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Abstract Geo-located social media provide a large amount of information
describing urban areas based on user descriptions and comments. Such data
makes possible to identify meaningful city neighborhoods on the basis of the
footprints left by a large and diverse population that uses this type of media.
In this paper, we present some methods to exhibit the predominant activities
and their associated urban areas to automatically describe a whole city. Based
on a suitably attributed graph model, our approach identifies neighborhoods
with homogeneous and exceptional characteristics. We introduce the novel
problem of exceptional subgraph mining in attributed graphs and propose
a complete algorithm that takes benefits from closure operators, new upper
bounds and pruning properties. We also define an approach to sample the
space of closed exceptional subgraphs within a given time-budget. Experiments
performed on 10 real datasets are reported and demonstrate the relevancy of
both approaches, and also show their limits.
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1 Introduction

In today’s increasingly global and interconnected world, people have oppor-
tunities to live abroad of their country, generally in urban areas. They face
the challenge of making decisions about where to live, how to find appropriate
areas to go out or a place to visit. Thanks to the current numerical develop-
ment, numerous sources of collected data can help to make better decisions.
Nevertheless, such geo-enabled social data must be processed with efficient
methods to take into account the heterogeneity and the complexity of urban
areas by the discovery of useful and understandable insights. Such questions
have recently raised the interests of researchers such as discovering similar
neighborhoods across several cities [8], matching social attributes with geo-
graphic spaces [30] or characterization of neighborhoods for analyzing urban
mobility [25].

Using social and urban data of a city (such as the ones provided by social
networks as Foursquare or GooglePlace), we aim to identify neighbor-
hoods with homogeneous and exceptional characteristics: Areas are described
by their associated characteristics that distinguish them from the rest of the
city. To this end, we propose a suitable attributed graph model (as illustrated
in Fig. 1) that results from the combination of social and urban data, and
we achieve the task by applying a constraint-based graph pattern mining
approach. The devised algorithm identifies connected subgraphs associated
to some characteristics that discriminate the subgraphs from the rest of the
graph.

Attributed graph analysis has received much attention in the past decade.
For example, [22] designed a method to find dense homogeneous subgraphs,
where vertices are described by categorical attributes and [10] proposes sub-
space clustering approach using numerical vertex attributes. However, all these
works focus their attention on the similarity inside the subgraphs, while un-
derestimating exceptionality of the subgraph characteristics with respect to
the whole graph.

Fig. 1: Example of a graph modeling a city.
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1.1 Research contribution

We propose two algorithms to discover exceptional subgraphs. The first one
is an exact algorithm that uses original and efficient upper bounds and some
other techniques to reduce the search space. It takes benefit from a closure op-
erator to avoid redundancy and efficiently prune the search space. The second
algorithm mines closed exceptional subgraphs by directly sampling the space
of closed patterns in a similar way as [3,11,28].

Our main contributions are manifold:

– We propose a new kind of graph analysis that exploits both of the con-
trasts of vertices attributes and the graph structure with a connectivity
constraint.

– We present an efficient algorithm based on new upper bounds and pruning
properties to discover exceptional subgraphs.

– We design a probabilistic approach that directly samples the output space
of patterns within a time budget specified by end-users.

– We provide a thorough empirical study that includes (1) a demonstration
of the efficiency of the used pruning techniques, (2) the impact of the
parameters and the input graph dimensions on the performance of the
algorithms, and (3) the relevance of the discovered results.

This paper extends our previous work [2]. First, a slight modification of
the quality measure enables to discover more relevant patterns. Second, the
introduction of a closure operator makes it possible to define a more efficient
algorithm by removing redundant parts in the search space. Experiments give
evidence that our novel algorithm outperforms the algorithm defined in [2]
with several orders of magnitude.

1.2 Outline

This paper is organized as follows. The first section formally introduces the
problem. The proposed solutions are presented in Section 3. We report a sys-
tematic empirical study on numerous real-world datasets in Section 4. Section
5 discusses related work and our conclusions are drawn in the final section.

2 Problem Setting

In this section, we provide the necessary definitions and terminology. Table 1
summarizes the definitions of the symbols used in the paper. Data describ-
ing geographic venues are numerous, ranging from census data to collabora-
tive data produced through social-media platforms. To describe a city, nearby
venues are grouped into small areas (geographers generally use tiles of 200 me-
ters) over which venue characteristics are aggregated into count data. These
areas are hereafter considered as the vertices V of a graph G = (V,E,C,D)
whose edges E connect adjacent areas (that share a part of their borders),



4 Anes Bendimerad et al.

Symbols Definitions

G = (V,E,C,D) An attributed graph with vertex set V and edge set
E. The vertices in V are described by count variables
whose labels are denoted C = {c1 . . . , cp} and values
D = {c1(v), . . . , cp(v) | v ∈ V }.

L A set of labels: L ⊆ C.
K A set of vertices: K ⊆ V .
S = (S+, S−) A characteristic: S+, S− ⊆ C, S+ ∩ S− = ∅
S Then set of all characteristics on C.
G[K] The subgraph of G induced by K ⊆ V .

f and g The Galois connection between 2V and S.

Table 1: Symbol table.

C = {ci, i ∈ J1, pK} is a set of p categories and the vertices of V are de-
scribed by D = {ci(v) ∈ N, with ci ∈ C and v ∈ V }, the counts of venues
of each category in the area associated to each vertex. The values of D can
be aggregated over a set of vertices K ⊆ V and a set of categories L ⊆ C:
sum(L,K) =

∑
v∈K

∑
ci∈L ci(v). To simplify the notation, we use sum(K) to

denote sum(C,K).

As an example, Fig. 1 presents a graph derived from the division of a city
into 6 areas (from v1 to v6). The area represented by v1 is adjacent to the ones
represented by v2 and v4, and consequently an edge connects v1 to v2 and
another one v1 to v4. The number of venues of each category in a given area
composed a vector associated to the corresponding vertex. The distribution
of venue categories C = (Health, Tourism, Store, Food) is detailed in Fig. 2.
sum(health, {v1}) = 1 as there is one venue with the category health in the area
associated to v1. We can also observe that sum({Health, Tourism, Store, Food},
{v1}) = 22, and for the set K = {v2, v5}, sum(K) = 49.

Fig. 2: Example of the distribution of venues in areas.

Our objective is to identify neighborhoods whose characteristics distinguish
them from the rest of the city. To that end, we propose to discover connected
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subgraphs associated to exceptional categories. A category is exceptional for
a subgraph if it is more frequent in its vertices than in the remaining of the
graph. The scarcity of a category can also be a relevant element to describe
a neighborhood. For example, in Fig. 2, vertices v2 and v5 have a surplus on
the category Health compared to the rest of the graph, while having a loss on
category Tourism. We formalize the excess and deficit in the amount of some
categories by means of characteristics defined as

Definition 1 (Characteristic) A characteristic is defined as a pair S =
(S+, S−) with S+ and S− two disjoint subsets of C. The set of all charac-
teristics is denoted S. We also define operators between two characteristics
S1 = (S+

1 , S
−
1 ) and S2 = (S+

2 , S
−
2 ):

– S1 ∩ S2 = (S+
1 ∩ S

+
2 , S

−
1 ∩ S

−
2 )

– S1 ∪ S2 = (S+
1 ∪ S

+
2 , S

−
1 ∪ S

−
2 )

– S1 ⊆ S2 ⇔ S+
1 ⊆ S

+
2 ∧ S

−
1 ⊆ S

−
2

– |S| = |S+|+ |S−|

In order to assess the relevancy of the characteristic S with respect to the
subgraph induced byK ⊆ V , notedG[K], we define the measureWRAcc(S,K),
an adaptation of the weighted relative accuracy measure widely used in Sub-
group Discovery [14].

A set of categories L is discriminant to G[K] if it is more or, on the contrary,
less frequent in G[K] than in G. This is evaluated by the gain function:

gain(L,K) =
sum(L,K)

sum(K)
− sum(L, V )

sum(V )

The validity of a characteristic S = (S+, S−) with respect to G[K] is given by

valid(S,K) ≡
∧
v∈K

(( ∧
ci∈S+

δgain(ci,v)>0

)∧( ∧
ci∈S−

δgain(ci,v)<0

))
valid(S,K) means that each vertex v ∈ K has a positive gain for each category
ci ∈ S+, and a negative gain for each category ci ∈ S−. The quality of a
characteristic S can be globally measured by the numerical function A:

A(S,K) = gain(S+,K)− gain(S−,K)

However, a major drawback of the gain is that it is easy to obtain high
value with highly specific characteristics [14], more precisely characteristics
associated to a small set of vertices. Weighted relative accuracy makes a trade-
off between generality and gain by considering the relative size of the subgraph.

WRAcc(S,K) =

{
A(S,K)× sum(K)

sum(V ) if valid(S,K)

0 otherwise

The main differences with the WRAcc used in Subgroup Discovery [14] are
(1) our adapted WRAcc considers both the positive and the negative contrasts
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in an unsupervised setting (i.e., there is no class attribute in our setting, the
“target” is settled by each pattern), (2) it takes into account the homogeneity
of elements of K, using the predicate valid(S,K).

In [2], we used a slightly different Wracc measure that differs by its nor-

malization factor (i.e., |K||V | was used instead of sum(K)
sum(V ) in this paper). This

new coefficient makes it possible to correct the defect of the previous measure
consisting in fostering sparse areas.

We now define the pattern domain we consider:

Definition 2 (Exceptional subgraph) Given a graph G = (V,E,C,D)
and two thresholds σ and δ, an exceptional subgraph (S,K) is such that (1)
|K| ≥ σ, (2) G[K] is connected, and (3) WRAcc(S,K) ≥ δ.

Given an exceptional subgraph (S,K), a large number of less specific sub-
graphs can be derived, i.e. patterns (S′,K ′) such that S′ ⊆ S and K ′ ⊆ K.
As these patterns (S′,K ′) are already described and covered by (S,K), they
unnecessarily increase the size of the solution set. This redundancy can be
avoided thanks to a closure operator [13] defined below.

Definition 3 (Formal concept) Let f and g be two closure operators form-
ing a Galois connection:

– f : 2V → S, that provides the most specific characteristic associated to
the subgraph induced by K ⊆ V :

f(K) =
(
{ci ∈ C |

∧
v∈K

δgain(ci,v)>0}, {ci ∈ C |
∧
v∈K

δgain(ci,v)<0}
)

– g : S → 2V , that returns the set of vertices supporting the characteristic
S:

g(S) = {v ∈ V | valid(S, {v})}

A pair (S,K), with S ∈ S and K ⊆ V , is a formal concept iff S = f(g(S))
and K = g(S), or equivalently, S = f(K) and K = g(f(K)).

It may happen that a formal concept as defined above does not correspond
to a connected subgraph. For example, in Fig. 3, (S,K) is a formal concept,
with S = ({c1}+, {c2}−) and K = {v1, v3, v4, v6}. However, (S,K) is not
an exceptional subgraph because G[K] is not connected. Maximal patterns
address this limitation:

Definition 4 (Maximal pattern) A set of maximal patterns is derived from
a formal concept (S,K) as:

{(f(CC), CC) | CC is a connected component of G[K]}

In other terms, a maximal pattern (f(CC), CC) is made of the most specific
characteristic for CC, but also, the connected subgraph G[CC] cannot be ex-
tended to another connected subgraph while keeping the current characteristic
f(CC).
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Fig. 3: Example of a formal concept (S,K), with S = ({c1}+, {c2}−), K = {v1, v3, v4, v6}
such that G[K] is not connected.

Following our example in Fig. 3, the formal concept (S,K) contains two con-
nected components CC1 = {v1, v4} and CC2 = {v3, v6}, with f(CC1) =
({c1, c3}+, {c2}−) and f(CC2) = ({c1, c4}+, {c2}−). From these two connected
components, two maximal patterns (f(CC1), CC1) and (f(CC2), CC2) are de-
rived.

Finally, all these definitions are used to establish the notion of closed ex-
ceptional subgraph:

Definition 5 (Closed exceptional subgraph) Let S ∈ S be a character-
istic and K ⊆ V a subset of vertices, (S,K) is a closed exceptional subgraph
iff (1) (S,K) is a maximal pattern (2) (S,K) is an exceptional subgraph.

The rest of the paper is devoted to the computation and evaluation of the
complete set of closed exceptional subgraphs. This requires searching for two
combinatorial search spaces, with constraints that cannot be used according to
the usual techniques of search space pruning. Thus, a naive approach cannot
achieve this task for large graphs or a large number of categories. In the fol-
lowing, we propose an efficient approach that takes benefit from closed pattern
properties.

3 Computing exceptional subgraphs

This section introduces two distinct approaches to extract closed exceptional
subgraphs. First, we present an exact algorithm that aims at discovering the
complete set of closed exceptional subgraphs. Second, we devise a heuristic
algorithm that samples the space of closed exceptional subgraphs within a user-
defined time-budget. This approach makes possible to obtain instant results
and to successfully scale up on datasets with a large number of attributes.

3.1 The complete approach

In order to enumerate the set of all closed exceptional subgraphs, we explore
the space of characteristics S = (S+, S−), and for each characteristic, we enu-
merate the maximal patterns that can be generated from S using the closure
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operators. We start from an empty characteristic (S+, S−) = (∅, ∅) and con-
sider the candidate categories that can be used to expand S: X = (X+, X−):
X+ contains the categories that can be added to S+, and X− the ones that can
be added to S−. Y ⊆ V represents a set of vertices that verifies valid(S, Y ).
Initially, Y contains all the vertices V , and (X+, X−) = (C,C). In each recur-
sive call of CEnergetics, S is extended with an element x of X+ or of X−.
Y is then reduced to the vertices v that satisfy valid(S ∪ {x}, {v}).

The predicate valid is anti-monotone with respect to the inclusion of charac-
teristics: Considering two characteristics S1, S2 such that S1 ⊆ S2 and K ⊆ V ,
we have valid(S2,K) ⇒ valid(S1,K). By the contraposition, the invalid ver-
tices for S1 are also invalid for S2, and therefore, the valid set of vertices asso-
ciated to S∪{x} is a subset of Y (Line 5). We also take benefit from this anti-
monotony using the fail first principle: To extend the current characteristic S,
we choose the characteristic x for which the set {v ∈ Y | valid(S∪{x}, {v})} is
the smallest. After updating Y , we explore each connected component CC of
G[Y ] independently and form (f(CC), CC) that is, by definition, a maximal
pattern. If f(CC) ⊆ S∪X, then the maximal pattern (f(CC), CC) has not yet
been explored and CEnergetics is recursively called with S = f(CC) and
Y = CC (Line 9). This allows to explore only characteristics S and vertices
subsets Y that form maximal patterns (S, Y ), and without redundancy.

Algorithm 1: CEnergetics(S, X, Y , R, δ, σ)

Input: S = (S+, S−) the current explored characteristic, X = (X+, X−) the
candidate sets, Y a connected component s.t (S, Y ) is a maximal pattern

Output: R the result set under construction
1 if X 6= (∅, ∅) then
2 if |Y | ≥ σ and UB(S ∪X,Y ) ≥ δ then
3 // Extending S using the fail first principle:
4 x← argminx∈X |{v ∈ Y | valid(S ∪ {x}, {v})}|
5 Y ′ ← {v ∈ Y | valid(S ∪ {x}, {v})}
6 for each connected component CC ⊆ G[Y ′] do
7 if f(CC) ⊆ S ∪X then
8 // (f(CC), CC) has not been explored yet
9 CEnergetics(f(CC), X \ f(CC), CC, R, δ, σ)

10 CEnergetics(S, X \ {x}, Y , R, δ, σ)

11 else
12 if |Y | ≥ σ and WRAcc(S, Y ) ≥ δ then
13 R← R ∪ {(S, Y )}

Another pruning mechanism is used on Line 2 where the function UB is
used to upper bound the WRAcc measure. This function relies on the aggre-
gation property of the WRAcc measure as defined below.

Property 1 Let S = (S+, S−) be a characteristic, and K ⊆ V a set of vertices
satisfying valid(S,K). We have:

WRAcc(S,K) =
∑
v∈K

∑
x∈S

WRAcc({x}, {v})
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Proof Since valid(S,K) = true:

WRAcc(S,K) = A(S,K)×
sum(K)

sum(V )

=

(
sum(S+,K)

sum(K)
−
sum(S+, V )

sum(V )
−
sum(S−,K)

sum(K)
+
sum(S−, V )

sum(V )

)
×
sum(K)

sum(V )

=
sum(S+,K)− sum(S−,K)

sum(V )
−
sum(S+, V )− sum(S−, V )

sum(V )2
× sum(K)

=
∑
v∈K

(
sum(S+, {v})− sum(S−, {v})

sum(V )

)
−
∑
v∈K

(
sum(S+, V )− sum(S−, V )

sum(V )2
× sum({v})

)

=
∑
v∈K

(
sum(S+, {v})− sum(S−, {v})

sum(V )
−
sum(S+, V )− sum(S−, V )

sum(V )2
× sum({v})

)

=
∑
v∈K

(∑
x∈S

(
sum(x+, {v})− sum(x−, {v})

sum(V )

)
−
∑
x∈S

(
sum(x+, V )− sum(x−, V )

sum(V )2
× sum({v})

))

=
∑
v∈K

∑
x∈S

(
sum(x+, {v})− sum(x−, {v})

sum(V )
−
sum(x+, V )− sum(x−, V )

sum(V )2
× sum({v})

)

=
∑
v∈K

∑
x∈S

((
sum(x+, {v})
sum({v})

−
sum(x+, V )

sum(V )
−
sum(x−, {v})
sum({v})

+
sum(x−, V )

sum(V )

)
×
sum({v})
sum(V )

)
=
∑
v∈K

∑
x∈S

WRAcc({x}, {v})

From this property, we can derive the following function UB and demonstrate
that it can be used to upper bounds the WRAcc value.

Definition 6 (UB) Let S = (S+, S−) be a characteristic, and K ⊆ V .
UB(S,K) is defined as:

UB(S,K) =
∑
v∈K

∑
x∈S

WRAcc({x}, {v})

Property 2 For each pattern (S2,K2) such that S2 ⊆ S and K2 ⊆ K, we have

UB(S,K) ≥WRAcc(S2,K2)

Proof (1) If valid(S2,K2) = false, the property is verified because UB(S,K) ≥
0. In fact, UB is a sum of WRAcc values that are always positive or null.
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(2) If valid(S2,K2) = true:

UB(S,K) =
∑
v∈K2

∑
x∈S2

WRAcc({x}, {v}) +
∑

v∈K\K2

∑
x∈S2

WRAcc({x}, {v})

+
∑
v∈K

∑
x∈S\S2

WRAcc({x}, {v})

= WRAcc(S2,K2) +
∑

v∈K\K2

∑
x∈S2

WRAcc({x}, {v})

+
∑
v∈K

∑
x∈S\S2

WRAcc({x}, {v})

≥WRAcc(S2,K2)

Since all the enumerated patterns P = (S2,K2) by CEnergetics satisfy
S2 ⊆ S ∪X and K2 ⊆ Y , we have always UB(S ∪X,Y ) ≥ WRAcc(S2,K2).
Thus, if UB(S ∪X,Y ) < δ, we discard the current search space.

Based on the finding of [31] for frequent itemsets, the complexity of mining
exceptional subgraphs is NP-hard. Therefore, we have no guarantee on the
execution time of Algorithm 1, as the number of exceptional subgraphs can
be exponential in the size of the dataset. However, each recursive call has a
worst case time complexity in O(max{|C| × |V |, |V |+ |E|}):
– Computing UB on Line 2 or WRAcc on Line 12 take O(|S ∪X| × |Y |) i.e.
O(|C| × |V |) in the worst case

– The computation of the next candidate x ∈ X with the fail first principle
(Line 4) requires in the worst case O(|C| × |V |)

– Line 5 takes O(|Y |), that is to say O(|V |) at most
– Line 6, computing the connected components, takes O(|V |+ |E|)
– Line 7, f(CC) is obtained in O(|C| × |CC|). For all the connected compo-

nents of G[Y ′], this requires in overall O(|C| × |Y ′|), which corresponds to
O(|C| × |V |) in the worst case.

CEnergetics enumerates maximal patterns in a depth-first manner. The
search space can be represented as a tree where each enumerated maximal
pattern (S, Y ) corresponds to a single leaf. The depth of this tree is bounded
by 2×|C|, since in each recursive call at least one element x ∈ X is added to S.
Thus, the number of recursive calls between two leaves is bounded by 4× |C|
(we backtrack at most 2× |C| times and then we go in depth at most 2× |C|
times). Thus, we can conclude that the time delay between the enumeration
of two leaves of this tree (two different maximal patterns) is polynomial in
O(|C| ×max{|C| × |V |, |V |+ |E|}).

3.2 The exceptional subgraph space sampling approach

In practice, end-users want to obtain high-quality patterns in a short amount
of time, especially in interactive data mining processes. However, we show in
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experiments that the runtime of CEnergetics increases when the graph size
or the number of attributes increase, and it may require a considerable time to
mine very large graphs. To overcome this issue, we propose an approach that
computes a sampling of the closed exceptional subgraphs within a user-given
time-budget.

We adapt the randomized pattern mining technique of [3] to exceptional
subgraphs discovery. This so-called Controlled Direct Pattern Sampling en-
ables the user to specify a time budget and computes a set of high-quality
patterns whose size directly depends on the specified amount of time.

The idea consists of sampling the patterns based on a probability distribu-
tion that rewards high-quality patterns. In a first attempt, we proposed to first
sample the characteristics and then derive the associated subgraphs. But this
strategy failed in computing patterns with high WRAcc values because the
graph structure was neglected. Thus, we adopted the reverse approach that
consists in randomly generating maximal patterns (S,K).

We perform a random walk on a graph whose vertices are the maximal
patterns and the edges connect couple of patterns (S1,K1) and (S2,K2) such
that K1 ⊆ K2 and there does not exist a maximal pattern (S,K) such that
K1 ⊂ K ⊂ K2 (strict inclusion).

To define how is constructed the graph on which the random walk is per-
formed, we need to introduce two new functions

– comp : 2V × 2V → 2V : Given two subsets of vertices H and K such
that K ⊆ H and G[K] is connected, comp(K,H) returns the connected
component of H that contains K.

– clo : 2V → 2V : Given a connected subgraph induced by K, clo(K) returns
the part of the closure of K that is connected and contains K:

clo(K) = comp(K, g(f(K)))

clo(K) can be computed by extending K recursively with all neighbors v
that maintain f(K ∪ {v}) = f(K).

During the random walk, edges (transitions) are chosen following a prob-
ability measure that favors high-quality patterns:

1. The random walk starts by drawing a first vertex using the probability

P({v}) = WRAcc(f({v}),clo({v}))∑
u∈V WRAcc(f({u}),clo({u})) to form the first explored maximal

pattern (f({v}), clo({v})).
2. A new maximal pattern is generated from the pattern (S,K) by considering

all maximal patterns that are direct super-sets of K. Such patterns are
generated by alternatively adding a neighbor element v ∈ N(K) \K to K
and considering the closure clo(K∪{v}). N(K) is the set of neighbors of K:
N(K) = {v ∈ V | ∃u ∈ K : (u, v) ∈ E}. (S,K) is also considered among
the patterns that can be generated in the next step. The set Next(K) of
all possible next subgraphs is then:

Next(K) = {K} ∪ {clo(K ∪ {v}) | v ∈ N(K) \K}
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Thus, from Next(K), all the direct successors to (S,K) can be enumerated
by:

{(S′,K ′) | K ′ ∈ Next(K) and S′ = f(K ′)}

The next random step is drawn based on the probability P(K ′ | K),
that is the probability to reach K ′ ∈ Next(K) from K: P(K ′ | K) =

WRAcc(f(K′),K′)∑
K2∈Next(K) WRAcc(f(K2),K2)

. This distribution of probabilities rewards tran-

sitions toward maximal patterns with large WRAcc(f(K ′),K ′) value.
3. The current random walk stops when K ′ = K and a new one is started from

step (1). Otherwise, the random walk continues by repeating Step (2) on the
set of vertices K ′. At each step of the random walk, if WRAcc(f(K),K) ≥
δ and |K| ≥ σ, the pattern is added to the output result set.

The algorithm EXCESS1 (see Algorithm 2) samples patterns until the speci-
fied execution time is consumed. Since K is extended at each iteration by at
least one vertex v, and K is bounded by V , the extension loop (Line 9) stops
after at most |V | iterations.

Algorithm 2: EXCESS(time Budget, δ, σ)

Input: time Budget
Output: R a set of sampled patterns

1 for v ∈ V do
2 if WRAcc(f({v}), clo({v})) ≥ δ and |clo({v})| ≥ σ then
3 R← R ∪ (f({v}), clo({v}))
4 while current time < time Budget do
5 // Step 1: draw a vertex v

6 draw v ∼ WRAcc(f({v}),clo({v}))∑
u∈V WRAcc(f({u}),clo({u}))

7 // Step 2: expansion of K
8 K′ ← clo({v})
9 repeat

10 K ← K′

11 // Compute the set Next(K)
12 Next(K)← {K}
13 for v ∈ N(K) \K do
14 Next(K)← Next(K) ∪ {clo(K ∪ {v})}
15 for K′ ∈ Next(K) do
16 if WRAcc(f(K′),K′) ≥ δ and |K′| ≥ σ then
17 R← R ∪ (f(K′),K′)

18 draw K′ ∼ WRAcc(f(K′),K′)∑
K2∈Next(K) WRAcc(f(K2),K2)

19 until K′ = K;

In the following, we prove that all maximal patterns with nonzero WRAcc
value have a non zero probability to be generated. To this end, we first prove
the following necessary property.

1 EXCESS stands for EXceptionnal ClosEd Subgraph Sampler.
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Property 3 For each maximal pattern P = (S,K) with |K| ≥ 1, there exists
a maximal pattern P ? = (S?,K?) s.t: K? ⊂ K (a strict inclusion) and ∃v? ∈
N(K?) \K? with K = clo(K? ∪ {v?}).

Proof Since we know that for each maximal pattern P = (S,K) with |K| ≥ 1
there exists a maximal pattern P ′ = (S′,K ′) s.t K ′ ⊂ K (at least the empty
pattern P ′ = ((C+, C−), ∅)), we prove the property by induction: ∀n ∈ N?, for
each maximal pattern P = (S,K) such that there exists a maximal pattern
P ′ = (S′,K ′) with K ′ ⊂ K and |K| − |K ′| ≤ n, there also exists a maximal
pattern P ? = (S?,K?) with K? ⊂ K and ∃v? ∈ N(K?) \ K? with K =
clo(K? ∪ {v?}).
– If n = 1: K \K ′ = {v}, then clo(K ′ ∪ {v}) = clo(K) = K. Thus P ? = P ′

– Let us suppose that the proposition is true for n. Let P = (S,K) be a
maximal pattern for which there exists a maximal pattern P ′ = (S′,K ′)
s.t K ′ ⊂ K and |K| − |K ′| ≤ n+ 1. If |K| − |K ′| ≤ n, then the proposition
is verified according the the induction hypothesis. Otherwise |K| − |K ′| =
n+ 1, let v ∈ K ∩N(K ′)\K ′, since K ′∪{v} ⊂ K then clo(K ′∪{v}) ⊆ K:
– If clo(K ′ ∪ {v}) = K, then P ? = P ′

– If clo(K ′ ∪ {v}) 6= K. We have clo(K ′ ∪ {v}) ⊂ K, and (f(K ′ ∪
{v}), clo(K ′∪{v})) is a maximal pattern, and |K|−|clo(K ′∪{v})| ≤ n.
Then, according to the induction hypothesis, the proposition is verified.

Property 4 For each maximal pattern P = (S,K) with WRAcc(S,K) > 0,

the probability P̃(P ) that the random walk reaches the pattern P is not null:

P̃(P ) > 0.

Proof Let us prove by induction on n ∈ N?, that for all maximal pattern
P = (S,K) s.t WRAcc(S,K) > 0 with |K| ≤ n: P̃(P ) > 0.

– For n = 1: K = {v}, and K = clo({v}), P can be sampled directly in Step
1:

P̃(P ) ≥ WRAcc(S,K)∑
u∈V WRAcc(f({u}), clo({u}))

> 0

– Let us suppose that the proposition is true for n. Let P = (S,K) be
a maximal pattern s.t WRAcc(S,K) > 0 and |K| = n + 1. According to
Property 3, there exists a maximal pattern P ? = (S?,K?) s.t: K? ⊂ K and
∃v? ∈ N(K?)\K? withK = clo(K?∪{v?}). IfK? = ∅, thenK = clo({v?}),
this means that P can be sampled on Step 1:

P̃(P ) ≥ WRAcc(S,K)∑
u∈V WRAcc(f({u}), clo({u}))

> 0

If K? 6= ∅, since WRAcc(S,K) > 0, then S 6= (∅, ∅), and we know that
S ⊆ S?, thus S? 6= (∅, ∅). This means that WRAcc(S?,K?) > 0. In the

other hand, K? ≤ n, then P̃(P ?) > 0. Also, K ∈ Next(K?). So, P can be
reached after sampling P ?:

P̃(P ) ≥ P̃(P ?)× WRAcc(f(K),K)∑
K2∈Next(K?)WRAcc(f(K2),K2)

> 0
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Since each maximal pattern P = (S,K) with WRAcc(S,K) > 0 can be
reached by the random walk, we can conclude that if WRAcc(S,K) ≥ δ and
|K| ≥ σ, then the pattern P has a non zero probability to be returned by
EXCESS. Furthermore, the used probability distribution rewards high-quality
patterns by giving them more chance to be sampled.

4 Experiments

In this section, we report on experimental results to illustrate the interest of the
proposed approach. We start by describing the different real-world datasets we
use, as well as the questions we aim to answer. Then, we provide a performance
study and give some qualitative results. The implementation of the method is
in Java and the experiments run on machines equipped with i7-2600 CPUs @
3.40GHz, and 16GB main memory, running Ubuntu 12.04, and Java Version
1.6. The code and the data are available2.

4.1 Datasets and aims

We considered 10 real-world datasets whose characteristics are given in Ta-
ble 2. Eight of them come from [8] and depict Foursquare venues over 4 US
and 4 EU important cities. The venues are described by a hierarchy3. We con-
sider the first level (10 attributes) in the first series of experiments and the
second level (around 300 attributes) for the second ones. SF. Crimes data4 are
provided by a Kaggle challenge and describe the criminal activity in San Fran-
cisco. Finally, San Francisco C&V is the combination – after normalization –
of SF. Crimes and Foursquare data over San Francisco. Each city is divided
into rectangular zones in such a way that each rectangle contains a minimal
number of venues.

dataset |V | |E| |C| #objects
New York 292 647 10 (356) 71954 venues

Los Angeles 159 348 10 (325) 34504 venues
San Francisco 124 256 10 (328) 21654 venues
Washington 106 216 10 (316) 19190 venues

London 118 241 10 (318) 25029 venues
Paris 115 231 10 (305) 27443 venues
Rome 90 177 10 (279) 13166 venues

Barcelona 109 218 10 (304) 19668 venues
S.F. Crimes 898 2172 39 878049 crimes
S.F. C&V 342 767 49 (328) 878049 cr. + 21654 ven.

Table 2: Description of the real-world datasets

2 https://github.com/AnesBendimerad/ClosedExceptionalSubgraphMining
3 https://developer.foursquare.com/categorytree
4 https://www.kaggle.com/c/sf-crime
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In this experimental study, we aim to examine the behaviors of CEner-
getics and EXCESS regarding the following questions:

– What is the efficiency of CEnergetics with regard to the graph charac-
teristics that may affect its execution time?

– How effective are CEnergetics’ pruning properties?
– Does CEnergetics scale?
– Does EXCESS provide a good sample of Exceptional subgraphs?
– What about the relevancy of Exceptional subgraphs?

No related work, among those presented in Section 5, can be used as a com-
petitor of CEnergetics. Indeed, algorithms of pattern extraction in vertex
attributed graphs [22,10,23,29,26,4] compute dense subgraphs whose vertices
have homogeneous attribute values, while CEnergetics focuses on subgraphs
whose vertex attributes are different from those of the rest of the graph. Other
related works, that look for exceptional subgraphs [12,18], are designed for
graphs with attributes on the edges. Thus, in this section, we compare our
two novel algorithms only to the ones of our first attempt [2]: We demonstrate
that CEnergetics is more efficient than Energetics (a complete algorithm
that extracts non closed exceptional subgraphs) and is able to tackle graphs
with more than 150 attributes while Energetics fails with 50 attributes. Fur-
thermore, our new pattern sampler algorithm EXCESS provides better results
than EXPreSS. Finally, we report some examples of exceptional subgraphs
on real-world data and discuss the insights they convey.

4.2 Quantitative study

We compare the efficiency and the effectiveness CEnergetics and Ener-
getics according to the number of attributes and the number of vertices. To
this end, we consider the New York graph described in Table 2. We vary the
number of vertices and attributes by removing or duplicating vertices and at-
tributes. Figure 4 reports the runtime, the number of explored patterns and
the number of returned patterns of both CEnergetics and Energetics on
this testbed. The values of parameters are: δ = 0.01, σ = 1. CEnergetics
clearly has an advantage over Energetics. It is much faster, explores a lower
number of candidates, and return a much more concise set of patterns. The
differences between the two algorithms are more important when the number
of attributes varies. CEnergetics outperforms Energetics with several or-
der of magnitudes. Furthermore, CEnergetics is able to handle graphs with
more than 150 attributes while Energetics fails as soon as graphs involve
more than 40 attributes.

We now focus on the study of CEnergetics with respect to the param-
eters of the algorithm (i.e., σ, the minimum number of vertices involved in
a pattern, and δ the minimum WRAcc threshold). By default, these values
are set to δ = 0.01 and σ = 1 in order to not being stringent. Fig. 5 reports
the behavior (i.e., runtime, number of explored sub-graphs and number of
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Fig. 4: Comparison (i.e., runtime, number of explored patterns and number of returned
patterns) between CEnergetics and Energetics according to the number of vertices and
attributes (default values: number of vertices = 1000, number of attributes = 30).

patterns) of CEnergetics on the 10 real-world datasets when varying the
input parameters δ and σ. The obtained results confirm the previous find-
ings. The execution time and the numbers of explored and returned patterns
increase when the thresholds become less stringent. Interestingly, S.F. C&V
is the dataset whose execution times are the most important. This confirms
the previous finding that the number of attributes is the most influential data
parameter in the discovery of exceptional subgraphs.

We also study the behaviour of our algorithm with regard to the replication
factor. For a replication factor equal to n, the attributed graphs are duplicated
n times such that the initial vertices are repeated n times with the same
attributes values and the same connections with the corresponding duplicated
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Fig. 5: Behavior of CEnergetics (runtime in 1st raw, #explored patterns in 2nd raw,
#patterns in 3rd raw) according to δ (1st column) and σ (2nd column) for the 10 real-world
datasets (default values: δ = 0.01, σ = 1).

vertices. Therefore, a n-duplicated attributed graphs correspond to n identical
attributed graphs that are not connected together and thus contains n times
the number of exceptional subgraphs of the original graph. For each replicate
attributed graph, we compute the ratio of the execution time of CEnergetics
on the duplicated graph to the execution time of CEnergetics on the original
graph. Figure 6 reports this ratio for the 10 replicated graphs. For most of the
datasets, the algorithm behaves almost linearly with respect to the replication
factor. However, this is not the case for S.F. C&V and S.F. Crimes that are
the datasets with the highest number of attributes. For these two datasets,
the performance degrades when the replication factor increases. The runtime
ratio increases superlinearly with the replication factor.

In order to demonstrate the effectiveness of the pruning techniques used
(the upper bound UB, and the Fail First Principle FFP), we compare the
performance of CEnergetics in four different configurations:

1. no opt: in this configuration, none of the pruning techniques is used.
2. FFP: we only use the Fail First Principle (FFP).
3. UB: we only use the upper bound UB.
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Fig. 6: Runtime ratio with respect to the replication factor for real world datasets (δ = 0.01
except SF Crimes and SF C&V (0.03 and 0.05), σ = 1).

4. UB+FFP: we use both UB and FFP.

Fig. 7: Impact of pruning techniques on runtime (1st column), and the number of explored
patterns (2nd column). The number of discovered patterns decreases from 106 to 140 (not
reported on the figures).

We performed these four configurations on an attributed graph involving
10000 vertices and 30 attributes built by duplicating the NYC Foursquare
graph. It is important to note that no opt configuration considers closed ex-
ceptional subgraphs which makes the extraction feasible. We study the runtime
and the number of explored sub-graphs when varying the value of δ. Results
are given in Figure 7. UB+FFP outperforms all the other configurations with
at least one order of magnitude, especially when the value of δ is increased.
Indeed, the use of UB takes benefit from the minimum threshold δ in order to
reduce the runtime and the number of explored patterns. These results confirm
that even if UB is the most effective technique, the simultaneous consideration
of UB and FFP makes the algorithm much more efficient.
These first experiments demonstrate that CEnergetics is only efficient for
graphs whose number of attributes is rather small (at most 150). Indeed,
CEnergetics is not able to manage attributed graphs with large number
of attributes (e.g., hundreds). EXCESS has been designed especially to per-



Mining Exceptional Closed Patterns in Attributed Graphs 19

form on graphs with hundreds of attributes, using a time budget to control
the execution time and the number of computed patterns.
To evaluate the ability of EXCESS to compute exceptional subgraphs of high
WRAcc values, we report in Figure 8 the distributions of the WRAcc measure
of both the complete set of exceptional subgraphs returned by CEnergetics
and the sample provided by EXCESS. Several time budgets are used and
they are all lower than the execution time required by CEnergetics. We
can observe that the two distributions are similar and the sampling approach
succeeds in fostering patterns with high WRAcc measure. Also, the higher the
time budget, the better the distribution. Figure 9 reports similar distributions
for the real-world datasets with hundreds of attributes for which an exhaustive
search is not possible. The distributions are similar. Thus, EXCESS makes it
possible to discover high quality patterns within a time-budget.
We also compare EXCESS with EXPreSS [2] which does not take into ac-
count closed patterns. Distributions of patterns sampled by each of these ap-
proaches are reported in Figure 10 using a logarithmic scale. These results
reveal that EXCESS returns a larger sampling than EXPreSS for the same
time budget. Interestingly, EXCESS provides much more patterns with higher
WRAcc values than patterns sampled by EXPreSS. This confirms that EX-
CESS is able to extract more patterns of better quality (i.e., with high WRAcc
values) than EXPreSS.
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Fig. 8: Distributions of the patterns from CEnergetics and EXCESS with different time
budgets (δ = 0). The number of attributes is 10.
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Fig. 9: Distribution of the output space sampling with different time budgets for datasets
with larger number of attributes.
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Fig. 10: Comparison of distributions of patterns sampled with EXCESS and EXPreSS
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4.3 Qualitative study

Id S+ Venues S+ Crimes WRAcc Size

P1 Professional & other places Embezzlement 0.007 11
P2 Residence Vandalism, Vehicle theft, Burglary 0.006 19
P3 Shop & services Burglary 0.06 21
P4 Shop & services, Nightlife spot,

Art & Entertainment, Food
Drunkenness 0.003 5

P5 Outdoors & recreation Burglary 0.002 20

Fig. 11: Patterns discovered in San Francisco crimes and venues dataset (49 attributes)

We use CEnergetics on San Francisco crimes and venues dataset to au-
tomatically identify typical areas of this city. Figure 11 displays 5 discovered
patterns. Pattern P1 depicts neighbourhoods with a high concentration of
venues of type professional & other places, and crimes of type embezzlement.
This can be explained by its proximity to the Financial District. P2 is a neigh-
borhood located in the West and South-West of San Francisco. It contains
a positive contrast of residences and crimes of type vandalism, vehicle theft,
burglary. These crimes are known as the most common types of crimes in res-
idential areas. P3 and P5 are overlapping patterns located in the North of the
city. They characterize areas with a high concentration of venues of type shop
& services, outdoors & recreation, and crimes of type burglary. Pattern P4

describes a neighborhood with a positive contrast of crimes related to drunk-
enness, which can be explained by the high concentration of nightlife spots in
this area.

We also report 9 discovered patterns on New York venues dataset. They
are presented in Fig. 12. Four of them (on the left-hand side map) are dis-
covered on the dataset with 10 attributes, whereas the 5 remaining ones (on
the right-hand side map) are discovered on the dataset with 356 attributes.
P1 is located in the South of Central Park. This neighborhood is known to
be a business and professional area with a low concentration of residences. A
sub-area of P1 is depicted by P5 with a high concentration of offices, build-
ings, medical centers. P2 describes areas with a high proportion of venues of
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type outdoors & recreation. It contains Central Park and some areas located
near East River and Hudson River. P3 covers a part of the South of Manhat-
tan and the North of Brooklyn, with a high concentration of nightlife spots.
P4 covers John F. Kennedy and LaGuardia Airports and their surroundings.
This explains the high presence of travel & transport venues. More precisely,
P9 contains neighborhoods of John F. Kennedy Airport, and it depicts them
with venues of types: Taxi, parkings, donut shops, airport, and general trav-
els. Both P6 and P8 represents areas with high proportion of residences. P8

is also characterized with an important concentration of food & drink shops.
P7 is another pattern that describes a part of South Manhattan with a high
concentration of offices.

Besides, we mined exceptional subgraphs on the different cities. In most of
them (e.g., Barcelona, Paris, Rome, Los Angeles, London), the nightlife spots
are mainly located in the city center. The higher concentration of outdoor
& recreation places is surrounding for London. For seaside towns, they are
concentrated on the coasts.

Id S+ S− WRAcc size

P1 Professional & other places Residence 0.039 50
P2 Outdoors & recreation Shop & services, Food 0.023 35
P3 Nightlife spot College & university, Travel &

transport, Professional & other
places

0.02 27

P4 Travel & transport Art & entertainment 0.016 32
P5 Office, Building, Medical center 0.01 16

P6 Residential building (apartment /
condo), Home (private)

0.008 30

P7 Office 0.008 17
P8 Home (private), Food & drink shop 0.007 30
P9 Taxi, Parking, Donut shop, Air-

port, General travel
0.006 4

Fig. 12: Patterns discovered in New York datasets with 10 attributes (patterns P1 to P4

plotted on the left-hand side map) 356 attributes (patterns P5 to P9 plotted on the right-
hand side map).
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5 Related work

Several approaches have been designed to discover new insights in vertex at-
tributed graphs. The pioneering work of Moser et al. [22] presents a method
to mine dense homogeneous subgraphs, i.e., subgraphs whose vertices share a
large set of attributes. Similar to that work, Günnemann et al. [10] introduce
a method based on subspace clustering and dense subgraph mining to extract
non redundant subgraphs that are homogeneous with respect to the vertex
attributes. In [23], the authors aim to discover collections of maximal cliques
whose vertices are homogeneous with respect to the vertex attributes. Silva et
al. [29] extract pairs made of a dense subgraph and a Boolean attribute set
such that the Boolean attributes are strongly associated with the dense sub-
graphs. In [26,4], the authors propose to mine the graph topology of a large
attributed graph by finding regularities among numerical vertex descriptors.
In [27], the authors compute subgraphs that maximize an objective function
on a vertex and edge weighted graph, seen as an activity graph by assuming
a single numerical attribute on the graph nodes. The main objective of all
these approaches is to find regularities instead of peculiarities within a large
graph, whereas Exceptional subgraph Mining computes subgraphs with their
distinguishing characteristics.

Interestingly, a recent work [1] proposes to mine descriptions of communi-
ties from vertex attributes, with a Subgroup Discovery approach. In this su-
pervised setting, each community is treated as a target that can be assessed by
well-established measures, as the WRAcc measure used in this paper. In [12],
the authors aim at discovering contextualized subgraphs that are exceptional
with respect to a model of the dataset. Restrictions on the attributes, that are
associated to edges, are used to generate subgraphs. Such patterns are of in-
terest if they pass a statistical test and have high value on an adapted WRAcc
measure. Similarly, [18] propose to discover subgroups with exceptional transi-
tion behavior which is assessed by first-order Markov chain model. More gen-
erally, Subgroup Discovery [14,24] aims to find descriptions of subpopulations
for which the distribution of a predefined target value is significantly different
from the distribution in the whole data. When there are multiple targets, Sub-
group Discovery consists in finding descriptions that significantly change the
joint distribution of the target attributes – a task that has been introduced
as Exceptional Model Mining [17,16,5]. A variety of measures of changes have
been used: pairwise correlation and entropy measures [17], Bayesian networks
[6], Kullback-Leibler Divergence and encoding difference based on Minimum
Description Length [15]. The common point to all these approaches is that the
combination of large target space and non-monotonic measures leads to the
use of heuristic search methods, i.e., beam search. Furthermore, these methods
are supervised since the target attributes are given. The algorithms proposed
in this paper extend many of these results to the unsupervised setting.

Motivated by both scalability issue and user interaction needs, sampling
the output space of patterns has received much attention in the past decade.
Many approaches have been proposed for a special purpose sampling procedure
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tailored for a specific set of itemset mining tasks [3,21,20,9,19]. Interestingly,
[7] propose to take benefit from the latest advances in sampling solutions in
SAT to define a flexible (w.r.t the choice of constraints and sampling dis-
tributions) pattern sampling algorithm with theoretical guarantees regarding
sampling accuracy. However, this framework only supports pattern languages
that can be compactly represented with binary variables, such as itemsets.
Numeric attributes cannot be handled without discretization. Also, this ap-
proach has not been applied to richer pattern languages yet. Some researchers
have tackled the problem of sampling the output space of frequent subgraphs
in a collection of graphs [11,28]. These methods are based on random walks.
In particular, [28] aims at returning the top k frequent graphs of a speci-
fied size. The problem we tackle is different on several points: We consider
a single graph and a discriminative measure instead of a frequency measure.
Besides, these methods aim at sampling frequent subgraphs while we address
the problem of exceptional attributed subgraph sampling which is much more
challenging since we have to deal simultaneously with two dimensions: Sub-
graphs and characteristics. Our approach is based on a random walk over the
closed subgraphs that fosters patterns with a high WRAcc measure.

6 Conclusion

We introduced the closed exceptional subgraph mining problem to discover
homogeneous areas that differ from the rest of the city. We defined an efficient
algorithm that computes the complete set of exceptional subgraphs by tak-
ing advantage of a closure operator, a tight upper bound and other pruning
properties. Focusing on closed pattern avoids redundancy among exceptional
subgraphs. We also designed an algorithm to sample the output space of closed
patterns to enable time-budget analysis. We reported an extensive empirical
study over 10 real-world datasets that demonstrates the relevancy of our pro-
posal. Experiments give evidence about the efficiency and the effectiveness of
CEnergetics that outperforms it previous version Energetics with several
order of magnitudes. However, CEnergetics still has difficulties to scale with
the number of attributes. This problem is fixed by EXCESS that has capa-
bilities to mine graphs described by hundreds of attributes while preserving
the WRAcc distribution. We also illustrated the relevancy of the discovered
patterns thanks to a qualitative analysis.

We believe that this work opens new directions for future work. For in-
stance, the simultaneous consideration of a collection of cities makes it possible
to highlight the similarities and the differences between them. Our proposal
can be extended to take into account other graph topological properties (e.g.,
diameter, reachability) and other quality measures can be investigated to high-
light some phenomena over the city areas like outliers or anomalies. Another
interesting direction is the interactive discovery of exceptional subgraphs in
urban data. To this end, an instant mining approach (i.e., pattern sampler)
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has to be coupled to the learning of a user model based on her feedback to
foster the interactive process.
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25. Park, S., Bourqui, M., Fŕıas-Mart́ınez, E.: Mobinsight: Understanding urban mobility
with crowd-powered neighborhood characterizations. In: IEEE International Conference
on Data Mining Workshops, ICDM (demo) 2016, December 12-15, 2016, Barcelona,
Spain., pp. 1312–1315 (2016)

26. Prado, A., Plantevit, M., Robardet, C., Boulicaut, J.: Mining graph topological patterns:
Finding covariations among vertex descriptors. IEEE TKDE. 25(9), 2090–2104 (2013)

27. Rozenshtein, P., Anagnostopoulos, A., Gionis, A., Tatti, N.: Event detection in activity
networks. In: KDD, pp. 1176–1185 (2014)

28. Saha, T.K., Hasan, M.A.: A sampling based method for top-k frequent subgraph mining.
Stat. An. & DM 8(4), 245–261 (2015)

29. Silva, A., Jr., W.M., Zaki, M.J.: Mining attribute-structure correlated patterns in large
attributed graphs. PVLDB 5(5), 466–477 (2012)

30. Spielman, S.E., Thill, J.: Social area analysis, data mining, and GIS. Comp. Env. &
Urb. Sys. 32(2), 110–122 (2008)

31. Yang, G.: The complexity of mining maximal frequent itemsets and maximal frequent
patterns. In: Proceedings of the Tenth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, Seattle, Washington, USA, August 22-25, 2004,
pp. 344–353 (2004)


