz

Defining the Hamiltonian on the coefficients of the approximations by H̄ (q,p),
its time variation is:

dH̄

dt
=
N−1∑
i=0

∂H̄

∂qi

dqi
dt

+
∂H̄

∂pi

dpi
dt

(58)
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Identifying (58) with (57) we get the expression of the gradient of H̄ :

eqi (t) =
∂H̄

∂qi
=

N∑
j=0

Cijqj(t)

epi (t) =
∂H̄

∂pi
=

N∑
j=0

Lijpj(t)

(59)

Note that, by construction, the matrices (Cij) and (Lij) are symmetric. The
reduced Hamiltonian system is then defined with respect to the Dirac structure
defined in the proposition 20 and generated by the Hamiltonian H̄ (q,p) =
1
2

∑N
j=0 qiCijqj + 1

2

∑N
j=0 piLpj .

4.2 Shallow water equations
In this example, the Hamiltonian of the system depends on the the lineic
mass density q(z, t) = ρS(z, t)dz and the lineic momentum density p(z, t) =
ρv(z, t)dz. Again we consider that the state variables will be approximated
using the ψ polynomial approximation base, according to (56), where here
qk(t) = ρS(zk, t) and pk(t) = ρv(zk, t) are respectively proportional to the
wetted cross section area and water mean velocity at the collocation point zk.
Let us recall that the time variation of the Hamiltonian functional is given by:

dH

dt
=

∫
Z

δqH ∧ q̇ + δpH ∧ ṗ

=
∫
Z

(
v2

2
+ gh)q̇ + (Sv)ṗ (60)

Inserting the previous polynomial approximation in this last expression gives:

dH̄

dt
= FT q̇(t) +GT ṗ(t) (61)

where

Fk =
∫ L

0

(
v2(z, t)

2
+ gh(z, t))ψk(z) dz (62)

and

Gk =
∫ L

0

(S(t, z)v(t, z))ψk(z) dz (63)

Note that the reach geometry usually defines a relation

S(z) = A(z, h(z)) (64)

between the wetted cross section area, A, and the water level, h, at any given
location, z. Hence, equations (62) and (63) in fact defines efforts vector:

eq := F (q,p) (65)
ep := G(q,p)
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In this case, the efforts are nonlinear functions of the state variables q and p
since the Hamiltonian is not quadratic. Moreover, they are implicitly defined
trough the relation (64) which specifies the flow (reach) geometry. For instance
a canal reach with a rectangular cross section geometry gives a relation S = Bh
where B is the canal width. In this case (64) is trivially invertible and equations
(62) and (63) define explicitly the effort variables.

5 Symplectic collocation methods
We would like to compare the reduction method we proposed in this paper with
an existing collocation scheme from a geometrical point of view. More precisely
we would like to investigate both symplecticity and spectral properties of the
considered reduction schemes. The reduction method we developed here is sym-
plectic for closed and open systems (systems with boundary energy flows), by
construction, since it preserves both the Dirac structure and the Hamiltonian.
Usually, classical collocation schemes are not. This will indeed be numerically
checked on the example of an ideal (lossless) transmission line in section 6. How-
ever a classical collocation scheme is indeed symplectic for closed Hamiltonian
systems (only) when the chosen collocation points are zeros of either Legendre
polynomials, as it will be shown hereafter. It will thus be possible to per-
form numerical comparisons between our method and this classical collocation
scheme.

To perform this comparison, we choose as the polynomial approximating
basis for the collocation scheme, the same representation as previously for the
approximation of 1-forms (state variables), namely the ψi, i=1,...,N basis. In-
deed, the reduced system is finally expressed in terms of coordinates of the state
variables in this basis.

5.1 Symplecticity of spatial discretization schemes and clas-
sical collocation schemes

For the sake of simplicity, we will consider throughout this section the Dirichlet
conditions q(−1) = 0 and p(+1) = 0. For instance, in the transmission line
example, this corresponds to zero voltage at z = −1 and zero current at z = 1.
There are obviously other possible boundary conditions resulting in a closed sys-
tem (with no energy flows through the boundaries). The following proposition
states the formal skew-symmetry property of the canonical differential operator
(14), for these boundary conditions.

Proposition 23. Consider the canonical differential operator (14)(
0 d
d 0

)
in a space domain [−1,+1], and acting on some state variables q, p ∈ C1(−1,+1).
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This canonical operator is formally skew-symmetric with respect to the integra-
tion when considering the Dirichlet conditions q(−1) = 0 and p(+1) = 0.

Proof. Actually,∫ +1

−1

(
q(z) p(z)

)(0 d
d 0

)(
q(z)
p(z)

)
=
∫ +1

−1

q(z)dp(z) + p(z)dq(z)

=
∫ +1

−1

d(q(z)p(z)) = [q(z)p(z)]+1
−1 = 0

(66)

The symplecticity we will be interested in may be defined as the stability
of the skew-symmetry, for this canonical differential operator, in the reduction
schemes. The considered collocation schemes will include the boundary condi-
tions in the approximation basis definition. Hence, with the Dirichlet conditions
q(−1) = 0, p(+1) = 0 and the previously defined polynomial approximation ba-
sis {ψi}i∈{1,...,N−1}, the approximations of the 1-forms q(z) and p(z) will be
defined as

q(z) =
N∑
i=1

αiψi(z)(1− z)

p(z) =
N∑
i=1

βiψi(z)(1 + z)

(67)

Including homogeneous boundary conditions in the definition of the approxi-
mation basis is quite usual in collocation methods and gives the best results
in terms of accuracy and minimization of the boundary effects [17]. We will
make use of these discretization bases for the numerical comparisons of what
will be termed as a classical collocation scheme with the suggested discretization
scheme based on Stokes-Dirac structures.

5.2 Symplectic collocation using Gauss-Legendre points
The property of symplecticity for Gauss-Legendre points is known from [24] and
[42] who both discovered in 1988, independently, that the 4th order Runge-Kutta
method is symplectic when its parameters are chosen as Gauss-Legendre points.
The resulting so-called Gauss-Legendre-Runge-Kutta method is extensively used
for time integration of Hamiltonian systems. This method was later extended
to mulitsymplectic integration (space and time integration) [40].
In this section, we will show that the collocation method is also symplectic
when the collocation points are chosen as zeros of the Legendre polynomial of
the corresponding order. We will make use of the well-know property of Gauss-
Legendre quadrature stating that one can integrate exactly a polynomial P (z)
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of order 2N − 1 with N collocation points chosen as the zeros of the Legendre
polynomial of order N , that is:∫ 1

−1

P (z)dz =
n∑
i=1

wiP (zi) (68)

where zi are zeros of the Nth order Legendre polynomial and were wi are ap-
propriate weights.
One should notice that the collocation method developed in this section method
is adapted only for closed systems (i.e. with boundary conditions such that the
energy flow through the boundary is zero). In this case, we may expect that this
symplectic Legendre collocation is equivalent to the mixed collocation scheme
developed in the previous section since in the latter we perform exact integra-
tion of bilinear forms defined on the polynomial approximation space as it will
be the case for the Legendre collocation.

Theorem 24. The Gauss-Legendre collocation points defined as the zeros the
N -order Legendre polynomial preserves the skew-symmetry of the canonical dif-
ferential operator defined in proposition 23 in the corresponding N -dimensional
approximation space.

Proof. We have to show that the canonical operator from proposition 23 is
projected in the considered approximation space to a non degenerated skew-
symmetric finite dimensional bilinear operator. We will thus first define this
reduced bilinear operator. We will make use of the zeros of the N -th order
Legendre polynomial, denoted hereafter zk, to define the approximation basis
with N Lagrange interpolation polynomials of order N − 1:

ψi(z) =
N−1∏

k=0,k 6=i

z − zk
zi − zk

(69)

which satisfy ψi(zj) = δji . Hence the form q and p will be approximated as

q(z) =
N∑
i=1

αiψi(z)(1 + z)

p(z) =
N∑
i=1

βiψi(z)(1− z)

(70)

with polynomials of order N in such a way that the Dirichlet boundary condi-
tions q(−1) = 0 et p(1) = 0 are satisfied in the whole approximation space. For
the sequel, we will make use of the notation:

Ψ =


ψ1

ψ2

...
ψn

 (71)
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Substituting (70) in the canonical bilinear differential operator(
q(z) p(z)

)(0 d
d 0

)(
q(z)
p(z)

)
(72)

gives the following expression for the coordinates of this reduced bilinear oper-
ator evaluated at the Legendre collocation points zk:

Φ(p, q)|zk
:=
(
αT βT

)( 0 M1

M2 0

)(
α
β

)
(73)

where α, β ∈ RN , are respectively the coordinates of any q and p polynomials
in the approximation basis and where

M1
ij = ψi(z)(1 + z)

d

dz
(ψj(z)(1− z))

∣∣∣
zk

M2
ij = ψi(z)(1− z)

d

dz
(ψj(z)(1 + z))

∣∣∣
zk

(74)

Note that ψi(z)(1 + z) ddz (ψj(z)(1 − z)) and ψi(z)(1 − z) ddz (ψj(z)(1 + z)) are
polynomials of order 2N − 1 in z. Hence they may be exactly integrated using
the quadrature formulae and∫ 1

−1

ψi(z)(1− z)
d

dz

(
ψj(z)(1 + z)

)
=

n∑
k=1

wkψi(z)(1− z)
d

dz

(
ψj(z)(1 + z)

)∣∣∣
zk

(75)

∫ 1

−1

ψi(z)(1 + z)
d

dz

(
ψj(z)(1− z)

)
=

n∑
k=1

wkψi(z)(1 + z)
d

dz

(
ψj(z)(1− z)

)∣∣∣
zk

where wk are the Legendre weights. Let us denote Ω the diagonal matrix with
the diagonal elements wk. Then we have proven∫ 1

−1

Φ(p, q) =
(
αT βT

)( 0 ΩM1

M2Ω 0

)(
α
β

)
(76)

On the other hand∫ 1

−1

Φ(p, q) =
(
αT βT

)( 0 B1

B2 0

)(
α
β

)
(77)

with

B1 = Ψ(z)(1 + z)
d

dz
(Ψ(z)(1− z))

B2 = Ψ(z)(1− z) d
dz

(Ψ(z)(1 + z)) (78)

Integration by part gives

B1
ij =

∫ 1

−1

ψi(z)(1 + z)
d

dz
(ψj(z)(1− z))dz

=
[
ψi(z)(1 + z)ψj(z)(1− z)

]1
−1
−
∫ 1

−1

d

dz
(ψi(z)(1 + z))ψj(z)(1− z)dz

= −B2
ji

(79)
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which proves B1 = −B2T . Finally, comparing (76) and (77) gives ΩM1 =
−(M2Ω)T which implies M1 = −M2T . The matrix defining the canonical
bilinear operator projected to the approximation space and evaluated at the N
collocation points is thus skew-symmetric.

Remark 25. The Chebyshev collocation points are also widely used in numer-
ical analysis in view of their many advantages: minimization of Runge phe-
nomenons, minimization of the Lagrange interpolation error, easiness of com-
putations, among others [17]. It is somewhat surprising to observe that for
Chebyshev collocation points also, the classical collocation method seems still
to be symplectic. Unfortunately, to the best of our knowledge, the following
assertion is only a conjecture. The Gauss-Chebyshev collocation points defined
as

zk = cos
(

(2k − 1)π
2N

)
, k = 1, ..., N

reduce the skew-symmetry of the canonical differential operator defined in propo-
sition 23 to skew-symmetry of the reduced finite dimensional bilinear operator
in the corresponding N -dimensional approximation space.

6 Numerical example
For the sake of comparison, we will consider a lossless transmission line with
constant parameters (inductance L = 2, capacitance C = 3). In this particu-
lar example, the resulting PDE is linear. Thus, we can formally compute the
model dynamical spectrum from the underlying eigenvalue problem and com-
pare it with the spectrum of the finite dimensional model obtained using the
discretization scheme developed in this paper. Symmetric Dirichlet boundary
conditions q(0) = 0 and p(L) = 0 have been chosen to complete the ideal trans-
mission line model written in the form :(

0 d
d 0

)( q(z)
C
p(z)
L

)
= λ

(
q
p

)
(80)

The theoretical eigenvalues of this ideal transmission line example are given
in table 1. Comparisons will be made with the spectrum of reduced models
obtained with 8 interior collocation points (hence with reduced models of or-
der 16). To achieve the symmetric Dirichlet boundary conditions, the chosen
polynomial bases have been augmented (in the "classical collocation" case) by
considering the developments

q(z) =
8∑
i=1

qiψi(z)z, p(z) =
8∑
i=1

piψi(z)(z − L) (81)

which automatically satisfy q(0) = 0 and p(L) = 0. In this case (closed system),
resulting eigenvalues are given in table 2 hereafter where it is verified that
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theoretical eigenvalues
0.00000000000000±0.32063745754047i
0.00000000000000±0.96191237262140i
0.00000000000000±1.60318728770233i
0.00000000000000±2.24446220278326i
0.00000000000000±2.88573711786419i
0.00000000000000±3.52701203294513i
0.00000000000000±4.16828694802606i
0.00000000000000±4.80956186310699i

Table 1: Spectrum of the considered ideal transmission line model (first eight
couples of conjugated eigenvalues)

Legendre collocation Chebyshev collocation
0.00000000000000±0.32063745754047i 0.00000000000000±0.32063745744583i
0.00000000000000±0.96191238151097i 0.00000000000000±0.96191420177938i
0.00000000000000±1.60321563740732i 0.00000000000000±1.60338416589471i
0.00000000000000±2.24771134219675i 0.00000000000000±2.25154046253161i
0.00000000000000±2.94830702957368i 0.00000000000000±3.00613251338085i
0.00000000000000±3.98374558826631i 0.00000000000000±4.38041246765385i
0.00000000000000±6.38606332778675i 0.00000000000000±8.49771153485658i
0.00000000000000±18.76179259703422i 0.00000000000000±31.96188912930034i

Table 2: Spectrum approximation for the ideal transmission line example us-
ing the classical scheme with 8 interior collocation points which are zeros of
corresponding Legendre (left) and Chebyshev (right) polynomials.

classical collocation methods are symplectic either with Legendre (theorem 24)
or Chebyshev (conjecture in remark 25) collocation points.

It may be noticed that other choices of collocation points result in non sym-
plectic schemes as illustrated in table 3 hereafter where 8 interior uniformly
distributed collocation points have been chosen. This results in dissipative and
even unstable modes for the reduced model. On the contrary, the geometric col-
location scheme proposed in this paper remains symplectic whatever the choice
of collocation points is. In table 3, this geometric collocation scheme has been
used with the same uniformly distributed 8 interior collocation points. The
eigenvalues of the model resulting from our "geometric" collocation method are
obtained by the diagonalization of the matrix J ×Q from the input-output rep-
resentation (50) when substituting the efforts from (59) and again considering
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Geometric collocation Classical collocation
0.00000000000000±0.32063745754047i -0.00000000000001±0.32063749232832i
0.00000000000000±0.96191238151097i 0.00000000000003±0.96142344694331i
0.00000000000000±1.60321563740732i -0.00000000000001±1.55336611678737i
0.00000000000000±2.24771134219675i -0.49234496522402±2.25266731541568i
0.00000000000000±2.94830702957369i 0.49234496522400±2.25266731541571i
0.00000000000000±3.98374558826630i -0.91327478638258±2.15975871233621i
0.00000000000000±6.38606332778657i 0.91327478638259±2.15975871233621i
0.00000000000000±18.76179259703309i -0.00000000000000±4.73727006377608i

Table 3: Spectrum approximation for the ideal transmission line example. Right
column: using a classical scheme with 8 interior uniformly distributed colloca-
tion points. Left column: using the geometric or mixed collocation method with
the same 8 interior uniformly distributed collocation points.

Dirichlet conditions q(0) = 0 and p(L) = 0. One obtains
fq

fL∂
fp

e0∂

 =

 0
(

D
ϕ(L)

)(
MT

ϕ(0)

)−1

(
D
−ϕ(0)

)(
MT

ϕ(L)

)−1

0



C 0 0 0
0 0 0 0
0 0 L 0
0 0 0 0


︸ ︷︷ ︸

J×Q


q
eL∂
p
f0
∂


(82)

Among the possible classical collocation methods described above, the Gauss-
Legendre collocation scheme is the more accurate. We will therefore compare
this scheme with our geometric scheme using the same collocation points (clas-
sical orthogonal collocation is indeed a reference method for high precision spec-
trum approximation). The results are given in table 4 hereafter.

Geometric collocation Gauss-Legendre collocation

0.00000000000000±0.32063745754047i 0.00000000000000±0.32063745754047i
0.00000000000000±0.96191238151097i 0.00000000000000±0.96191238151097i
0.00000000000000±1.60321563740732i 0.00000000000000±1.60321563740732i
0.00000000000000±2.24771134219675i 0.00000000000000±2.24771134219675i
0.00000000000000±2.94830702957369i 0.00000000000000±2.94830702957368i
0.00000000000000±3.98374558826630i 0.00000000000000±3.98374558826631i
0.00000000000000±6.38606332778657i 0.00000000000000±6.38606332778675i
0.00000000000000±18.76179259703309i 0.00000000000000±18.76179259703422i

Table 4: Spectrum approximation for the ideal transmission line example. Right
column: using a classical scheme with 8 interior Legendre collocation points.
Left column: using the geometric or mixed collocation method with the same 8
interior Legendre collocation points.

It is remarkable that Gauss-Legendre collocation and geometric collocation
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give essentially the same approximated eigenvalues. This has to be considered
simultaneously with the fact that both methods perform exact integration of
the bilinear power product in the same approximation space of polynomials.
However, the spectrum accuracy in the geometric collocation do not depend on
the choice of collocation points (except for floating point numerical errors issues
when solving the corresponding finite dimensional eigenvalue problem). In this
sense, the geometric scheme gives the best possible accuracy for the spectrum
approximation and leave open the choice of collocation points (which could then
be optimized according to other criteria).

Finally we would like to point out that the geometric collocation method
developed here is designed for open systems (with boundary energy flows). For
these systems this geometric scheme remains symplectic in the sense that it
preserves both the Hamiltonian and the interconnection Dirac structure. It may
be seen from table 5 hereafter that this is not the case for classical collocation
schemes, even for the Gauss-Legendre collocation method.

Time varying boundary conditions are required to represent open systems.
They are usually expressed directly in classical collocation schemes using the
following constraints:

q(0, t) =
N∑
i=1

ψi(0)qi = u1(t)

p(L, t) =
N∑
i=1

ψi(L)pi = u2(t)

(83)

where u1(t) and u2(t) are the transmission line "inputs". Therefore, the eigen-
value problem for such open systems may be written:(

0 d
d 0

)(
q(z)
p(z)

)
= λ

(
q(z)
p(z)

)
(84)

with the Dirichlet boundary conditions:

q(0) =
N∑
i=1

ψi(0)qi = 0

p(L) =
N∑
i=1

ψi(L)pi = 0

(85)

The obtained eigenvalues are reported in table 5 hereafter for 8 interior
Legendre collocation points and compared with the results from the geometric
method. Besides the loss of accuracy, it may be noticed that dissipative and
even unstable modes appear in classical collocation case.

7 CONCLUSIONS AND FUTURE WORKS
In this paper we have suggested an adaptation of the so-called collocation
method in order to preserve the geometric structure of a class of Hamiltonian
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Geometric collocation Gauss-Legendre collocation

0.00000000000000±0.32063745754047i 0.00000000000000±0.28966097209118i
0.00000000000000±0.96191238151097i 0.00000000000000±0.95732943443983i
0.00000000000000±1.60321563740732i 0.00000000000000±1.62271610834325i
0.00000000000000±2.24771134219675i 0.00000000000000±2.34315842499615i
0.00000000000000±2.94830702957369i 0.00000000000000±2.96231787828937i
0.00000000000000±3.98374558826630i 1.08122738779532±3.73134482798125i
0.00000000000000±6.38606332778657i -1.08122738779532±3.73134482798126i
0.00000000000000±18.76179259703309i -3.23331090942184±0.00000000000000

Table 5: Spectrum approximation for the open ideal transmission line example
with Dirichlet boundary conditions (85). Right column: using a classical scheme
with 8 interior Legendre collocation points. Left column: using the geometric or
mixed collocation method with the same 8 interior Legendre collocation points.

systems representing open physical systems, i.e. with energy flow through the
boundary of their spatial domain. These Hamiltonian systems are endowed with
a geometric structure, called Dirac structure, which in the case of Hamiltonian
systems of conservation laws takes a canonical form called Stokes-Dirac struc-
ture. The spatial discretization presented in this paper preserves this structure
after the reduction by projection on polynomial bases which are differently cho-
sen according to the degree of the differential forms that they approximate.
Doing this both the exterior derivative and the boundary operator may be dis-
cretized exactly. However one obtains in a first instance a Tellegen structure
defined with respect to a degenerate pairing as the dimensions of the spaces of
flow and effort variables are not equal. Then a Dirac structure has been ob-
tained as the quotient of the Tellegen structure with respect to the kernel of the
degenerate pairing.

This method could be called "mixed colocation method" and indeed gener-
alizes previously suggested discretization methods using mixed finite-elements.
Completing this discretized Dirac structure with the approximated closure rela-
tions associated with the variational derivative of the Hamiltonian, one obtains a
reduced model which has the structure of a finite-dimensional port Hamiltonian
system. This port Hamiltonian system form allows the use of passivity-based
control laws with the accurate spectral properties that pseudo-spectral methods
provide.

Another point of interest is the analysis of the symplecticity of spatial dis-
cretization schemes based on collocation methods. It has been shown that clas-
sical collocation methods may exhibit symplecticity with particular choices of
collocation points (zeroes of Legendre or Chebyshev polynomials) for closed
Hamiltonian systems (with boundary conditions implying no energy transfer
through their spatial boundaries such as Dirichlet or von Neumann homoge-
neous boundary conditions). It has to be notice however that the proposed
collocation scheme (which is symplectic by construction) remains symplectic
whatever the choice of the collocation points is (which is not the case of classi-
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cal collocation schemes). Moreover the geometric collocation scheme preserves
Stokes-Dirac structures and thus perform geometric reduction for open systems
(which again is not the case for classical collocation schemes).

In view of the many advantages that this method does offer, we are currently
extending these results to two dimensional case still within the port-Hamiltonian
formalism. Furthermore this structure preserving spatial discretization method
will be also used for the synthesis of stabilizing boundary control and open the
way to relating the controllers obtained using the infinite-dimensional models
and their finite dimensional approximations.
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