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Abstract

We consider a Galilean transformation of the lattice Boltzmann model for shal-

low water flows. In this new reference frame, the velocity lattice is asymmetrical

but it is possible to simulate flows with Froude number larger than 1 and to

model the transition from a torrential to a fluvial regime.

Keywords: shallow water equation, lattice Boltzmann, fluvial-torrential

transition, Galilean transformation

1. Introduction

The shallow water (SW) equation describes a free surface flow with the

approximation that the vertical component of the velocity flow is negligible

with respect to the horizontal components. This description is adequate for

systems having a wide spatial extent in the x- and y-axes but a small depth.

The one-dimensional SW equations are often used to describe the flow in a

canal. They read [1]

∂th+ ∂x(hu) = 0
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∂t(hu) + ∂x

(
1

2
gh2 + hu2

)
= F (1)

where h(x, t) is the height of the water column at location x along the canal

length and at time t, and u(x, t) is the velocity of that water column. The

quantity g is the gravity constant. The force term F = gh(I − J) accounts

for the bed slope I and the bed friction J , where I = ∂hb/∂x with hb the bed

height and J is modeled with the classical Manning formula [1]:

J =
n2u2(
Bh

B+2h

)4/3
(2)

with n the Manning coefficient and B the width of the canal.

The lattice Boltzmann (LB) approach to shallow water (SW) flows has been

discussed by several authors [2, 3, 4]. One-dimensional applications are studied

by Frandsen [5] and we recently proposed a very detailed analysis of the 1D

model [6, 7] in the context of irrigation canals. In this study, we showed that

the LB scheme is numerically faster than other standard methods, for the same

accuracy. The LB SW approach is therefore a very interesting candidate to

simulate a complex irrigation system, in view of its optimal management.

The Froude number Fr, defined as

Fr =
u0√
gh0

(3)

is an important dimensionless quantity to characterize flows in rivers. Here

u0 is the characteristic speed of the flow and h0 the characteristic height of

the water. The quantity
√
gh0 being the speed of the surface waves, a Froude

number smaller than 1 corresponds to a fluid that flows slower than the surface

waves. This situation is termed the fluvial regime. On the other hand, when Fr

is larger than 1, one has the so-called torrential regime, in which the fluid flows

faster than the surface waves. Both regimes may be present in an irrigation
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canal and the transition between them is important.

However, our previous study [6] shows that the LB SW model is numerically

unstable for Froude numbers equal to or larger than 1. More precisely, we found

that for a given height h0, the numerical scheme requires a speed u0 smaller than
√
gh0. This prevents the LB model to reach the torrential regime.

In this paper, we consider the possibility to increase u0 by defining a model

in which the equilibrium state is not a rest fluid but a fluid with a constant flow

U > 0. We show here that such a goal can be achieved by performing a Galilean

transformation of the the initial 1D LB SW model.

The paper is organized as follows: a short summary of the one-dimensional

LB SW model is given in section 2. Then, in section 3 we derived the new LB

model, which will be based on an asymmetrical velocity lattice. In section 4

we validate our approach, in particular by simulating the transition from a

torrential regime (Fr > 1) to a fluvial regime (Fr < 1). Finally, some conclusions

are given in section 5.

2. The one-dimensional LB model

In the LB approach, the height h(x, t) of a water column is split in several

quantities fi(x, t). The value of fi describes the part of the water column that

travels with velocity vi. Therefore the water level h(x, t) and the velocity u(x, t)

of a fluid column are expressed in terms of distribution functions fi(x, t) as

h =
∑
i

fi, hu =
∑
i

vifi (4)

The standard one-dimensional LB SW model is defined on the so-called

D1Q3 lattice (1 dimension and 3 velocities) and reads

fi(x+ vi∆t, t+∆t) = fi(x, t) +
1

τ
(feq

i − fi) (5)

where i runs from 0 to 2 and the lattice velocities are defined in fig. 1. The
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expression for the local equilibrium distributions is (see for instance [5, 6, 7])

feq
0 = h− 1

2v2
gh2 − 1

v2
hu2

feq
1 =

1

4v2
gh2 +

1

2v
hu+

1

2v2
hu2 (6)

feq
2 =

1

4v2
gh2 − 1

2v
hu+

1

2v2
hu2

where v = ∆x/∆t, ∆x is the lattice spacing and ∆t the time step.

It can be shown [6, 7] that this model reproduces the shallow water equa-

tions (1) for F = 0. It is also shown that the stability region of the 1D-LB

model is restricted to Fr ≤ 1 and the Courant’s conditions

−u+
√
gh < v − u−

√
gh > −v (7)

These last equations indicate that the speed of the flow plus the speed of the

wave must be smaller than the maximum speed v resolved by the model. Note

that it is found [6] that the value of the relaxation time τ is not affecting the

stability provided that τ > 1/2.

3. The asymmetric LB model

3.1. The model

We now consider a Galilean transformation of the model of section 2. Under

such a transformation, the lattice velocities are changed to Vi = vi + U where

U is the speed of the new reference frame. In order to simulated a flow around

Fr = 1, we choose U = v/2.

The D1Q3 lattice of fig. 1 then becomes the asymmetric D1Q3 lattice shown

in fig 2, whose velocities are

V0 =
v

2
, V1 =

3v

2
, V2 = −v

2
(8)

The local equilibrium distributions given in eq. (6) can be transformed by com-
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puting them for u− U . With U = v/2 they become

feq
0 = 3

4h− 1
v2

(
1
2gh

2 + hu2
)
+ 1

vhu

feq
1 = −1

8h+ 1
2v2

(
1
2gh

2 + hu2
)

feq
2 = 3

8h+ 1
2v2

(
1
2gh

2 + hu2
)
− 1

vhu

(9)

It is easy to check that, with the above local equilibrium distributions, we still

obtain the expected moments for a SW model, namely

∑
i

feq
i = h,

∑
i

feq
i Vi = hu, (10)

and ∑
i

V 2
i f

eq
i =

1

2
gh2 + hu2 (11)

This is a general consequence of the fact that Vi = vi + U and feq
i (h, u) =

f̂eq
i (h, u−U), where f̂eq

i is the local equilibrium distribution of the standard LB

model. Indeed, we have
∑

i f
eq
i (h, u) =

∑
i f̂

eq
i (h, u− U) = h and

∑
i

Vif
eq
i (h, u) =

∑
i

(vi + U)f̂eq
i (h, u− U)

=
∑
i

vif̂
eq
i (h, u− U) + U

∑
i

f̂eq
i (h, u− U)

= h(u− U) + Uh = hu (12)

and finally

∑
i

V 2
i f

eq
i (h, u) =

∑
i

(vi + U)2f̂eq
i (h, u− U)

=
∑
i

v2i f̂
eq
i (h, u− U) + 2U

∑
i

vif̂
eq
i (h, u− U)

+U2
∑
i

f̂eq
i (h, u− U)

=
1

2
gh2 + h(u− U)2 + 2Uh(u− U) + U2h

=
1

2
gh2 + hu2 (13)

In 1D systems, the three equilibrium populations are entirely defined by the
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expressions of the above first three moments. We could have used such an

approach to derived feq for the asymmetrical model, instead of the Galilean

transformation. However, in 2D, there are not enough moments to computed

uniquely the equilibrium populations, but the Galilean transformation could

still be used.

With our choice of Vi’s the streaming part of the LB dynamics moves the

distributions fi to half-integer and integer sites of the lattice. To avoid this

problem we can rescale the velocities by a factor of 2. This is equivalent to

change v in 2v in eq. (9). Thus, with

V0 = v, V1 = 3v, V2 = −v (14)

the local equilibrium functions are

feq
0 = 3

4h− 1
4v2

(
1
2gh

2 + hu2
)
+ 1

2vhu

feq
1 = − 1

8h+ 1
8v2

(
1
2gh

2 + hu2
)

feq
2 = 3

8h+ 1
8v2

(
1
2gh

2 + hu2
)
− 1

2vhu

(15)

These expressions, together with eq. (5) and

h =
∑
i

fi, hu =
∑
i

Vifi (16)

define the asymmetric LB model for 1D shallow water flows.

3.2. Chapman-Enskog expansion

A multiscale Chapman-Enskog expansion can be considered in order to con-

firm that the above asymmetric LB model gives the expected SW equations in

the continuous limit, and for low dissipation (τ ≈ 1/2). For this purpose, we

write fi as fi = feq
i + fneq

i , we perform a second order Taylor expansion of

the LB equation, and we take the first two moments. Following the standard

procedure (see for instance [6] where it is done in detail for the 1D LB shallow
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water model), we obtain

∂th+ ∂x(hu) = 0 (17)

∂t(hu) + ∂x (Π
eq − Γ) = 0 (18)

where Γ, the dissipative current is

Γ = ∆t

(
τ − 1

2

)[
−∂Πeq

∂h
∂xhu− ∂Πeq

∂hu
∂xΠ

eq + ∂xS
eq

]
(19)

and the quantities Πeq and Seq are defined as

Πeq =
∑
i

V 2
i f

eq
i Seq =

∑
i

V 3
i f

eq
i (20)

The above equations are very general and requires only the definition (16) of h

and u, and the conservation laws imposed by (10). Therefore they are struc-

turally identical to those obtained when analyzing the standard 1D LB SW

model. Since our equilibrium distributions (15) lead to the same second mo-

ment Πeq as the standard LB model, the only difference of the asymmetrical

model is due to the new expression of Seq in the right hand side of the dissipative

term eq. (19).

A straightforward calculation gives

Seq = v2hu+ 3v

(
1

2
gh2 + hu2

)
− 3hv3 (21)

The last two terms of this equation are not present in the symmetric LB SW

equation. This modification only affects Γ, the dissipative part of eq. (18) which

is found to be

Γ = ∆t

(
τ − 1

2

)[(
−gh− 3u2 + 6uv + v2

)
∂xhu+

(
−2ghu+ 3ghv + 2u3 − 3v3 − 3u2v

)
∂xh

]
(22)

in the present asymmetric D1Q3 model. This has to be compared with the
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expression found in the standard D1Q3 symmetric model [6]

Γ = ∆t

(
τ − 1

2

)[(
−gh− 3u2 + v2

)
∂xhu+

(
−2ghu+ 2u3

)
∂xh

]
(23)

In the usual SW equation (1), Γ is neglected. And if not, there is no commonly

accepted form of the dissipation term in the literature. We showed in [6] that

the 1D LB SW equation can be considered for values very close to τ = 1/2,

without numerical instabilities. Therefore, in this limit, our asymmetric LB

model correctly reproduces the standard SW equation.

3.3. Stability analysis

In this section, we consider a stability analysis of the asymmetrical SW LB

model and show that no more restriction on the value of the Froude number are

expected. We first discuss linear stability by considering a small deviation from

a steady solution. This approach has been used previously by many authors.

See for instance [8, 9]. For the shallow water, a full derivation is given in [6],

for the symmetric 1D LB model.

We consider a small perturbation ϵi around a steady solution fi = feq
i (h0, u0).

In terms of the perturbation ϵi, the LB shallow water equation becomes
ϵ0(x, t+ v∆t)

ϵ1(x+ 3v∆t, t+∆t)

ϵ2(x− v∆t, t+∆t)

 = M


ϵ0(x, t)

ϵ1(x, t)

ϵ2(x, t)

 (24)

where M can be computed from the expression of feq of the asymmetrical

model. The stability of the numerical model depends on the eigenvalues λ of

M . They can be obtained analytically in the Fourier space. The calculation is

rather tedious and won’t be given explicitly here as it follows the same steps

as described in [6]. Out of the three eigenvalues, two of them, λ± have value

1 when the wave number k goes to zero. They correspond to the conserved

modes, h and hu. The third eigenvalue corresponds to a ghost mode and has
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a value smaller than one for k → 0. It will thus not affect that stability of the

hydrodynamic regime. The result is

λ± = eiβ±ke−η±k2(∆x)2

where

β± =
±1− Fr

Ψ
(25)

and

η± = ∓1

2

(
τ − 1

2

)
(Fr±+Ψ) (Fr±−3Ψ) (Fr±−Ψ) /Ψ2 (26)

where Ψ = v/
√
gh0 is defined as the lattice Froude number.

The numerical scheme become unstable when η± < 0. This defines the linear

stability zone, as shown in light gray in Fig. 3. Compared to the stability region

of the standard model (dark gray), we have now no more limits on the value of

Fr. This stability region is not affected by the value of τ , as long as τ ≥ 1/2.

Note that in the asymmetrical model, the lattice Froude number Ψ = v/
√
gh

can be smaller than 1. It means that surface waves can travel faster than v, the

reference lattice speed. This is actually not a contradiction as the maximum

lattice speed is 3v in this model.

The above results can be confirmed numerically by running simulations that

sample the possible values of Fr and Ψ. A periodic 1D flow with uniform speed

u and uniform water level h is considered, with a small Gaussian perturbation

of the water height. In these simulations, the non-linearity of the dynamics is

preserved.

It is observed, in accordance with the analytical study, that the stability

region is entirely defined by

Ψ + 1 < Fr < 3Ψ− 1 Ψ− 1 < Fr < min(Ψ + 1, 3Ψ− 1) (27)

Expressed in terms of the velocity variables, these relations take the form of
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Courant-like conditions

Fr < 1 : −v < u−
√
gh and v < u+

√
gh < 3v

Fr > 1 : u−
√
gh < v < u+

√
gh < 3v

(28)

Therefore our asymmetric LB model is stable at the fluvial-torrential transition.

4. Numerical validations

4.1. Flow with Fr > 1

In this section we investigate whether our asymmetric LB model properly

computes the water profile in the case of a flow with Fr > 1. We consider a

simulation of the flow in a canal in which both the water height and the water

speed is imposed at the inlet. The Froude number at the inlet is Fr = 2.35. At

the outlet, a zero gradient condition is set on f2. In addition, we also include

in the LB model an external force F which mimics the slope of the canal and

some friction at the bottom.

Note that different ways exist to add the external force on the LB scheme

(see [10, 4, 6] for examples). These different options have been tested and they

affect the accuracy of the solution. The so-called simple force scheme is obtained

by adding a quantity Fi to eq. (5). To compute Fi as a function of the external

force F , mass conservation imposes

∑
i

[fi(x+ vi∆t, t+∆t)− fi(x, t)] = F0 + F1 + F2 = 0 (29)

and momentum balance requires

∑
i

Vi [fi(x+ vi∆t, t+∆t)− fi(x, t)] = v(F0 + 3F1 − F2) = Fdt (30)
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whose solution is

F0 =
F∆t

2v
− 2F1 F2 = −F∆t

2v
+ F1 (31)

Lattice directions 0 and 2 being symmetrical, we choose to also impose F0 =

−F2, from which we get F1 = 0. As a result, the quantities Fi can be written in

the usual form as Fi = wi∆tViF/c
2
s, with w0 = 1/2, w1 = 0, w2 = 1/2, c2s = v2.

The Zhou’s force term is added by using the expression proposed in [4]

Fi = wi
∆t

c2s
ViF

′
i (32)

with

F ′
0 = F

(
x+

∆x

2

)
, F ′

1 = 0, F ′
2 = F

(
x− ∆x

2

)
(33)

The Guo-Chopard’s force term, defined in [6], is calculated as

Fi = wi

(
1− 1

2τ

)
∆t

c2s
ViF (34)

but in this case, the definition of u in terms of the fi’s becomes

hu =
∑
i

vifi +
∆t

2
F (35)

The parameters of the simulation are summarized in table 1.

In fig. 4, we compare the water profile along the canal as obtained from

our LB simulation with results produced by other numerical solvers, commonly

used to solve the time-dependent shallow water equation. These extra solvers

are the implicit finite difference Preissmann solver [11] and a finite volume (FV)

solver [12, 13]. We can see that the solution provided by our asymmetrical LB

model is very good when compared to a reference solution obtained by a high

accuracy solution of the time-independent shallow-water equation (1). For the

three methods shown in fig. 4, the water discharge hu is constant within less
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than 0.05%.

We consider several spatial resolutions by changing the number of lattice

points Nx representing the canal length. The results are given in fig. 5, once the

steady state is reached. We see that our LB model is first order accurate with

the lattice spacing ∆x when compared to the reference profile. From theoretical

grounds, the LB SW is expected to be second order accurate. Boundary con-

ditions are a well known reasons to loose the second order accuracy. Another

reason is the fact that the reference solution is without dissipation, whereas the

LB model has a residual one. Finally, the external force may also be responsible

for a reduce accuracy level.

4.2. Transition from a torrential to a fluvial regime

Our final test is to study the capability of the asymmetric LB SW model to

simulate a transition from a flow with Fr > 1 (termed torrential regime) to a

flow with Fr < 1 (termed fluvial regime). We consider a simulation similar to

that of the previous section but with different values of the setting (see table 2),

so as to produce a transition around the middle of the canal. The steady state

result of the simulation is shown in fig. 6 for a system of size Nx = 128, for the

LB, FV and Preismann solvers. Note that, in this experiment, only the simple

force scheme defined above turned out to be a numerically stable way of adding

the external force F in the asymmetric LB scheme.

We observe that all solvers agree well except close to the transition region,

where quantitative differences show up. In the LB simulations the jump in

water height is less sharp than that computed by the other methods. However,

by increasing Nx, we can reduce the width of the transition region at will.

For both the Preismann and LB scheme, we observe a slight decrease of the

water current hu after the transition. For the LB case, this is due to the fact

that the simple-force approach can cause a small deviation to the continuity
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equation when F is not constant in space or time.

The Rankine-Hugoniot [14] conditions for the stationary case require that

the quantity

M(h) =
q2

gh
+

h2

2
(36)

must be preserved before and after the shock, where q = hu is the discharge.

This can be explained by observing that M(h) is simply the flux of momentum

gh2/2 + hu2 that appears in eq. (1) divided by the gravity constant g. Let us

denote by x1 and x2 the locations just before and just after the transition. By

integrating the momentum equation ∂thu + ∂xgM = F across the jump, we

have, in a steady state (∂thu = 0),∫ x2

x1

∂xM(h(x)) dx =
1

g

∫ x2

x1

F (x) dx (37)

If we assume that the transition is sharp (x2 ≈ x1), we are left with M(h2) −

M(h1) = 0, where h1 = h(x1) and h2 = h(x2).

The value of M versus h is shown in Fig. 7 for the three numerical methods.

The points M in the plot correspond to the values of h2/2 + q2/(gh), with h

and q = hu measured from the simulation along the x-axis.

We can see that M(h1) = M(h2) to a good accuracy in all three cases

(less that 10−4). For the LB case, we also observe that M(h) is not constant

across the jump: it starts decreasing until the middle of the transition and then

increases again so that, finally M(h1) ≈ M(h2).

To explain these observations, we should take into account the finite width

of the water jump and the dissipative term Γ for the LB solver. For any x in

the transition region, we obtain,∫ x

x1

∂x

[
M(h(x))− Γ

g

]
dx =

1

g

∫ x

x1

F (x) dx (38)
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and thus

M(h(x))−M(h1) =
1

g
(Γ(x)− Γ(x1)) +

1

g

∫ x

x1

F (x) dx (39)

If we choose x = x2 we have Γ(x1) ≈ Γ(x2) ≈ 0 because the water profile at

x1 and x2 is almost flat and, as seen from (22) we can neglect the dissipation.

Therefore we have M(h2)−M(h1) ≈ ϵ, where ϵ is defined as ϵ =
∫ x2

x1
F (x)/g dx.

We can approximate the integral of F as (∂x/∂h)
∫ h2

h1
(F (h)/g) dh because h

varies almost linearly across the jump. With F (h) = gh(I−J) where J is given

by (2) and u = q/h, we obtain, with a numerical integration, ϵ = −5.3× 10−5.

This is compatible with the departure from the Rankine-Hugoniot relation

observed in the three numerical simulations. For instance, for the LB case, we

have h1 = 0.065, h2 = 0.094, M(h1) = 0.00978, M(h2) = 0.00972, and thus

M(h2)−M(h1) = −6× 10−5

We can also explain why, with the LB simulations, the value of M goes

from M(h1) to M(h2) as a smooth curve. This is due to the dissipation Γ,

which is non-zero across the water jump. For the two other solvers, there is no

viscous term and the transition of M is more abrupt. This can be quantified by

using eq. (39) for x = xm = (x1 + x2)/2. By neglecting the integral over F in

comparison to Γ(xm) and with again Γ(x1) ≈ 0 one has M(h(xm))−M(h1) =

Γ(xm)/g = −0.00024. This is compatible with the distance observed on Fig. 7

between the minimum of M and M(h1).

Finally, we can also compare the ratio h2/h1 observed in the simulation with

Bélanger’s equation [1]

h2

h1
=

1

2

(√
1 + 8Fr21 − 1

)
(40)

which predicts the water heights h1 and h2 before and after the water jump,

where Fr1 is the Froude number in the torrential regime. This equation gives the
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ratio between the two solutions h1 and h2 ofM(h) = const, for q = h1u1 = h2u2.

With the LB simulations, one has h1 = h(x = 3.8) = 0.065, h2 = h(x =

4.8) = 0.094 and Fr1 = 1.32. According to eq. (40) the value of h2 should be

h2 =
h1

2

(√
1 + 8Fr21 − 1

)
= 0.093 (41)

in good agreement with the numerical result.

Our asymmetric LB model can also be tested against the experimental data

obtained by Gharangik and described in [15] (in the horizontal case). The result

of the comparison is shown in Fig. 8. The simulation (solid line) reproduces

very well the jump of the water height observed experimentally (squares). The

situation corresponds to a rectangular straight channel of length L = 13.9 m

and width B = 0.45 m, with an imposed flow Q = 0.053 m3/s. From the

experimental data, the water levels at the beginning and the end of the channel

section are h(0) = 0.064 m and h(L) = 0.165 m, respectively. In the simulation,

we used these two values as boundary conditions. Another boundary condition

is the inlet velocity, which was set to u(0) = 1.82 m/s to have the correct

discharge Q = Bh(0)u(0).

In the experiment, the Manning coefficient n was found to range from 0.008

to 0.011 (see [15]). In the simulation, n = 0.007 gave the best agreement with

the experimental points, that is a jump that starts at x = 1.5 m. This location

is sensitive to the value of n chosen in the simulation. Increasing n was found

to move the jump in the upstream direction. The width ∆ of the jump is

dependent on the value of the relaxation time τ of the LB model, which is

related to the dissipation. With τ = 0.85 we obtain a good agreement with the

experimental findings, that is ∆ = 1.2 m. By lowering τ , the steepness of the

jump is increased, and a little overshoot may be created at the upper part of

the jump.
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5. Conclusions

In this paper, we have proposed a new lattice Boltzmann (LB) model which

can describe 1D shallow water flows at Froude numbers larger than 1, a regime

which is numerically unstable with the standard lattice Boltzmann shallow water

approach. This models allows us to simulated the fluvial-torrential transition,

which is known to be a difficult task.

Our new model can be derived by performing a Galilean transformation of

the standard one. It results in a asymmetrical velocity lattice, well appropriate

to describe a flow with large velocity in one direction.

Galilean transformations have already been used in the LB literature as a

way to design numerical models. For instance, in [16, 17] the collision rule of

a LB fluid is built on the Galilean invariant (central) moments of the density

distribution functions fi. In [18], a Galilean transformation is applied to the

fi’s in order to derive a Lees-Edwards boundary condition for a fluid subject to

an imposed shear rate. In that same paper, a Galilean transformation is also

used to compute the change of fi due to the interaction between the fluid and

a moving suspension. However, in all these cases, the Galilean transformation

is only applied to the fi or their moments. In our asymmetric model, the

transformation also affects the lattice velocities vi.

It should be noted that with the coupling methods described in [6, 7] we can

expect to couple our asymmetrical D1Q3 model with a symmetric one and then

to describe a canal system with sections having quite different flow regimes.

It was shown in [6] that the standard 1D LB SW is computationally more

effective than the Preismann or FV solvers, for the same, or even higher, level

of accuracy. The weakness of the standard 1D LB SW model is its stability

range. With the asymmetrical LB model, we have corrected this problem, by

moving and shaping the numerical stability domain in order to cope with all
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Froude numbers.

A 2D generalization of the asymmetrical SW-LB is possible but numerical

simulations should still be performed in order to check its stability and accuracy.

In a future study, we also plan to test our approach in the context of general

LB models.

We thanks Guy Simpson for providing us with the Finite Volume solver of

the shallow water equation used in our comparisons and Santosh Ansumali for

interesting comments on our approach.
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v2 v0 v1

Figure 1: Lattice Boltzmann D1Q3 velocities v0 = 0, v1 = v and v2 = −v, with v = ∆x/dt.
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Figure 2: The asymmetric D1Q3 lattice obtained from a Galilean transform with speed 1/2.
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Figure 3: The stability region of the symmetrical and asymmetrical LB models, in terms of
the two dimensionless numbers, the Froude number Fr and the lattice Froude number Ψ.
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Figure 4: Validation of the asymmetric LB model to describe the solution of the shallow water
equation with Froude number larger than 1, and Nx = 512.. The water profile is compared
with two well tested numerical solvers in a steady state regime, and a high precision numerical
solution of the steady SW eq. (1), coined “reference” solution in the figure.
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Figure 5: Accuracy plot of the convergence of the numerical solutions to the reference profile,
for the plots in fig. 4. The error as a function of the spatial resolution is shown. Different
ways to add the external force are considered for the LB scheme. See [6] for a definition of
the types of forces.
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Figure 6: Water profile (upper panel) and discharge (lower panel) in a torrential-fluvial tran-
sition, for different numerical solvers. The shaded area represents the bed profile. The spatial
discretization is Nx = 128. For the LB simulation, the relaxation time is τ = 0.6.
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Figure 7: Test of the Rankine-Hugoniot relation across the transition, with q = 0.07. The
two horizontal segments indicate the observed water heights before and after the shock. Their
values are h1 = 0.065 and h2 = 0.094.
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Figure 8: Water height in the case of the hydraulic jump experiment by Gharangik [15].
Measurements (squares) are compared to a numerical simulation with the asymmetrical LB
(solid line). The simulation contains Nx = 128 lattice points. The two vertical dashed lines
indicate the beginning and end of the jump, as described in [15].
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Canal length L 8 m
Canal width B 0.1 m
Canal slope I 1.6e-3

Coefficient of friction n 0.005
relaxation time τ 1

Upstream water height hup 0.04 m
Upstream velocity uup 1.4725 m/s

lattice speed v 1.5 m/s

Table 1: Parameters of the simulation with Froude number Fr = 2.35.
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Canal slope I 2.6e-3
Friction coefficient n 0.007

Upstream water level hup 0.05 m
Upstream velocity uup 1.4 m/s
Lattice spacing ∆x 0.0625 m
Lattice speed v 1.5 m/s

Table 2: Parameters of the simulation showing the torrential-fluvial transition.
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