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Abstract 

We show that the “hidden” variable of the Navier, Maxwell, Einstein and Ricci Flow 

equations is  - the space lattice density. In our GeometroDynamic Model of the physical 

reality - the GDM (presented in a series of papers during 2017) - we show that sources are 

merely highly deformed zones of space (highly contracted or dilated) whereas their fields are 

continuations of these deformations, reduced by orders of magnitudes, with only a small 

deviation from the normal (standard) space density. Thus the equations of physics express 

different aspects of the same reality - the geometrodynamics of space.  
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 Introduction 1

 Space as a Lattice 1.1

By attributing a cellular structure to space we can explain its expansion, its elasticity and can 

introduce a cut-off in the wavelength of the vacuum state spectrum of vibrations [1].  

 Space density   1.2

Space density  is defined as the number of space cells per unit volume [2]. Space density in a 

zone of space without deformations (far away from masses and charges) is denoted 0. 

Let dn be the number of space cells in a given volume dV. Since dn = ρ0dV and also 

dn=ρdV’: 
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          Hence:   
dV

dVdV' 
= 

ρ

ρρ0   

 The Elastic Displacement Vector u 1.3

In Appendix A of [2] we prove that the relative volumetric change equals the divergence of 

the Elastic Displacement Vector u: 

dV

dVdV' 
u                  (1) 

Thus:  

ρ

ρρ0 u                     (2)    

This proof is a cornerstone of the GDM. It is based on the strain tensor uik , which is defined 

as: 
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 The Small Deformation Strain Tensor as a Fundamental Metric Tensor 1.4

The authors of [3], see also [2], conclude: 

“……. the small deformation strain tensor could be used as a fundamental metric 

tensor, instead of the usual fundamental metric tensor.”  

Note, however, that space deformation is a local feature of curvature, whereas manifold 

curvature can also be a global feature of curvature (like that of a closed spherical surface). 

 Deformed Spaces versus Bent Manifolds 1.5

We relate to space not as a passive static arena for fields and particles but as an active elastic 

entity, which in our model is the one and only entity that exists. Physicists have different, 

sometimes conflicting, ideas about the physical meaning of the mathematical objects of their 

models. The mathematical objects of General Relativity, as an example, are n-dimensional 

manifolds in hyper-spaces with more dimensions than n. These are not necessarily the 

physical objects that General Relativity accounts for, and n-dimensional manifolds can be 

equivalent to n-dimensional elastic spaces. Rindler [4] uses this equivalence to visualize bent 

manifolds, whereas Steane [5] considers this equivalence to be a real option for a presentation 

of reality. Callahan [6], being very clear about this equivalence, declares: “…in physics we 

associate curvature with stretching rather than bending”. After all, in General Relativity 

gravitational waves [7] are space waves and the attribution of elasticity to a 3D space is thus a 

must. 

The deformation of space is the change in size, of its cells [8]. The terms positive deformation 

and negative deformation, around a point in space, are used to indicate that space cells grow 

or shrink, respectively, from this point outwards. Positive deformation is equivalent to 

positive curving and negative deformation to negative curving. In [8] we show that the 

curvature K around a point in space is: 
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 The GDM and the Equations of Physics 1.6

In our “GeometroDynamic Model of reality”, the GDM, the variable in the equations of 

physics is directly or indirectly related to the density ρ of the elastic space lattice. These 

equations yield wave equations that are also related to the density ρ of the elastic space.  

In the Navier equation [1], the displacement vector u is related to ρ:  ∇∙u = (ρ− ρ0)/ρ. 

In the Maxwell equations, [9] and [2], the charge density q is defined as q = 1/4π∙(ρ− ρ0)/ρ, 

and the fields E and B are related to u in the following way: E = Hu and B = 1/c v×E , where 

v is the velocity of the charge that creates E and hence B. 

In the General Relativity (GR) equation, [10], the variable is the metric gij and as shown in 

Section 1.4 it is related to the strain tensor uik, which is related to  . The Ricci tensor Rij in 

the GR equation expresses curvature. But the curvature K is also related to space density:  

K = 4π/45∙(∇ρ/ρ)
2
. 

In the Ricci Flow equation: 

 ∂tgij = − 2Rij    (Section 6)  

with the Ricci tensor and the metric, the situation is the same. 

Necessarily, all waves are space waves of different kinds. 

Note that transversal waves do not require a time-variable space density ρ, whereas 

longitudinal waves require a time-variable space density ρ. 

The Navier equation yields both transversal and longitudinal waves, whereas the Maxwell and 

Einstein equations seem to yield “only” transversal waves. We relate to this situation in 

Sections 3 and 5. 
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  The GDM Postulate 1.7

The elastic and vibrating three-dimensional Space Lattice is all there is. Elementary particles 

are transversal or circulating longitudinal wavepackets of this vibrating space [1].  

 Navier Equation - The Vibrating Space  2

 Elastic Waves – a Reminder 2.1

The equation of equilibrium in an elastic media, with displacement vector, u, (53.6) in [11], is 

the Navier equation:  

    0
t

m2
2

2







u
uu                (4) 

 and  are the elastic Lamé coefficients, and m is the media mass density.  

Mass in the GDM is only a practical attribute [3]. The relevant fundamental attribute is 

energy U or energy density  .  Hence, for space as the elastic media, m represents the energy 

density of vibrations: 

m
2c


               (5) 

To solve equation (4), we adopt the Kelvin [11] method and decompose u as follows: 

TL
uuu                              Where: 

00
TL
 uu         Therefore: 

f
TL

  uu  

 stands for the scalar potential and f for the vectorial potential. This decomposition is true 

under the boundary condition u → 0 at ∞.  The known equations for uL and uT  are obtained 

by substituting TL uuu    in (4).  

For uL: 
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which is the vector wave equation for waves which move at a speed cL, where: 
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Since 0
L
u  this is the contractional /dilational, longitudinal wave.  

For uT:      0
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This is again a vector wave equation for waves with speed cT, where: 
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Since ·uT = 0,  uT and cT, correspond to the shear, transverse wave. 

 On the Transversal and Longitudinal Wave Velocities 2.2

Historically, to account for the absence of electromagnetic longitudinal waves, Cauchy (19
th

 

century) suggested that 02μλ  , see [12] P.108. Hence 2μλ  , but the bulk modulus is 


3

2
k  and since   a negative compressibility (1/k) of the aether was required.  

In the GDM, material (non-zero rest energy) elementary particles are circulating longitudinal 

wavepackets [13], [14]. This circulation is complex [13] and its basic motion is at the longitudinal 

velocity cL > cT = c. Hence we require: 

λ+2μ > μ    or   λ+μ > 0    see (6) and (7).  



 

7 

In [13] we show that  

cL= 1.6068 c               (8) 

hence  (λ+2μ)/ μ = 1.6068
2
 = 2.5818  and:   

 λ = 0.5818 μ              (9) 

 Maxwell Equations 3

 Classical Electromagnetism 3.1

Electromagnetic theory can be fully expressed by the four Maxwell’s equations [2] and [9]: 

I       q4E  Coulomb’s Law                                    

II     
tc

1






B
E  Faraday’s Law      

III    B = 0 No magnetic monopoles 

IV    
tc

1

c

4









E
jB  Ampère’s Law   

In these equations B is the vector [9]: 

 EvB 
c

1
  Magnetic Field       (10) 

The magnetic field is created by a charge, with the field E, moving at speed v. 

The dimensions of B and E are the same, and in the GDM they are:  [E] = [B] = LT
-2

 , see [2], 

[9], and both express the elastic displacement. 

In the GDM the charge density q is defined as q = 1/4π∙(ρ− ρ0)/ρ, and the fields E and B are 

related to u in the following way: E = Hu and B = 1/c v×E , where v is the velocity of the 

charge that creates E. The displacement vector u, though, is related to ρ, as follows:   
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∇∙u = (ρ− ρ0)/ρ. 

The Maxwell electromagnetic equations are, thus, related to space density ρ only.   

On electromagnetic longitudinal waves see

 The Einstein General Relativity (GR) Equation 4

 The Equation 4.1

The right hand-side of Einstein’s field equation (1) of GR (below) should express curvature 

exactly as the left-hand side does. In [10] we show, for the first time, that this is indeed the 

case. 

The need to express curvature by Riemannian geometry and obtain a covariant formulation of 

physical laws, by using tensors, led Einstein to the equation of General Relativity (GR):  

ij4ijijij T
c

G8
gRg

2

1
R 


               (11) 

Rij is the Ricci contracted Riemannian tensor and R is the Ricci scalar, R
2

1
 is the familiar 

Gaussian Curvature and Ʌ is the cosmological constant. The ijRg
2

1
 term is added to give a 

covariant divergence, which is identically zero, and  0000 jT  =  is the energy density of 

space. In this paper we ignore the Cosmological Constant term Ʌ ijg . 

It was Einstein’s vision that “future physics” will show that the right-hand side of (1):  

 
c

G8
4


∙ Tij     is also curvature. 

In equation (2) of [5], Rc is the Gaussian radius of curvature, and 1/Rc
2
 is the Gaussian 

curvature at the radial distance r from the center of a black hole with Schwarzschild Radius rS 

(our notations are different from those in [5]): 
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1/Rc
2
 = rS/r

3
           (12) 

Equation (12) enables us, for the first time to show, [10], that  8πG/c
4
∙Tij  expresses curvature.  

 Curvature 4.2

The Ricci tensor Rij in the GR equation expresses curvature. But the curvature K is also 

related to space density [8]:  

K = 4π/45∙(∇ρ/ρ)
2
 

 The Metric 4.3

In the GR equation the variable is the metric gij which, as shown in Section 1.4, is related to 

the strain tensor uik, which is itself related to . 

Thus the GR equation relates to space density only. 

 The Extended GR Equation of the GDM 5

 The Extended Field Equation of General Relativity for Energy/Momentum and 5.1

Charge/Current  

Using (9), (10) and (11) in [10] the extended Einstein GR field equation becomes: 

R


-1/2Rg


 = 8πG/c
4 

∙ Tm


 + 4π√G /s
2 

∙ Tq


             (13) 

And in the GDM, by inserting the constant, H, it takes the form: 

R


-1/2Rg


 = 8πG/c
4 

∙ Tm


 + 4π√HG /s
2 

∙ Tq


             (14) 

Electromagnetism relates to space density only, Section 3, and necessarily this is also the case 

for the extended GR equation. 

Note that the gravitational weak field approximation yields the gravitational Poisson equation. 

Similarly the electric weak field approximation should yield the electrical Poisson equation. 
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Note that the weak force is electromagnetic (Salam and Weinberg) and according to the GDM 

so is the strong force.   

On gravitational longitudinal waves see the introduction of [16]. 

 The Ricci Flow 6

The Ricci Flow in topology, [17], is governed by the equation: 

∂tgij = − 2Rij               (15) 

where gij is the metric of space and Rij is the Ricci tensor. This equation expresses the idea 

that the rate of change in the metric in a given zone is dependent on the local curvature. This 

is kind of an “ironing” process of space or a curved manifold, analogues to heat diffusion. We 

consider this idea in topology to be also relevant to physics. Curved zones of space 

(contracted or dilated) or bent manifolds have a built-in tension, hence higher energy, due to 

the elasticity of space. We assume that in order to ease the tension and lower the energy the 

rate of change, with time, of the metric ∂tgij is dependent on the amount of curvature 2Rij. This is 

the idea of space being “ironed”. Thus two zones of space, both curved positively or negatively will 

repel each other, whereas if one of them is curved positively and the other negatively they will attract 

each other. This is the case for the bivalent electrical charges [2]. We contend that this should also be 

the case for masses since they curve space positively. Thus, in contrast to the current understanding, 

masses should repel each other. Free Fall appears as an attraction force but, as we have seen, it is not. 

Locally Free Fall is stronger than the repulsion, but on the large scale of the universe it is the repulsion 

that takes over.  

We know that the Hubble Flow (space expansion) takes place in the inter-galactic space and not within 

the galaxies themselves. Thus one can argue that galaxies, with their inner black holes, grip space 

locally and that their mutual repulsion is the reason for space expansion.  
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We have already explained that both the metric and the curvature are the expression of space density, 

and necessarily so is also the Ricci Flow. 

 Summary 7

Equations of physics express different aspects of the same reality. This reality is the 

geometrodynamics of space, and the same “hidden” variable of these equations is the density 

of space.  

Laws of physics express the geometrodynamics of the elastic space and there is no need to ask 

where they come from.  

Our papers can be found by inserting shlomo barak in the HAL Search: 

HAL (https://hal.archives-ouvertes.fr)  
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